Abstract

We investigated whether resolution is sampling limited for stimuli optimized for detection by magnocellular mechanisms. We measured peripheral (15° and 30°) spatial detection and resolution thresholds using 50% and 90% contrast flicker-defined gratings (25 Hz) and 90% contrast counterphasing sinusoidal gratings (25 Hz). Direction-discrimination performance for 90% contrast counterphasing sinusoidal gratings (25 Hz) was measured foveally. Our results indicate that resolution of rapidly counterphasing stimuli is sampling limited in peripheral vision but is consistent with limiting of performance by parvocellular mechanisms. Also, undersampling may not be necessary to account for motion reversals observed with gratings that both drift and flicker.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25, 195–205 (1985).
    [CrossRef] [PubMed]
  2. D. R. Williams, “Visibility of interference fringes near the resolution limit,” J. Opt. Soc. Am. A 2, 1087–1093 (1985).
    [CrossRef] [PubMed]
  3. F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. (London) 186, 558–578 (1966).
  4. L. N. Thibos, D. J. Walsh, F. E. Cheney, “Vision beyond the resolution limit: aliasing in the periphery,” Vision Res. 27, 2193–2197 (1987).
    [CrossRef] [PubMed]
  5. L. N. Thibos, F. E. Cheney, D. J. Walsh, “Retinal limits to the detection and resolution of gratings,” J. Opt. Soc. Am. A 4, 1524–1529 (1987).
    [CrossRef] [PubMed]
  6. L. N. Thibos, D. L. Still, A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vision Res. 36, 249–258 (1996).
    [CrossRef] [PubMed]
  7. R. S. Anderson, “Aliasing in peripheral vision for counterphase gratings,” J. Opt. Soc. Am. A 13, 2288–2293 (1996).
    [CrossRef]
  8. S. J. Anderson, R. F. Hess, “Post-receptoral under-sampling in normal human peripheral vision,” Vision Res. 30, 1507–1515 (1990).
    [CrossRef]
  9. S. J. Anderson, N. Drasdo, C. M. Thompson, “Parvocellular neurons limit motion acuity in human peripheral vision,” Proc. R. Soc. London, Ser. B 261, 129–138 (1995).
    [CrossRef]
  10. S. J. Galvin, D. R. Williams, N. J. Coletta, “The spatial grain of motion perception in human peripheral vision,” Vision Res. 36, 2283–2295 (1996).
    [CrossRef] [PubMed]
  11. Y.-Z. Wang, L. N. Thibos, A. Bradley, “Undersampling produces non-veridical motion perception, but not necessarily motion reversal, in peripheral vision,” Vision Res. 36, 1737–1744 (1996).
    [CrossRef] [PubMed]
  12. N. J. Coletta, D. R. Williams, C. L. M. Tiana, “Consequences of spatial sampling for human motion perception,” Vision Res. 30, 1631–1648 (1990).
    [CrossRef] [PubMed]
  13. V. H. Perry, R. Oehler, A. Cowey, “Retinal ganglion cells that project to the dorsal lateral geniculate in the macaque monkey,” Neuroscience 12, 1101–1123 (1984).
    [CrossRef] [PubMed]
  14. W. H. Merigan, T. Eskin, “Spatio-temporal vision of macaques with severe loss of P beta retinal ganglion cells,” Vision Res. 26, 1751–1761 (1986).
    [CrossRef] [PubMed]
  15. A. M. McKendrick, A. J. Vingrys, D. R. Badcock, J. T. Heywood, “Migraine effects on visual function,” Aust. NZ J. Ophthalmol. 26 (Suppl.), S111–S113 (1998).
    [CrossRef]
  16. A. Eisner, J. R. Samples, “Profound reductions of flicker sensitivity in the elderly: can glaucoma involve the retina distal to ganglion cells,” Appl. Opt. 30, 2121–2135 (1991).
    [CrossRef] [PubMed]
  17. A. Eisner, V. D. Stoumbs, M. L. Klein, S. A. Fleming, “Relations between fundus appearance and function,” Invest. Ophthalmol. Visual Sci. 32, 8–20 (1991).
  18. E. J. Casson, C. A. Johnson, L. R. Shapiro, “Longitudinal comparison of temporal-modulation perimetry with white-on-white and blue-on-yellow perimetry in ocular hypertension and early glaucoma,” J. Opt. Soc. Am. A 10, 1792–1806 (1993).
    [CrossRef]
  19. C. A. Johnson, S. J. Samuels, “Screening for glaucomatous visual field loss with frequency doubling perimetry,” Invest. Ophthalmol. Visual Sci. 38, 413–425 (1997).
  20. M. Wall, K. M. Ketoff, “Random dot motion perimetry in patients with glaucoma and in normal subjects,” Am. J. Ophthalmol. 120, 587–596 (1995).
    [PubMed]
  21. C. F. Bosworth, P. A. Sample, R. N. Weinreb, “Perimetric motion thresholds are elevated in glaucoma suspects and glaucoma patients,” Vision Res. 37, 1989–1997 (1997).
    [CrossRef] [PubMed]
  22. K. A. Baez, A. I. McNaught, J. G. Dowler, D. Poinoosawmy, F. W. Fitzke, R. A. Hitchings, “Motion detection threshold and field progression in normal tension glaucoma,” Br. J. Ophthamol. 79, 125–128 (1995).
    [CrossRef]
  23. W. H. Merigan, J. H. R. Maunsell, “Macaque vision after magnocellular lateral geniculate lesions,” Visual Neurosci. 5, 347–352 (1990).
    [CrossRef]
  24. M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement and depth,” J. Neurosci. 7, 3416–3468 (1987).
    [PubMed]
  25. T. Maddess, J. M. Hemmi, A. C. James, “Evidence for spatial aliasing effects in the Y-like cells of the magnocellular visual pathway,” Vision Res. 38, 1843–1859 (1998).
    [CrossRef] [PubMed]
  26. D. H. Kelly, “Frequency doubling in visual responses,” J. Opt. Soc. Am. 56, 1628–1633 (1966).
    [CrossRef]
  27. D. C. Rogers-Ramachandran, V. S. Ramachandran, “Psychophysical evidence for boundary and surface systems in human vision,” Vision Res. 38, 71–77 (1998).
    [CrossRef] [PubMed]
  28. J. G. Flanagan, D. Williams-Lyn, G. E. Trope, W. Hatch, E. Harrison, “The phantom contour illusion letter test: a new psychophysical test for glaucoma,” in Perimetry Update 1994/95, R. P. Mills, M. Wall, eds. (Kugler, Amsterdam, 1995), pp. 405–409.
  29. N. Barnard, S. G. Crewther, D. P. Crewther, “Development of magnocellular function in good and poor primary school age readers,” Optom. Vision Sci. 75, 62–68 (1998).
    [CrossRef]
  30. J. Rovamo, V. Virsu, P. Laurinen, L. Hyvarinen, “Resolution of gratings along and across meridians in peripheral vision,” Invest. Ophthalmol. Visual Sci. 23, 666–670 (1982).
  31. J. Nachmias, “On the psychometric function for contrast detection,” Vision Res. 21, 215–223 (1981).
    [CrossRef] [PubMed]
  32. C. A. Curcio, K. A. Allen, “Topography of ganglion cells in human retina,” J. Comp. Neurol. 292, 497–523 (1990).
    [CrossRef] [PubMed]
  33. S. M. Anstis, “Phi movement as a subtraction process,” Vision Res. 10, 1411–1430 (1970).
    [CrossRef] [PubMed]
  34. S. M. Anstis, B. J. Rogers, “Illusory reversal of visual depth and movement during changes of contrast,” Vision Res. 15, 957–961 (1975).
    [CrossRef] [PubMed]
  35. E. H. Adelson, J. R. Bergen, “Spatiotemporal energymodels for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
    [CrossRef] [PubMed]
  36. R. J. Snowden, O. J. Braddick, “The temporal integration and resolution of velocity signals,” Vision Res. 31, 907–914 (1991).
    [CrossRef] [PubMed]
  37. G. E. Legge, “Sustained and transient mechanisms in human vision: temporal and spatial properties,” Vision Res. 18, 69–81 (1978).
    [CrossRef] [PubMed]
  38. D. C. Burr, “Temporal summation of moving images by the human visual system,” Proc. R. Soc. London, Ser. B 211, 321–339 (1981).
    [CrossRef]
  39. W. H. Merigan, J. H. R. Maunsell, “How parallel are the primate visual pathways?” Annu. Rev. Neurosci. 16, 369–402 (1993).
    [CrossRef] [PubMed]
  40. A. Metha, A. J. Vingrys, D. R. Badcock, “Detection and discrimination of moving stimuli: the effects of color, luminance, and eccentricity,” J. Opt. Soc. Am. A 11, 1697–1709 (1994).
    [CrossRef]
  41. J. H. R. Maunsell, T. A. Nealey, D. D. DePriest, “Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey,” J. Neurosci. 10, 3323–3334 (1990).
    [PubMed]
  42. A. M. Derrington, D. R. Badcock, “The low level motion system has both chromatic and luminance inputs,” Vision Res. 25, 1879–1884 (1985).
    [CrossRef] [PubMed]
  43. A. G. Leventhal, K. G. Thompson, D. Liu, Y. Zhou, S. J. Ault, “Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex,” J. Neurosci. 15, 1808–1818 (1995).
    [PubMed]
  44. B. B. Lee, O. D. Creuzfeldt, A. Elepfandt, “The responses of magno- and parvocellular cells of the monkey’s lateral geniculate body to moving stimuli,” Exp. Brain Res. 35, 547–557 (1979).
    [CrossRef] [PubMed]
  45. L. N. Thibos, “Acuity perimetry and the sampling theory of visual resolution,” Optom. Vision Sci. 75, 399–406 (1998).
    [CrossRef]

1998 (5)

A. M. McKendrick, A. J. Vingrys, D. R. Badcock, J. T. Heywood, “Migraine effects on visual function,” Aust. NZ J. Ophthalmol. 26 (Suppl.), S111–S113 (1998).
[CrossRef]

D. C. Rogers-Ramachandran, V. S. Ramachandran, “Psychophysical evidence for boundary and surface systems in human vision,” Vision Res. 38, 71–77 (1998).
[CrossRef] [PubMed]

N. Barnard, S. G. Crewther, D. P. Crewther, “Development of magnocellular function in good and poor primary school age readers,” Optom. Vision Sci. 75, 62–68 (1998).
[CrossRef]

T. Maddess, J. M. Hemmi, A. C. James, “Evidence for spatial aliasing effects in the Y-like cells of the magnocellular visual pathway,” Vision Res. 38, 1843–1859 (1998).
[CrossRef] [PubMed]

L. N. Thibos, “Acuity perimetry and the sampling theory of visual resolution,” Optom. Vision Sci. 75, 399–406 (1998).
[CrossRef]

1997 (2)

C. F. Bosworth, P. A. Sample, R. N. Weinreb, “Perimetric motion thresholds are elevated in glaucoma suspects and glaucoma patients,” Vision Res. 37, 1989–1997 (1997).
[CrossRef] [PubMed]

C. A. Johnson, S. J. Samuels, “Screening for glaucomatous visual field loss with frequency doubling perimetry,” Invest. Ophthalmol. Visual Sci. 38, 413–425 (1997).

1996 (4)

L. N. Thibos, D. L. Still, A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vision Res. 36, 249–258 (1996).
[CrossRef] [PubMed]

R. S. Anderson, “Aliasing in peripheral vision for counterphase gratings,” J. Opt. Soc. Am. A 13, 2288–2293 (1996).
[CrossRef]

S. J. Galvin, D. R. Williams, N. J. Coletta, “The spatial grain of motion perception in human peripheral vision,” Vision Res. 36, 2283–2295 (1996).
[CrossRef] [PubMed]

Y.-Z. Wang, L. N. Thibos, A. Bradley, “Undersampling produces non-veridical motion perception, but not necessarily motion reversal, in peripheral vision,” Vision Res. 36, 1737–1744 (1996).
[CrossRef] [PubMed]

1995 (4)

S. J. Anderson, N. Drasdo, C. M. Thompson, “Parvocellular neurons limit motion acuity in human peripheral vision,” Proc. R. Soc. London, Ser. B 261, 129–138 (1995).
[CrossRef]

M. Wall, K. M. Ketoff, “Random dot motion perimetry in patients with glaucoma and in normal subjects,” Am. J. Ophthalmol. 120, 587–596 (1995).
[PubMed]

K. A. Baez, A. I. McNaught, J. G. Dowler, D. Poinoosawmy, F. W. Fitzke, R. A. Hitchings, “Motion detection threshold and field progression in normal tension glaucoma,” Br. J. Ophthamol. 79, 125–128 (1995).
[CrossRef]

A. G. Leventhal, K. G. Thompson, D. Liu, Y. Zhou, S. J. Ault, “Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex,” J. Neurosci. 15, 1808–1818 (1995).
[PubMed]

1994 (1)

1993 (2)

1991 (3)

R. J. Snowden, O. J. Braddick, “The temporal integration and resolution of velocity signals,” Vision Res. 31, 907–914 (1991).
[CrossRef] [PubMed]

A. Eisner, J. R. Samples, “Profound reductions of flicker sensitivity in the elderly: can glaucoma involve the retina distal to ganglion cells,” Appl. Opt. 30, 2121–2135 (1991).
[CrossRef] [PubMed]

A. Eisner, V. D. Stoumbs, M. L. Klein, S. A. Fleming, “Relations between fundus appearance and function,” Invest. Ophthalmol. Visual Sci. 32, 8–20 (1991).

1990 (5)

S. J. Anderson, R. F. Hess, “Post-receptoral under-sampling in normal human peripheral vision,” Vision Res. 30, 1507–1515 (1990).
[CrossRef]

N. J. Coletta, D. R. Williams, C. L. M. Tiana, “Consequences of spatial sampling for human motion perception,” Vision Res. 30, 1631–1648 (1990).
[CrossRef] [PubMed]

C. A. Curcio, K. A. Allen, “Topography of ganglion cells in human retina,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

W. H. Merigan, J. H. R. Maunsell, “Macaque vision after magnocellular lateral geniculate lesions,” Visual Neurosci. 5, 347–352 (1990).
[CrossRef]

J. H. R. Maunsell, T. A. Nealey, D. D. DePriest, “Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey,” J. Neurosci. 10, 3323–3334 (1990).
[PubMed]

1987 (3)

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement and depth,” J. Neurosci. 7, 3416–3468 (1987).
[PubMed]

L. N. Thibos, D. J. Walsh, F. E. Cheney, “Vision beyond the resolution limit: aliasing in the periphery,” Vision Res. 27, 2193–2197 (1987).
[CrossRef] [PubMed]

L. N. Thibos, F. E. Cheney, D. J. Walsh, “Retinal limits to the detection and resolution of gratings,” J. Opt. Soc. Am. A 4, 1524–1529 (1987).
[CrossRef] [PubMed]

1986 (1)

W. H. Merigan, T. Eskin, “Spatio-temporal vision of macaques with severe loss of P beta retinal ganglion cells,” Vision Res. 26, 1751–1761 (1986).
[CrossRef] [PubMed]

1985 (4)

D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25, 195–205 (1985).
[CrossRef] [PubMed]

D. R. Williams, “Visibility of interference fringes near the resolution limit,” J. Opt. Soc. Am. A 2, 1087–1093 (1985).
[CrossRef] [PubMed]

A. M. Derrington, D. R. Badcock, “The low level motion system has both chromatic and luminance inputs,” Vision Res. 25, 1879–1884 (1985).
[CrossRef] [PubMed]

E. H. Adelson, J. R. Bergen, “Spatiotemporal energymodels for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
[CrossRef] [PubMed]

1984 (1)

V. H. Perry, R. Oehler, A. Cowey, “Retinal ganglion cells that project to the dorsal lateral geniculate in the macaque monkey,” Neuroscience 12, 1101–1123 (1984).
[CrossRef] [PubMed]

1982 (1)

J. Rovamo, V. Virsu, P. Laurinen, L. Hyvarinen, “Resolution of gratings along and across meridians in peripheral vision,” Invest. Ophthalmol. Visual Sci. 23, 666–670 (1982).

1981 (2)

J. Nachmias, “On the psychometric function for contrast detection,” Vision Res. 21, 215–223 (1981).
[CrossRef] [PubMed]

D. C. Burr, “Temporal summation of moving images by the human visual system,” Proc. R. Soc. London, Ser. B 211, 321–339 (1981).
[CrossRef]

1979 (1)

B. B. Lee, O. D. Creuzfeldt, A. Elepfandt, “The responses of magno- and parvocellular cells of the monkey’s lateral geniculate body to moving stimuli,” Exp. Brain Res. 35, 547–557 (1979).
[CrossRef] [PubMed]

1978 (1)

G. E. Legge, “Sustained and transient mechanisms in human vision: temporal and spatial properties,” Vision Res. 18, 69–81 (1978).
[CrossRef] [PubMed]

1975 (1)

S. M. Anstis, B. J. Rogers, “Illusory reversal of visual depth and movement during changes of contrast,” Vision Res. 15, 957–961 (1975).
[CrossRef] [PubMed]

1970 (1)

S. M. Anstis, “Phi movement as a subtraction process,” Vision Res. 10, 1411–1430 (1970).
[CrossRef] [PubMed]

1966 (2)

D. H. Kelly, “Frequency doubling in visual responses,” J. Opt. Soc. Am. 56, 1628–1633 (1966).
[CrossRef]

F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. (London) 186, 558–578 (1966).

Adelson, E. H.

Allen, K. A.

C. A. Curcio, K. A. Allen, “Topography of ganglion cells in human retina,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

Anderson, R. S.

Anderson, S. J.

S. J. Anderson, N. Drasdo, C. M. Thompson, “Parvocellular neurons limit motion acuity in human peripheral vision,” Proc. R. Soc. London, Ser. B 261, 129–138 (1995).
[CrossRef]

S. J. Anderson, R. F. Hess, “Post-receptoral under-sampling in normal human peripheral vision,” Vision Res. 30, 1507–1515 (1990).
[CrossRef]

Anstis, S. M.

S. M. Anstis, B. J. Rogers, “Illusory reversal of visual depth and movement during changes of contrast,” Vision Res. 15, 957–961 (1975).
[CrossRef] [PubMed]

S. M. Anstis, “Phi movement as a subtraction process,” Vision Res. 10, 1411–1430 (1970).
[CrossRef] [PubMed]

Ault, S. J.

A. G. Leventhal, K. G. Thompson, D. Liu, Y. Zhou, S. J. Ault, “Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex,” J. Neurosci. 15, 1808–1818 (1995).
[PubMed]

Badcock, D. R.

A. M. McKendrick, A. J. Vingrys, D. R. Badcock, J. T. Heywood, “Migraine effects on visual function,” Aust. NZ J. Ophthalmol. 26 (Suppl.), S111–S113 (1998).
[CrossRef]

A. Metha, A. J. Vingrys, D. R. Badcock, “Detection and discrimination of moving stimuli: the effects of color, luminance, and eccentricity,” J. Opt. Soc. Am. A 11, 1697–1709 (1994).
[CrossRef]

A. M. Derrington, D. R. Badcock, “The low level motion system has both chromatic and luminance inputs,” Vision Res. 25, 1879–1884 (1985).
[CrossRef] [PubMed]

Baez, K. A.

K. A. Baez, A. I. McNaught, J. G. Dowler, D. Poinoosawmy, F. W. Fitzke, R. A. Hitchings, “Motion detection threshold and field progression in normal tension glaucoma,” Br. J. Ophthamol. 79, 125–128 (1995).
[CrossRef]

Barnard, N.

N. Barnard, S. G. Crewther, D. P. Crewther, “Development of magnocellular function in good and poor primary school age readers,” Optom. Vision Sci. 75, 62–68 (1998).
[CrossRef]

Bergen, J. R.

Bosworth, C. F.

C. F. Bosworth, P. A. Sample, R. N. Weinreb, “Perimetric motion thresholds are elevated in glaucoma suspects and glaucoma patients,” Vision Res. 37, 1989–1997 (1997).
[CrossRef] [PubMed]

Braddick, O. J.

R. J. Snowden, O. J. Braddick, “The temporal integration and resolution of velocity signals,” Vision Res. 31, 907–914 (1991).
[CrossRef] [PubMed]

Bradley, A.

L. N. Thibos, D. L. Still, A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vision Res. 36, 249–258 (1996).
[CrossRef] [PubMed]

Y.-Z. Wang, L. N. Thibos, A. Bradley, “Undersampling produces non-veridical motion perception, but not necessarily motion reversal, in peripheral vision,” Vision Res. 36, 1737–1744 (1996).
[CrossRef] [PubMed]

Burr, D. C.

D. C. Burr, “Temporal summation of moving images by the human visual system,” Proc. R. Soc. London, Ser. B 211, 321–339 (1981).
[CrossRef]

Campbell, F. W.

F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. (London) 186, 558–578 (1966).

Casson, E. J.

Cheney, F. E.

L. N. Thibos, D. J. Walsh, F. E. Cheney, “Vision beyond the resolution limit: aliasing in the periphery,” Vision Res. 27, 2193–2197 (1987).
[CrossRef] [PubMed]

L. N. Thibos, F. E. Cheney, D. J. Walsh, “Retinal limits to the detection and resolution of gratings,” J. Opt. Soc. Am. A 4, 1524–1529 (1987).
[CrossRef] [PubMed]

Coletta, N. J.

S. J. Galvin, D. R. Williams, N. J. Coletta, “The spatial grain of motion perception in human peripheral vision,” Vision Res. 36, 2283–2295 (1996).
[CrossRef] [PubMed]

N. J. Coletta, D. R. Williams, C. L. M. Tiana, “Consequences of spatial sampling for human motion perception,” Vision Res. 30, 1631–1648 (1990).
[CrossRef] [PubMed]

Cowey, A.

V. H. Perry, R. Oehler, A. Cowey, “Retinal ganglion cells that project to the dorsal lateral geniculate in the macaque monkey,” Neuroscience 12, 1101–1123 (1984).
[CrossRef] [PubMed]

Creuzfeldt, O. D.

B. B. Lee, O. D. Creuzfeldt, A. Elepfandt, “The responses of magno- and parvocellular cells of the monkey’s lateral geniculate body to moving stimuli,” Exp. Brain Res. 35, 547–557 (1979).
[CrossRef] [PubMed]

Crewther, D. P.

N. Barnard, S. G. Crewther, D. P. Crewther, “Development of magnocellular function in good and poor primary school age readers,” Optom. Vision Sci. 75, 62–68 (1998).
[CrossRef]

Crewther, S. G.

N. Barnard, S. G. Crewther, D. P. Crewther, “Development of magnocellular function in good and poor primary school age readers,” Optom. Vision Sci. 75, 62–68 (1998).
[CrossRef]

Curcio, C. A.

C. A. Curcio, K. A. Allen, “Topography of ganglion cells in human retina,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

DePriest, D. D.

J. H. R. Maunsell, T. A. Nealey, D. D. DePriest, “Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey,” J. Neurosci. 10, 3323–3334 (1990).
[PubMed]

Derrington, A. M.

A. M. Derrington, D. R. Badcock, “The low level motion system has both chromatic and luminance inputs,” Vision Res. 25, 1879–1884 (1985).
[CrossRef] [PubMed]

Dowler, J. G.

K. A. Baez, A. I. McNaught, J. G. Dowler, D. Poinoosawmy, F. W. Fitzke, R. A. Hitchings, “Motion detection threshold and field progression in normal tension glaucoma,” Br. J. Ophthamol. 79, 125–128 (1995).
[CrossRef]

Drasdo, N.

S. J. Anderson, N. Drasdo, C. M. Thompson, “Parvocellular neurons limit motion acuity in human peripheral vision,” Proc. R. Soc. London, Ser. B 261, 129–138 (1995).
[CrossRef]

Eisner, A.

A. Eisner, J. R. Samples, “Profound reductions of flicker sensitivity in the elderly: can glaucoma involve the retina distal to ganglion cells,” Appl. Opt. 30, 2121–2135 (1991).
[CrossRef] [PubMed]

A. Eisner, V. D. Stoumbs, M. L. Klein, S. A. Fleming, “Relations between fundus appearance and function,” Invest. Ophthalmol. Visual Sci. 32, 8–20 (1991).

Elepfandt, A.

B. B. Lee, O. D. Creuzfeldt, A. Elepfandt, “The responses of magno- and parvocellular cells of the monkey’s lateral geniculate body to moving stimuli,” Exp. Brain Res. 35, 547–557 (1979).
[CrossRef] [PubMed]

Eskin, T.

W. H. Merigan, T. Eskin, “Spatio-temporal vision of macaques with severe loss of P beta retinal ganglion cells,” Vision Res. 26, 1751–1761 (1986).
[CrossRef] [PubMed]

Fitzke, F. W.

K. A. Baez, A. I. McNaught, J. G. Dowler, D. Poinoosawmy, F. W. Fitzke, R. A. Hitchings, “Motion detection threshold and field progression in normal tension glaucoma,” Br. J. Ophthamol. 79, 125–128 (1995).
[CrossRef]

Flanagan, J. G.

J. G. Flanagan, D. Williams-Lyn, G. E. Trope, W. Hatch, E. Harrison, “The phantom contour illusion letter test: a new psychophysical test for glaucoma,” in Perimetry Update 1994/95, R. P. Mills, M. Wall, eds. (Kugler, Amsterdam, 1995), pp. 405–409.

Fleming, S. A.

A. Eisner, V. D. Stoumbs, M. L. Klein, S. A. Fleming, “Relations between fundus appearance and function,” Invest. Ophthalmol. Visual Sci. 32, 8–20 (1991).

Galvin, S. J.

S. J. Galvin, D. R. Williams, N. J. Coletta, “The spatial grain of motion perception in human peripheral vision,” Vision Res. 36, 2283–2295 (1996).
[CrossRef] [PubMed]

Gubisch, R. W.

F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. (London) 186, 558–578 (1966).

Harrison, E.

J. G. Flanagan, D. Williams-Lyn, G. E. Trope, W. Hatch, E. Harrison, “The phantom contour illusion letter test: a new psychophysical test for glaucoma,” in Perimetry Update 1994/95, R. P. Mills, M. Wall, eds. (Kugler, Amsterdam, 1995), pp. 405–409.

Hatch, W.

J. G. Flanagan, D. Williams-Lyn, G. E. Trope, W. Hatch, E. Harrison, “The phantom contour illusion letter test: a new psychophysical test for glaucoma,” in Perimetry Update 1994/95, R. P. Mills, M. Wall, eds. (Kugler, Amsterdam, 1995), pp. 405–409.

Hemmi, J. M.

T. Maddess, J. M. Hemmi, A. C. James, “Evidence for spatial aliasing effects in the Y-like cells of the magnocellular visual pathway,” Vision Res. 38, 1843–1859 (1998).
[CrossRef] [PubMed]

Hess, R. F.

S. J. Anderson, R. F. Hess, “Post-receptoral under-sampling in normal human peripheral vision,” Vision Res. 30, 1507–1515 (1990).
[CrossRef]

Heywood, J. T.

A. M. McKendrick, A. J. Vingrys, D. R. Badcock, J. T. Heywood, “Migraine effects on visual function,” Aust. NZ J. Ophthalmol. 26 (Suppl.), S111–S113 (1998).
[CrossRef]

Hitchings, R. A.

K. A. Baez, A. I. McNaught, J. G. Dowler, D. Poinoosawmy, F. W. Fitzke, R. A. Hitchings, “Motion detection threshold and field progression in normal tension glaucoma,” Br. J. Ophthamol. 79, 125–128 (1995).
[CrossRef]

Hubel, D. H.

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement and depth,” J. Neurosci. 7, 3416–3468 (1987).
[PubMed]

Hyvarinen, L.

J. Rovamo, V. Virsu, P. Laurinen, L. Hyvarinen, “Resolution of gratings along and across meridians in peripheral vision,” Invest. Ophthalmol. Visual Sci. 23, 666–670 (1982).

James, A. C.

T. Maddess, J. M. Hemmi, A. C. James, “Evidence for spatial aliasing effects in the Y-like cells of the magnocellular visual pathway,” Vision Res. 38, 1843–1859 (1998).
[CrossRef] [PubMed]

Johnson, C. A.

C. A. Johnson, S. J. Samuels, “Screening for glaucomatous visual field loss with frequency doubling perimetry,” Invest. Ophthalmol. Visual Sci. 38, 413–425 (1997).

E. J. Casson, C. A. Johnson, L. R. Shapiro, “Longitudinal comparison of temporal-modulation perimetry with white-on-white and blue-on-yellow perimetry in ocular hypertension and early glaucoma,” J. Opt. Soc. Am. A 10, 1792–1806 (1993).
[CrossRef]

Kelly, D. H.

Ketoff, K. M.

M. Wall, K. M. Ketoff, “Random dot motion perimetry in patients with glaucoma and in normal subjects,” Am. J. Ophthalmol. 120, 587–596 (1995).
[PubMed]

Klein, M. L.

A. Eisner, V. D. Stoumbs, M. L. Klein, S. A. Fleming, “Relations between fundus appearance and function,” Invest. Ophthalmol. Visual Sci. 32, 8–20 (1991).

Laurinen, P.

J. Rovamo, V. Virsu, P. Laurinen, L. Hyvarinen, “Resolution of gratings along and across meridians in peripheral vision,” Invest. Ophthalmol. Visual Sci. 23, 666–670 (1982).

Lee, B. B.

B. B. Lee, O. D. Creuzfeldt, A. Elepfandt, “The responses of magno- and parvocellular cells of the monkey’s lateral geniculate body to moving stimuli,” Exp. Brain Res. 35, 547–557 (1979).
[CrossRef] [PubMed]

Legge, G. E.

G. E. Legge, “Sustained and transient mechanisms in human vision: temporal and spatial properties,” Vision Res. 18, 69–81 (1978).
[CrossRef] [PubMed]

Leventhal, A. G.

A. G. Leventhal, K. G. Thompson, D. Liu, Y. Zhou, S. J. Ault, “Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex,” J. Neurosci. 15, 1808–1818 (1995).
[PubMed]

Liu, D.

A. G. Leventhal, K. G. Thompson, D. Liu, Y. Zhou, S. J. Ault, “Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex,” J. Neurosci. 15, 1808–1818 (1995).
[PubMed]

Livingstone, M. S.

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement and depth,” J. Neurosci. 7, 3416–3468 (1987).
[PubMed]

Maddess, T.

T. Maddess, J. M. Hemmi, A. C. James, “Evidence for spatial aliasing effects in the Y-like cells of the magnocellular visual pathway,” Vision Res. 38, 1843–1859 (1998).
[CrossRef] [PubMed]

Maunsell, J. H. R.

W. H. Merigan, J. H. R. Maunsell, “How parallel are the primate visual pathways?” Annu. Rev. Neurosci. 16, 369–402 (1993).
[CrossRef] [PubMed]

J. H. R. Maunsell, T. A. Nealey, D. D. DePriest, “Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey,” J. Neurosci. 10, 3323–3334 (1990).
[PubMed]

W. H. Merigan, J. H. R. Maunsell, “Macaque vision after magnocellular lateral geniculate lesions,” Visual Neurosci. 5, 347–352 (1990).
[CrossRef]

McKendrick, A. M.

A. M. McKendrick, A. J. Vingrys, D. R. Badcock, J. T. Heywood, “Migraine effects on visual function,” Aust. NZ J. Ophthalmol. 26 (Suppl.), S111–S113 (1998).
[CrossRef]

McNaught, A. I.

K. A. Baez, A. I. McNaught, J. G. Dowler, D. Poinoosawmy, F. W. Fitzke, R. A. Hitchings, “Motion detection threshold and field progression in normal tension glaucoma,” Br. J. Ophthamol. 79, 125–128 (1995).
[CrossRef]

Merigan, W. H.

W. H. Merigan, J. H. R. Maunsell, “How parallel are the primate visual pathways?” Annu. Rev. Neurosci. 16, 369–402 (1993).
[CrossRef] [PubMed]

W. H. Merigan, J. H. R. Maunsell, “Macaque vision after magnocellular lateral geniculate lesions,” Visual Neurosci. 5, 347–352 (1990).
[CrossRef]

W. H. Merigan, T. Eskin, “Spatio-temporal vision of macaques with severe loss of P beta retinal ganglion cells,” Vision Res. 26, 1751–1761 (1986).
[CrossRef] [PubMed]

Metha, A.

Nachmias, J.

J. Nachmias, “On the psychometric function for contrast detection,” Vision Res. 21, 215–223 (1981).
[CrossRef] [PubMed]

Nealey, T. A.

J. H. R. Maunsell, T. A. Nealey, D. D. DePriest, “Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey,” J. Neurosci. 10, 3323–3334 (1990).
[PubMed]

Oehler, R.

V. H. Perry, R. Oehler, A. Cowey, “Retinal ganglion cells that project to the dorsal lateral geniculate in the macaque monkey,” Neuroscience 12, 1101–1123 (1984).
[CrossRef] [PubMed]

Perry, V. H.

V. H. Perry, R. Oehler, A. Cowey, “Retinal ganglion cells that project to the dorsal lateral geniculate in the macaque monkey,” Neuroscience 12, 1101–1123 (1984).
[CrossRef] [PubMed]

Poinoosawmy, D.

K. A. Baez, A. I. McNaught, J. G. Dowler, D. Poinoosawmy, F. W. Fitzke, R. A. Hitchings, “Motion detection threshold and field progression in normal tension glaucoma,” Br. J. Ophthamol. 79, 125–128 (1995).
[CrossRef]

Ramachandran, V. S.

D. C. Rogers-Ramachandran, V. S. Ramachandran, “Psychophysical evidence for boundary and surface systems in human vision,” Vision Res. 38, 71–77 (1998).
[CrossRef] [PubMed]

Rogers, B. J.

S. M. Anstis, B. J. Rogers, “Illusory reversal of visual depth and movement during changes of contrast,” Vision Res. 15, 957–961 (1975).
[CrossRef] [PubMed]

Rogers-Ramachandran, D. C.

D. C. Rogers-Ramachandran, V. S. Ramachandran, “Psychophysical evidence for boundary and surface systems in human vision,” Vision Res. 38, 71–77 (1998).
[CrossRef] [PubMed]

Rovamo, J.

J. Rovamo, V. Virsu, P. Laurinen, L. Hyvarinen, “Resolution of gratings along and across meridians in peripheral vision,” Invest. Ophthalmol. Visual Sci. 23, 666–670 (1982).

Sample, P. A.

C. F. Bosworth, P. A. Sample, R. N. Weinreb, “Perimetric motion thresholds are elevated in glaucoma suspects and glaucoma patients,” Vision Res. 37, 1989–1997 (1997).
[CrossRef] [PubMed]

Samples, J. R.

Samuels, S. J.

C. A. Johnson, S. J. Samuels, “Screening for glaucomatous visual field loss with frequency doubling perimetry,” Invest. Ophthalmol. Visual Sci. 38, 413–425 (1997).

Shapiro, L. R.

Snowden, R. J.

R. J. Snowden, O. J. Braddick, “The temporal integration and resolution of velocity signals,” Vision Res. 31, 907–914 (1991).
[CrossRef] [PubMed]

Still, D. L.

L. N. Thibos, D. L. Still, A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vision Res. 36, 249–258 (1996).
[CrossRef] [PubMed]

Stoumbs, V. D.

A. Eisner, V. D. Stoumbs, M. L. Klein, S. A. Fleming, “Relations between fundus appearance and function,” Invest. Ophthalmol. Visual Sci. 32, 8–20 (1991).

Thibos, L. N.

L. N. Thibos, “Acuity perimetry and the sampling theory of visual resolution,” Optom. Vision Sci. 75, 399–406 (1998).
[CrossRef]

L. N. Thibos, D. L. Still, A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vision Res. 36, 249–258 (1996).
[CrossRef] [PubMed]

Y.-Z. Wang, L. N. Thibos, A. Bradley, “Undersampling produces non-veridical motion perception, but not necessarily motion reversal, in peripheral vision,” Vision Res. 36, 1737–1744 (1996).
[CrossRef] [PubMed]

L. N. Thibos, D. J. Walsh, F. E. Cheney, “Vision beyond the resolution limit: aliasing in the periphery,” Vision Res. 27, 2193–2197 (1987).
[CrossRef] [PubMed]

L. N. Thibos, F. E. Cheney, D. J. Walsh, “Retinal limits to the detection and resolution of gratings,” J. Opt. Soc. Am. A 4, 1524–1529 (1987).
[CrossRef] [PubMed]

Thompson, C. M.

S. J. Anderson, N. Drasdo, C. M. Thompson, “Parvocellular neurons limit motion acuity in human peripheral vision,” Proc. R. Soc. London, Ser. B 261, 129–138 (1995).
[CrossRef]

Thompson, K. G.

A. G. Leventhal, K. G. Thompson, D. Liu, Y. Zhou, S. J. Ault, “Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex,” J. Neurosci. 15, 1808–1818 (1995).
[PubMed]

Tiana, C. L. M.

N. J. Coletta, D. R. Williams, C. L. M. Tiana, “Consequences of spatial sampling for human motion perception,” Vision Res. 30, 1631–1648 (1990).
[CrossRef] [PubMed]

Trope, G. E.

J. G. Flanagan, D. Williams-Lyn, G. E. Trope, W. Hatch, E. Harrison, “The phantom contour illusion letter test: a new psychophysical test for glaucoma,” in Perimetry Update 1994/95, R. P. Mills, M. Wall, eds. (Kugler, Amsterdam, 1995), pp. 405–409.

Vingrys, A. J.

A. M. McKendrick, A. J. Vingrys, D. R. Badcock, J. T. Heywood, “Migraine effects on visual function,” Aust. NZ J. Ophthalmol. 26 (Suppl.), S111–S113 (1998).
[CrossRef]

A. Metha, A. J. Vingrys, D. R. Badcock, “Detection and discrimination of moving stimuli: the effects of color, luminance, and eccentricity,” J. Opt. Soc. Am. A 11, 1697–1709 (1994).
[CrossRef]

Virsu, V.

J. Rovamo, V. Virsu, P. Laurinen, L. Hyvarinen, “Resolution of gratings along and across meridians in peripheral vision,” Invest. Ophthalmol. Visual Sci. 23, 666–670 (1982).

Wall, M.

M. Wall, K. M. Ketoff, “Random dot motion perimetry in patients with glaucoma and in normal subjects,” Am. J. Ophthalmol. 120, 587–596 (1995).
[PubMed]

Walsh, D. J.

L. N. Thibos, F. E. Cheney, D. J. Walsh, “Retinal limits to the detection and resolution of gratings,” J. Opt. Soc. Am. A 4, 1524–1529 (1987).
[CrossRef] [PubMed]

L. N. Thibos, D. J. Walsh, F. E. Cheney, “Vision beyond the resolution limit: aliasing in the periphery,” Vision Res. 27, 2193–2197 (1987).
[CrossRef] [PubMed]

Wang, Y.-Z.

Y.-Z. Wang, L. N. Thibos, A. Bradley, “Undersampling produces non-veridical motion perception, but not necessarily motion reversal, in peripheral vision,” Vision Res. 36, 1737–1744 (1996).
[CrossRef] [PubMed]

Weinreb, R. N.

C. F. Bosworth, P. A. Sample, R. N. Weinreb, “Perimetric motion thresholds are elevated in glaucoma suspects and glaucoma patients,” Vision Res. 37, 1989–1997 (1997).
[CrossRef] [PubMed]

Williams, D. R.

S. J. Galvin, D. R. Williams, N. J. Coletta, “The spatial grain of motion perception in human peripheral vision,” Vision Res. 36, 2283–2295 (1996).
[CrossRef] [PubMed]

N. J. Coletta, D. R. Williams, C. L. M. Tiana, “Consequences of spatial sampling for human motion perception,” Vision Res. 30, 1631–1648 (1990).
[CrossRef] [PubMed]

D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25, 195–205 (1985).
[CrossRef] [PubMed]

D. R. Williams, “Visibility of interference fringes near the resolution limit,” J. Opt. Soc. Am. A 2, 1087–1093 (1985).
[CrossRef] [PubMed]

Williams-Lyn, D.

J. G. Flanagan, D. Williams-Lyn, G. E. Trope, W. Hatch, E. Harrison, “The phantom contour illusion letter test: a new psychophysical test for glaucoma,” in Perimetry Update 1994/95, R. P. Mills, M. Wall, eds. (Kugler, Amsterdam, 1995), pp. 405–409.

Zhou, Y.

A. G. Leventhal, K. G. Thompson, D. Liu, Y. Zhou, S. J. Ault, “Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex,” J. Neurosci. 15, 1808–1818 (1995).
[PubMed]

Am. J. Ophthalmol. (1)

M. Wall, K. M. Ketoff, “Random dot motion perimetry in patients with glaucoma and in normal subjects,” Am. J. Ophthalmol. 120, 587–596 (1995).
[PubMed]

Annu. Rev. Neurosci. (1)

W. H. Merigan, J. H. R. Maunsell, “How parallel are the primate visual pathways?” Annu. Rev. Neurosci. 16, 369–402 (1993).
[CrossRef] [PubMed]

Appl. Opt. (1)

Aust. NZ J. Ophthalmol. (1)

A. M. McKendrick, A. J. Vingrys, D. R. Badcock, J. T. Heywood, “Migraine effects on visual function,” Aust. NZ J. Ophthalmol. 26 (Suppl.), S111–S113 (1998).
[CrossRef]

Br. J. Ophthamol. (1)

K. A. Baez, A. I. McNaught, J. G. Dowler, D. Poinoosawmy, F. W. Fitzke, R. A. Hitchings, “Motion detection threshold and field progression in normal tension glaucoma,” Br. J. Ophthamol. 79, 125–128 (1995).
[CrossRef]

Exp. Brain Res. (1)

B. B. Lee, O. D. Creuzfeldt, A. Elepfandt, “The responses of magno- and parvocellular cells of the monkey’s lateral geniculate body to moving stimuli,” Exp. Brain Res. 35, 547–557 (1979).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci. (3)

C. A. Johnson, S. J. Samuels, “Screening for glaucomatous visual field loss with frequency doubling perimetry,” Invest. Ophthalmol. Visual Sci. 38, 413–425 (1997).

J. Rovamo, V. Virsu, P. Laurinen, L. Hyvarinen, “Resolution of gratings along and across meridians in peripheral vision,” Invest. Ophthalmol. Visual Sci. 23, 666–670 (1982).

A. Eisner, V. D. Stoumbs, M. L. Klein, S. A. Fleming, “Relations between fundus appearance and function,” Invest. Ophthalmol. Visual Sci. 32, 8–20 (1991).

J. Comp. Neurol. (1)

C. A. Curcio, K. A. Allen, “Topography of ganglion cells in human retina,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

J. Neurosci. (3)

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement and depth,” J. Neurosci. 7, 3416–3468 (1987).
[PubMed]

A. G. Leventhal, K. G. Thompson, D. Liu, Y. Zhou, S. J. Ault, “Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex,” J. Neurosci. 15, 1808–1818 (1995).
[PubMed]

J. H. R. Maunsell, T. A. Nealey, D. D. DePriest, “Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey,” J. Neurosci. 10, 3323–3334 (1990).
[PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (6)

J. Physiol. (London) (1)

F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. (London) 186, 558–578 (1966).

Neuroscience (1)

V. H. Perry, R. Oehler, A. Cowey, “Retinal ganglion cells that project to the dorsal lateral geniculate in the macaque monkey,” Neuroscience 12, 1101–1123 (1984).
[CrossRef] [PubMed]

Optom. Vision Sci. (2)

N. Barnard, S. G. Crewther, D. P. Crewther, “Development of magnocellular function in good and poor primary school age readers,” Optom. Vision Sci. 75, 62–68 (1998).
[CrossRef]

L. N. Thibos, “Acuity perimetry and the sampling theory of visual resolution,” Optom. Vision Sci. 75, 399–406 (1998).
[CrossRef]

Proc. R. Soc. London, Ser. B (2)

D. C. Burr, “Temporal summation of moving images by the human visual system,” Proc. R. Soc. London, Ser. B 211, 321–339 (1981).
[CrossRef]

S. J. Anderson, N. Drasdo, C. M. Thompson, “Parvocellular neurons limit motion acuity in human peripheral vision,” Proc. R. Soc. London, Ser. B 261, 129–138 (1995).
[CrossRef]

Vision Res. (17)

S. J. Galvin, D. R. Williams, N. J. Coletta, “The spatial grain of motion perception in human peripheral vision,” Vision Res. 36, 2283–2295 (1996).
[CrossRef] [PubMed]

Y.-Z. Wang, L. N. Thibos, A. Bradley, “Undersampling produces non-veridical motion perception, but not necessarily motion reversal, in peripheral vision,” Vision Res. 36, 1737–1744 (1996).
[CrossRef] [PubMed]

N. J. Coletta, D. R. Williams, C. L. M. Tiana, “Consequences of spatial sampling for human motion perception,” Vision Res. 30, 1631–1648 (1990).
[CrossRef] [PubMed]

L. N. Thibos, D. J. Walsh, F. E. Cheney, “Vision beyond the resolution limit: aliasing in the periphery,” Vision Res. 27, 2193–2197 (1987).
[CrossRef] [PubMed]

L. N. Thibos, D. L. Still, A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vision Res. 36, 249–258 (1996).
[CrossRef] [PubMed]

W. H. Merigan, T. Eskin, “Spatio-temporal vision of macaques with severe loss of P beta retinal ganglion cells,” Vision Res. 26, 1751–1761 (1986).
[CrossRef] [PubMed]

S. J. Anderson, R. F. Hess, “Post-receptoral under-sampling in normal human peripheral vision,” Vision Res. 30, 1507–1515 (1990).
[CrossRef]

D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25, 195–205 (1985).
[CrossRef] [PubMed]

J. Nachmias, “On the psychometric function for contrast detection,” Vision Res. 21, 215–223 (1981).
[CrossRef] [PubMed]

R. J. Snowden, O. J. Braddick, “The temporal integration and resolution of velocity signals,” Vision Res. 31, 907–914 (1991).
[CrossRef] [PubMed]

G. E. Legge, “Sustained and transient mechanisms in human vision: temporal and spatial properties,” Vision Res. 18, 69–81 (1978).
[CrossRef] [PubMed]

S. M. Anstis, “Phi movement as a subtraction process,” Vision Res. 10, 1411–1430 (1970).
[CrossRef] [PubMed]

S. M. Anstis, B. J. Rogers, “Illusory reversal of visual depth and movement during changes of contrast,” Vision Res. 15, 957–961 (1975).
[CrossRef] [PubMed]

D. C. Rogers-Ramachandran, V. S. Ramachandran, “Psychophysical evidence for boundary and surface systems in human vision,” Vision Res. 38, 71–77 (1998).
[CrossRef] [PubMed]

T. Maddess, J. M. Hemmi, A. C. James, “Evidence for spatial aliasing effects in the Y-like cells of the magnocellular visual pathway,” Vision Res. 38, 1843–1859 (1998).
[CrossRef] [PubMed]

C. F. Bosworth, P. A. Sample, R. N. Weinreb, “Perimetric motion thresholds are elevated in glaucoma suspects and glaucoma patients,” Vision Res. 37, 1989–1997 (1997).
[CrossRef] [PubMed]

A. M. Derrington, D. R. Badcock, “The low level motion system has both chromatic and luminance inputs,” Vision Res. 25, 1879–1884 (1985).
[CrossRef] [PubMed]

Visual Neurosci. (1)

W. H. Merigan, J. H. R. Maunsell, “Macaque vision after magnocellular lateral geniculate lesions,” Visual Neurosci. 5, 347–352 (1990).
[CrossRef]

Other (1)

J. G. Flanagan, D. Williams-Lyn, G. E. Trope, W. Hatch, E. Harrison, “The phantom contour illusion letter test: a new psychophysical test for glaucoma,” in Perimetry Update 1994/95, R. P. Mills, M. Wall, eds. (Kugler, Amsterdam, 1995), pp. 405–409.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic of the flicker-defined stimulus. Black and white dots form a texture grating stimulus in frame 1. In frame 2 the contrast of all the dots is reversed. When these two frames are alternated at 25 Hz, the stimulus appears as a grating where the borders are generated by the differences in the temporal phase of the dot elements. (b) A luminance-defined sinusoidal grating in which the contrast is the reversed between frame 1 and frame 2.

Fig. 2
Fig. 2

Psychometric curves for the detection (solid symbols) and resolution (open symbols) of 90% contrast flicker-defined gratings (25 Hz), viewed at 15° in the horizontal nasal visual field. Data are given for three subjects along with fitted Weibull functions (detection, dotted curves; resolution, solid curves).    

Fig. 3
Fig. 3

Psychometric curves for the detection (solid symbols) and resolution (open symbols) of 90% contrast flicker-defined gratings (25 Hz), viewed at 30° in the horizontal nasal visual field. Data are given for three subjects along with fitted Weibull functions (detection, dotted curves; resolution, solid curves).

Fig. 4
Fig. 4

Psychometric curves for the detection (solid symbols) and resolution (open symbols) of 50% contrast flicker-defined gratings (25 Hz), viewed at 15° in the horizontal nasal visual field. Data are given for three subjects along with fitted Weibull functions (detection, dotted curves; resolution, solid curves).

Fig. 5
Fig. 5

Psychometric curves for the detection (solid symbols) and resolution (open symbols) of 90% contrast counterphasing sinusoidal gratings (25 Hz), viewed at 15° in the horizontal nasal visual field. Data are given for three subjects along with fitted Weibull functions (detection, dotted curves; resolution, solid curves).

Fig. 6
Fig. 6

Psychometric curves for the direction discrimination of a 90% contrast counterphasing sinusoidal grating viewed foveally. The stimulus counterphased at 25 Hz and drifted at 2 Hz. Data are given for three subjects. The dotted horizontal line appears at the 50% correct performance level (the performance expected if subjects were purely guessing the stimulus direction).

Fig. 7
Fig. 7

Psychophysical estimates of Nyquist frequency (solid symbols) as a function of retinal eccentricity. The triangle represents the 50% correct criterion for the direction discrimination of a 90% contrast sinusoidal grating, counterphasing at 25 Hz (derived from the curves in Fig. 6). The circles represent the 68% correct criterion for the orientation-resolution task for 90% contrast flicker-defined gratings (25 Hz), derived from the curves in Figs. 2 and 3. The curves show anatomical predictions from the literature.32 Data are given as the mean (± standard error) for the three subjects.

Fig. 8
Fig. 8

Motion displacements resulting from the combination of drift and counterphase flicker. The left- and right-hand panels represent low- and high-spatial-frequency sinusoidal waveforms respectively, where Δ represents 50% of the waveform cycle [see Eqs. (2)–(5)]. I is the Stationary waveform. II is the effect of drifting the waveform. The solid waveform is the waveform shown in I (dotted waveform) displaced to the left by -δ. III is the effect of drift and contrast reversal (counterphasing). The dotted waveform is the same as the solid waveform in II. The solid waveform occurs as a result of a displacement of -δ to the left, as well as contrast reversal. Two displacements occur in opposite directions, as shown.

Fig. 9
Fig. 9

(a) The number of frames for the magnitude of the sinusoidal displacement to be at least 1 pixel on our monitor, as a function of spatial frequency of the grating. Solid curve, displacement due to drifting the waveform (represented by δ in Fig. 8). Dotted curve, jump cue, the difference between the opposite-motion displacements shown in Fig. 8 (III). The dotted horizontal line appears at 8 frames, which is equal to 80 ms for our monitor, and provides an estimate of the temporal integration time of the human visual system.33-35 (b) Mean (± standard error) psychometric data (solid symbols) for our three subjects for the direction discrimination of a drifting (2-Hz) and counterphasing (25-Hz) sinusoidal grating (derived from Fig. 6). The solid and dotted lines show predicted performance based on the visibility of the drift and jump cues, respectively [shown in (a) and described in detail in the text].

Tables (2)

Tables Icon

Table 1 Stimulus Parameters for the Orientation-Discrimination Task

Tables Icon

Table 2 Stimulus Parameters for the Direction-Discrimination Task

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P-(f )=0.5+0.5 exp[-(f/α)β],
f(x, i)=A sin[β(x+iδ)];imodF<F/2-A sin[β(x+iδ)];imodFF/2,
-A sin[β(x+iδ)]=A sin[β(x+iδ+Δ)],
A sin[β(x+iδ)]=A sin[β(x+(i+1)δ+Δ)].
x-x=±Δ-δ.

Metrics