Abstract

A dual-channel Mach–Zehnder interferometer using heterodyne detection allowed us to measure simultaneously parallel and perpendicular polarization components through various mammalian tissues at a wavelength of λ=633 nm. By contrast with liver tissue, squeletic muscles of a few millimeters thickness exhibit strong anisotropic properties that change the direction of the linear polarization of the light. This rotation of the initial plane of polarization is to be distinguished from the depolarization that is due to the multiple light scattering that goes along with large temporal fluctuations. Complementary photos under linearly polarized light illustrate the behavior difference between liver (isotropic medium) and muscle (anisotropic medium).

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. J. M. Schmitt, M. J. Yadlowsky, R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatology 191, 93–98 (1995).
    [CrossRef] [PubMed]
  3. B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995).
    [CrossRef] [PubMed]
  4. J. M. Schmitt, S. H. Xiang, “Cross-polarized backscatter in optical coherence tomography of biological tissue,” Opt. Lett. 23, 1060–1062 (1998).
    [CrossRef]
  5. M. J. Everett, K. Schoenenberger, B. W. Colston, L. B. Da Silva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23, 228–230 (1998).
    [CrossRef]
  6. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
    [CrossRef] [PubMed]
  7. B. Devaraj, M. Usa, K. P. Chan, T. Akatsuka, H. Inaba, “Recent advances in coherent detection imaging (CDI) in biomedicine: laser tomography of human tissues in vivo and in vitro,” IEEE J. Sel. Top. Quantum Electron. 2, 1008–1016 (1996).
    [CrossRef]
  8. J. M. Schmitt, A. H. Gandjbakhche, R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31, 6535–6546 (1992).
    [CrossRef] [PubMed]
  9. H. Horinaka, K. Hashimoto, K. Wada, Y. Cho, M. Osawa, “Extraction of quasi-straightforward-propagating photons from diffused light transmitting through a scattering medium by polarization modulation,” Opt. Lett. 20, 1501–1503 (1995).
    [CrossRef] [PubMed]
  10. O. Emile, F. Bretenaker, A. Le Floch, “Rotating polarization imaging in turbid media,” Opt. Lett. 21, 1706–1708 (1996).
    [CrossRef] [PubMed]
  11. S. G. Demos, R. R. Alfano, “Temporal grating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21, 161–163 (1996).
    [CrossRef] [PubMed]
  12. S. G. Demos, H. Savage, A. S. Heerdt, S. Shantz, R. R. Alfano, “Polarization preservation gate—a tool for optical mammography,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper CMD2, p. 20.
  13. G. Jarry, E. Steimer, V. Damaschini, M. Epifanie, M. Jurczak, R. Kaiser, “Coherence and polarization of light propagating through scattering media and biological tissues,” Appl. Opt. 37, 7357–7367 (1998).
    [CrossRef]
  14. J. D. Briers, “Speckle fluctuations and biomedical optics: implications and applications,” Opt. Eng. (Bellingham) 32, 277–283 (1993).
    [CrossRef]
  15. A. G. Engel, C. Franzini-Armstrong, Myology (McGraw-Hill, New York, 1994).
  16. A. Ishimaru, C. W. Yeh, “Matrix representations of the vector radiative-transfer theory for randomly distributed nonspherical particles,” J. Opt. Soc. Am. A 1, 359–364 (1984).
    [CrossRef]

1998 (3)

1997 (1)

1996 (3)

S. G. Demos, R. R. Alfano, “Temporal grating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21, 161–163 (1996).
[CrossRef] [PubMed]

O. Emile, F. Bretenaker, A. Le Floch, “Rotating polarization imaging in turbid media,” Opt. Lett. 21, 1706–1708 (1996).
[CrossRef] [PubMed]

B. Devaraj, M. Usa, K. P. Chan, T. Akatsuka, H. Inaba, “Recent advances in coherent detection imaging (CDI) in biomedicine: laser tomography of human tissues in vivo and in vitro,” IEEE J. Sel. Top. Quantum Electron. 2, 1008–1016 (1996).
[CrossRef]

1995 (3)

1993 (1)

J. D. Briers, “Speckle fluctuations and biomedical optics: implications and applications,” Opt. Eng. (Bellingham) 32, 277–283 (1993).
[CrossRef]

1992 (1)

1991 (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1984 (1)

Akatsuka, T.

B. Devaraj, M. Usa, K. P. Chan, T. Akatsuka, H. Inaba, “Recent advances in coherent detection imaging (CDI) in biomedicine: laser tomography of human tissues in vivo and in vitro,” IEEE J. Sel. Top. Quantum Electron. 2, 1008–1016 (1996).
[CrossRef]

Alfano, R. R.

S. G. Demos, R. R. Alfano, “Temporal grating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21, 161–163 (1996).
[CrossRef] [PubMed]

S. G. Demos, H. Savage, A. S. Heerdt, S. Shantz, R. R. Alfano, “Polarization preservation gate—a tool for optical mammography,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper CMD2, p. 20.

Bonner, R. F.

J. M. Schmitt, M. J. Yadlowsky, R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatology 191, 93–98 (1995).
[CrossRef] [PubMed]

J. M. Schmitt, A. H. Gandjbakhche, R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31, 6535–6546 (1992).
[CrossRef] [PubMed]

Boppart, S. A.

Bouma, B.

Bretenaker, F.

Brezinski, M. E.

Briers, J. D.

J. D. Briers, “Speckle fluctuations and biomedical optics: implications and applications,” Opt. Eng. (Bellingham) 32, 277–283 (1993).
[CrossRef]

Chan, K. P.

B. Devaraj, M. Usa, K. P. Chan, T. Akatsuka, H. Inaba, “Recent advances in coherent detection imaging (CDI) in biomedicine: laser tomography of human tissues in vivo and in vitro,” IEEE J. Sel. Top. Quantum Electron. 2, 1008–1016 (1996).
[CrossRef]

Chang, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Cho, Y.

Colston, B. W.

Da Silva, L. B.

Damaschini, V.

de Boer, J. F.

Demos, S. G.

S. G. Demos, R. R. Alfano, “Temporal grating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21, 161–163 (1996).
[CrossRef] [PubMed]

S. G. Demos, H. Savage, A. S. Heerdt, S. Shantz, R. R. Alfano, “Polarization preservation gate—a tool for optical mammography,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper CMD2, p. 20.

Devaraj, B.

B. Devaraj, M. Usa, K. P. Chan, T. Akatsuka, H. Inaba, “Recent advances in coherent detection imaging (CDI) in biomedicine: laser tomography of human tissues in vivo and in vitro,” IEEE J. Sel. Top. Quantum Electron. 2, 1008–1016 (1996).
[CrossRef]

Emile, O.

Engel, A. G.

A. G. Engel, C. Franzini-Armstrong, Myology (McGraw-Hill, New York, 1994).

Epifanie, M.

Everett, M. J.

Flotte, T.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Franzini-Armstrong, C.

A. G. Engel, C. Franzini-Armstrong, Myology (McGraw-Hill, New York, 1994).

Fujimoto, J.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gandjbakhche, A. H.

Gregory, K.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hashimoto, K.

Hee, M.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

Heerdt, A. S.

S. G. Demos, H. Savage, A. S. Heerdt, S. Shantz, R. R. Alfano, “Polarization preservation gate—a tool for optical mammography,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper CMD2, p. 20.

Horinaka, H.

Huang, D.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Inaba, H.

B. Devaraj, M. Usa, K. P. Chan, T. Akatsuka, H. Inaba, “Recent advances in coherent detection imaging (CDI) in biomedicine: laser tomography of human tissues in vivo and in vitro,” IEEE J. Sel. Top. Quantum Electron. 2, 1008–1016 (1996).
[CrossRef]

Ishimaru, A.

Jarry, G.

Jurczak, M.

Kaiser, R.

Le Floch, A.

Lin, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Milner, T. E.

Nelson, J. S.

Osawa, M.

Puliafito, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Savage, H.

S. G. Demos, H. Savage, A. S. Heerdt, S. Shantz, R. R. Alfano, “Polarization preservation gate—a tool for optical mammography,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper CMD2, p. 20.

Schmitt, J. M.

Schoenenberger, K.

Schuman, J.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Shantz, S.

S. G. Demos, H. Savage, A. S. Heerdt, S. Shantz, R. R. Alfano, “Polarization preservation gate—a tool for optical mammography,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper CMD2, p. 20.

Steimer, E.

Stinson, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

Usa, M.

B. Devaraj, M. Usa, K. P. Chan, T. Akatsuka, H. Inaba, “Recent advances in coherent detection imaging (CDI) in biomedicine: laser tomography of human tissues in vivo and in vitro,” IEEE J. Sel. Top. Quantum Electron. 2, 1008–1016 (1996).
[CrossRef]

van Gemert, M. J. C.

Wada, K.

Xiang, S. H.

Yadlowsky, M. J.

J. M. Schmitt, M. J. Yadlowsky, R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatology 191, 93–98 (1995).
[CrossRef] [PubMed]

Yeh, C. W.

Appl. Opt. (2)

Dermatology (1)

J. M. Schmitt, M. J. Yadlowsky, R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatology 191, 93–98 (1995).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

B. Devaraj, M. Usa, K. P. Chan, T. Akatsuka, H. Inaba, “Recent advances in coherent detection imaging (CDI) in biomedicine: laser tomography of human tissues in vivo and in vitro,” IEEE J. Sel. Top. Quantum Electron. 2, 1008–1016 (1996).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Eng. (Bellingham) (1)

J. D. Briers, “Speckle fluctuations and biomedical optics: implications and applications,” Opt. Eng. (Bellingham) 32, 277–283 (1993).
[CrossRef]

Opt. Lett. (7)

Science (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (2)

A. G. Engel, C. Franzini-Armstrong, Myology (McGraw-Hill, New York, 1994).

S. G. Demos, H. Savage, A. S. Heerdt, S. Shantz, R. R. Alfano, “Polarization preservation gate—a tool for optical mammography,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper CMD2, p. 20.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the dual-channel interferometer for in-time polarization-contrast measurement. QW, quarter-wave plate; AOM, acousto-optic modulator; D, PIN photodiode; L, adjustable path length; PC, personal computer; BS, beam splitter; PBS, polarization beam-splitting cube; Py, linear polarizer oriented vertically; Px, linear polarizer oriented horizontally.

Fig. 2
Fig. 2

Polarization contrast P for muscle and liver slices from 1 to 5 mm in thickness. Negative values corresponded to a rotation of the polarization plane between 45° and 90°. Standard deviations were calculated from the average values obtained at 18 places.

Fig. 3
Fig. 3

For tissue thicknesses from 1 to 5 mm, polarization contrast P values were measured during 50 s at ten different places on the same sample. Dashed vertical lines indicate when the measurement place in the sample was shifted. On the left, results of experiments performed on liver slices as example of isotropic tissue: Signal fluctuations increase with the thickness. On the right, results of the same experiment performed in calf muscle: The dispersion of P values as a result of the birefringence is clear for the thinner samples.

Fig. 4
Fig. 4

To illustrate the origin of the anisotropy, upper curves show the extinction of parallel (OTyy) and perpendicular (OTxx) polarized components for the 1-mm-thick calf muscle sample. Measurements were recorded during 50 s at 18 different places on the muscle.

Fig. 5
Fig. 5

Under polarized white light, extinction is stronger in liver than in muscle when the analyzer is oriented perpendicular to the polarizer. In contrast, the analyzer’s orientation has almost no influence on the muscle brightness, which presents a granular aspect (L=1 mm).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ρ=ρyyρxyρyxρxx
P=Iyy-IxxIyy+Ixx.

Metrics