Abstract

We investigated how the optical aberrations associated with the anterior surface of the human cornea change with age in a normal population. Aberrations were computed for a central part of the cornea (4, 5, and 6 mm in diameter) from the elevation data provided by a videokeratographic system. Measurements were obtained in 59 normal healthy, near-emmetropic [spherical equivalent lower than 2 diopters (D)] subjects of three age ranges: younger (20–30 years old), middle-aged (40–50 years old), and older (60–70 years old). The average corneal radius decreased with age and the cornea became more spherical. As a consequence, spherical aberration was significantly larger in the middle-aged and older corneas. Coma and other higher-order aberrations also were correlated with age. The root mean square of the wave aberration exhibited a linear positive correlation (P<0.003) with age for the three ranges of pupil diameter. Despite a large intersubject variability, the average amount of aberration in the human cornea tends to increase moderately with age. However, this increase alone is not enough to explain the substantial reduction previously found in retinal image quality with age. The change in the aberrations of the lens with age and the possible loss of part of the balance between corneal and lenticular aberrations in youth may be the main factors responsible for the reduction of retinal image quality through the life span.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Weale, The Senescence of Human Vision (Oxford U. Press, Oxford, UK, 1992).
  2. C. Owsley, R. Sekuler, D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983).
    [CrossRef] [PubMed]
  3. P. Artal, M. Ferro, I. Miranda, R. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10, 1656–1662 (1993).
    [CrossRef] [PubMed]
  4. A. Guirao, C. González, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 197–202 (1999).
  5. C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34, 2945–2954 (1994).
    [CrossRef] [PubMed]
  6. A. Glasser, M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38, 209–229 (1998).
    [CrossRef] [PubMed]
  7. S. G. El Hage, F. Berny, “Contribution of crystalline lens to the spherical aberration of the eye,” J. Opt. Soc. Am. 63, 205–211 (1973).
    [CrossRef]
  8. P. Artal, A. Guirao, “Contribution of the cornea and the lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998).
    [CrossRef]
  9. A. Guirao, P. Artal, “Corneal aberrations as a function of age,” Invest. Ophthalmol. Visual Sci. Suppl. 40, S535 (1999).
  10. T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).
  11. A. Guirao, P. Artal, “Corneal wave aberration from videokeratography: accuracy and limitations of the procedure,” J. Opt. Soc. Am. A 17, 955–965 (2000).
    [CrossRef]
  12. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
    [CrossRef]
  13. J. Schwiegerling, J. E. Greivenkamp, J. M. Miller, “Representation of videokeratoscopic height data with Zernike polynomials,” J. Opt. Soc. Am. A 12, 2105–2113 (1995).
    [CrossRef]
  14. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  15. R. A. Applegate, R. Nuñez, J. Buettner, H. C. Howland, “How accurately can videokeratographic systems measure surface elevations?” Optom. Vision Sci. 72, 785–792 (1995).
    [CrossRef]
  16. L. N. Thybos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce members, “Standards for reporting the optical aberrations of eyes,” http://www.osa.org/Homes/vision/resources/Standards_TOPS4.pdf .
  17. A. Tomlinson, R. P. Hemenger, R. Garriott, “Method for estimating the spherical aberration of the human crystalline lens in vivo,” Invest. Ophthalmol. Visual Sci. 34, 621–629 (1993).
  18. M. Millodot, J. Sivak, “Contribution of the cornea and lens to the spherical aberration of the eye,” Vision Res. 19, 685–687 (1979).
    [CrossRef] [PubMed]

2000 (1)

1999 (3)

A. Guirao, C. González, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 197–202 (1999).

A. Guirao, P. Artal, “Corneal aberrations as a function of age,” Invest. Ophthalmol. Visual Sci. Suppl. 40, S535 (1999).

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).

1998 (2)

A. Glasser, M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38, 209–229 (1998).
[CrossRef] [PubMed]

P. Artal, A. Guirao, “Contribution of the cornea and the lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998).
[CrossRef]

1995 (2)

J. Schwiegerling, J. E. Greivenkamp, J. M. Miller, “Representation of videokeratoscopic height data with Zernike polynomials,” J. Opt. Soc. Am. A 12, 2105–2113 (1995).
[CrossRef]

R. A. Applegate, R. Nuñez, J. Buettner, H. C. Howland, “How accurately can videokeratographic systems measure surface elevations?” Optom. Vision Sci. 72, 785–792 (1995).
[CrossRef]

1994 (1)

C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34, 2945–2954 (1994).
[CrossRef] [PubMed]

1993 (2)

A. Tomlinson, R. P. Hemenger, R. Garriott, “Method for estimating the spherical aberration of the human crystalline lens in vivo,” Invest. Ophthalmol. Visual Sci. 34, 621–629 (1993).

P. Artal, M. Ferro, I. Miranda, R. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10, 1656–1662 (1993).
[CrossRef] [PubMed]

1983 (1)

C. Owsley, R. Sekuler, D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983).
[CrossRef] [PubMed]

1979 (1)

M. Millodot, J. Sivak, “Contribution of the cornea and lens to the spherical aberration of the eye,” Vision Res. 19, 685–687 (1979).
[CrossRef] [PubMed]

1976 (1)

1973 (1)

Applegate, R. A.

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).

R. A. Applegate, R. Nuñez, J. Buettner, H. C. Howland, “How accurately can videokeratographic systems measure surface elevations?” Optom. Vision Sci. 72, 785–792 (1995).
[CrossRef]

Artal, P.

A. Guirao, P. Artal, “Corneal wave aberration from videokeratography: accuracy and limitations of the procedure,” J. Opt. Soc. Am. A 17, 955–965 (2000).
[CrossRef]

A. Guirao, C. González, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 197–202 (1999).

A. Guirao, P. Artal, “Corneal aberrations as a function of age,” Invest. Ophthalmol. Visual Sci. Suppl. 40, S535 (1999).

P. Artal, A. Guirao, “Contribution of the cornea and the lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998).
[CrossRef]

P. Artal, M. Ferro, I. Miranda, R. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10, 1656–1662 (1993).
[CrossRef] [PubMed]

Berny, F.

Buettner, J.

R. A. Applegate, R. Nuñez, J. Buettner, H. C. Howland, “How accurately can videokeratographic systems measure surface elevations?” Optom. Vision Sci. 72, 785–792 (1995).
[CrossRef]

Campbell, M. C. W.

A. Glasser, M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38, 209–229 (1998).
[CrossRef] [PubMed]

Cook, C. A.

C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34, 2945–2954 (1994).
[CrossRef] [PubMed]

El Hage, S. G.

Ferro, M.

Garriott, R.

A. Tomlinson, R. P. Hemenger, R. Garriott, “Method for estimating the spherical aberration of the human crystalline lens in vivo,” Invest. Ophthalmol. Visual Sci. 34, 621–629 (1993).

Geraghty, E.

A. Guirao, C. González, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 197–202 (1999).

Glasser, A.

A. Glasser, M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38, 209–229 (1998).
[CrossRef] [PubMed]

González, C.

A. Guirao, C. González, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 197–202 (1999).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

Greivenkamp, J. E.

Guirao, A.

A. Guirao, P. Artal, “Corneal wave aberration from videokeratography: accuracy and limitations of the procedure,” J. Opt. Soc. Am. A 17, 955–965 (2000).
[CrossRef]

A. Guirao, P. Artal, “Corneal aberrations as a function of age,” Invest. Ophthalmol. Visual Sci. Suppl. 40, S535 (1999).

A. Guirao, C. González, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 197–202 (1999).

P. Artal, A. Guirao, “Contribution of the cornea and the lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998).
[CrossRef]

Hemenger, R. P.

A. Tomlinson, R. P. Hemenger, R. Garriott, “Method for estimating the spherical aberration of the human crystalline lens in vivo,” Invest. Ophthalmol. Visual Sci. 34, 621–629 (1993).

Howland, H. C.

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).

R. A. Applegate, R. Nuñez, J. Buettner, H. C. Howland, “How accurately can videokeratographic systems measure surface elevations?” Optom. Vision Sci. 72, 785–792 (1995).
[CrossRef]

Hyun, J.

C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34, 2945–2954 (1994).
[CrossRef] [PubMed]

Kaufman, P. L.

C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34, 2945–2954 (1994).
[CrossRef] [PubMed]

Klyce, S. D.

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).

Koretz, J. F.

C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34, 2945–2954 (1994).
[CrossRef] [PubMed]

Miller, J. M.

Millodot, M.

M. Millodot, J. Sivak, “Contribution of the cornea and lens to the spherical aberration of the eye,” Vision Res. 19, 685–687 (1979).
[CrossRef] [PubMed]

Miranda, I.

Navarro, R.

Noll, R. J.

Norrby, S.

A. Guirao, C. González, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 197–202 (1999).

Nuñez, R.

R. A. Applegate, R. Nuñez, J. Buettner, H. C. Howland, “How accurately can videokeratographic systems measure surface elevations?” Optom. Vision Sci. 72, 785–792 (1995).
[CrossRef]

Oshika, T.

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).

Owsley, C.

C. Owsley, R. Sekuler, D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983).
[CrossRef] [PubMed]

Pfahnl, A.

C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34, 2945–2954 (1994).
[CrossRef] [PubMed]

Redondo, M.

A. Guirao, C. González, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 197–202 (1999).

Schwiegerling, J.

Sekuler, R.

C. Owsley, R. Sekuler, D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983).
[CrossRef] [PubMed]

Siemsen, D.

C. Owsley, R. Sekuler, D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983).
[CrossRef] [PubMed]

Sivak, J.

M. Millodot, J. Sivak, “Contribution of the cornea and lens to the spherical aberration of the eye,” Vision Res. 19, 685–687 (1979).
[CrossRef] [PubMed]

Tomlinson, A.

A. Tomlinson, R. P. Hemenger, R. Garriott, “Method for estimating the spherical aberration of the human crystalline lens in vivo,” Invest. Ophthalmol. Visual Sci. 34, 621–629 (1993).

Weale, R. A.

R. A. Weale, The Senescence of Human Vision (Oxford U. Press, Oxford, UK, 1992).

Invest. Ophthalmol. Visual Sci. (3)

A. Guirao, C. González, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 197–202 (1999).

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).

A. Tomlinson, R. P. Hemenger, R. Garriott, “Method for estimating the spherical aberration of the human crystalline lens in vivo,” Invest. Ophthalmol. Visual Sci. 34, 621–629 (1993).

Invest. Ophthalmol. Visual Sci. Suppl. (1)

A. Guirao, P. Artal, “Corneal aberrations as a function of age,” Invest. Ophthalmol. Visual Sci. Suppl. 40, S535 (1999).

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (3)

Opt. Lett. (1)

Optom. Vision Sci. (1)

R. A. Applegate, R. Nuñez, J. Buettner, H. C. Howland, “How accurately can videokeratographic systems measure surface elevations?” Optom. Vision Sci. 72, 785–792 (1995).
[CrossRef]

Vision Res. (4)

M. Millodot, J. Sivak, “Contribution of the cornea and lens to the spherical aberration of the eye,” Vision Res. 19, 685–687 (1979).
[CrossRef] [PubMed]

C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34, 2945–2954 (1994).
[CrossRef] [PubMed]

A. Glasser, M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38, 209–229 (1998).
[CrossRef] [PubMed]

C. Owsley, R. Sekuler, D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983).
[CrossRef] [PubMed]

Other (3)

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

R. A. Weale, The Senescence of Human Vision (Oxford U. Press, Oxford, UK, 1992).

L. N. Thybos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce members, “Standards for reporting the optical aberrations of eyes,” http://www.osa.org/Homes/vision/resources/Standards_TOPS4.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Corneal radius of curvature for each subject and mean value for each age group; error bars are two standard deviations. (Significant correlation with age: r=-0.37; Student t test, two tailed, t=-3.04, P<0.004). (b) Asphericity for each subject and mean value with error bars for each age group. Value of 1 corresponds to a sphere. Value of 0.664 corresponds to an ellipsoid with null third-order spherical aberration; we used n=1.3375. (Significant correlation: r=0.42; t=3.49, P<0.001). (c) Axis of the corneal meridian with larger curvature for each subject. The radius in the polar plot represents the subject’s age.

Fig. 2
Fig. 2

(a) SSA coefficient for 4-mm-diameter pupil, as a function of the age of each subject, and mean value with error bars (two standard deviations) for the three groups. (Significant correlation with age: r=-0.54; t=-4.88, P<0.0001). (b) SC, 4-mm pupil for each subject and mean value with error bars (two standard deviations). (Significant correlation: r=0.26; t=2.03, P<0.05).

Fig. 3
Fig. 3

Statistically significant correlation with age of the RMS of the corneal wave aberration (4-mm-diameter pupil) and mean values. (r=0.5; t=4.33, P<0.0001).

Fig. 4
Fig. 4

Example of wave-aberration maps (wrapped to π phase steps), for a pupil of 4 mm for the corneas of four younger subjects (upper images) and four older subjects (lower images). The larger number of fringes in the older group indicates a larger amount of aberrations than in the younger group.

Fig. 5
Fig. 5

MTF’s for the average cornea for the three age groups: younger (solid curves), middle-aged (dashed curves) and older subjects (dotted curves). (a) 4-mm pupil, (b) 6-mm pupil.  

Tables (2)

Tables Icon

Table 1 Zernike Polynomials up to Fourth Order (15 Terms) Used in This Study

Tables Icon

Table 2 Mean Values of the Corneal Aberrations in the Three Age Groups and Statistical Significance of the Differences between Younger and Older Subjects

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

z(ρ, θ)=i=115aiZi(ρ, θ),
R=r022(23a4-65a9),K2=8R3r04 65a9,
W(ρ, θ)=i=115AiZi(ρ, θ),
SSA=65A9,SC=38A72+A82,
RMS=j=715Aj2.

Metrics