Abstract

Ellipsomicroscopy for surface imaging (EMSI) is a powerful new tool for studying spatiotemporal adsorbate pattern formation on catalyst surfaces. It is a surface-sensitive technique that is able to measure submonolayer coverage of adsorbates. The imaging of the sample’s surface achieves a spatial sensitivity, making it possible to measure nonuniformity of adsorbate coverage. The image contrast, however, depends strongly on the setup of the instrument. The optimum setup can be calculated from the ellipsometric properties of the catalyst/adsorbate system and the intrinsic parameters of the EMSI instrument. Optimizing the setup of the EMSI instrument permitted enhancement of the image contrast over the previous setup. As a result, new features in CO oxidation on Pt(110) were discovered.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Ertl, “Reactions at well-defined surfaces,” Surf. Sci. 300, 742–754 (1994).
    [CrossRef]
  2. G. Ertl, P. R. Norton, J. Rüstig, “Kinetic oscillations in the platinum-catalyzed oxidation of CO,” Phys. Rev. Lett. 49, 177–180 (1982).
    [CrossRef]
  3. M. M. Slinko, N. Jaeger, “Oscillatory heterogeneous catalytic systems,” in Vol. 86 of Studies in Surface Science and Catalysis, B. Delmon, J. T. Yates, eds. (Elsevier, Amsterdam, 1994).
  4. R. Imbihl, “Oscillatory reactions on single crystal surfaces,” Prog. Surf. Sci. 44, 185–343 (1993).
    [CrossRef]
  5. R. Imbihl, G. Ertl, “Oscillatory kinetics in heterogeneous catalysis,” Chem. Rev. 95, 697–733 (1995).
    [CrossRef]
  6. R. Imbihl, “Temporal and spatial patterns in catalytic reactions on single crystal surfaces,” Heterog. Chem. Rev. 1, 125–133 (1994).
  7. H. H. Rotermund, “Imaging of dynamic processes on surfaces by light,” Surf. Sci. Rep. 29, 265–364 (1997).
    [CrossRef]
  8. P. R. Norton, P. E. Bindner, K. Griffiths, J. A. Davies, J. Rüstig, “Kinetic oscillations in oxidation of CO over Pt(100)—a study by Rutherford backscattering, nuclear microanalysis, LEED, and work function techniques,” J. Chem. Phys. 80, 3859–3865 (1984).
    [CrossRef]
  9. M. Eiswirth, G. Ertl, “Kinetic oscillations in the catalytic oxidation on a Pt(110) surface,” Surf. Sci. 177, 90–100 (1986).
    [CrossRef]
  10. H. H. Rotermund, W. Engel, M. Kordesch, G. Ertl, “Imaging of spatio-temporal pattern evolution during carbon monoxide oxidation on platinum,” Nature 343, 355–357 (1990).
    [CrossRef]
  11. P. Stoltze, J. Nørskov, “Bridging the pressure gap between ultrahigh-vacuum surface physics and high-pressure catalysis,” Phys. Rev. Lett. 55, 2502–2508 (1985).
    [CrossRef] [PubMed]
  12. H. H. Rotermund, G. Haas, U. Franz, R. M. Tromp, G. Ertl, “Imaging pattern formation in surface reactions from ultrahigh vacuum up to atmospheric pressures,” Science 270, 608–610 (1995).
    [CrossRef]
  13. R. E. R. Colen, J. Christoph, F. Peña, H. H. Rotermund, “Oxidation of CO on Pt(111) at intermediate pressures,” Surf. Sci. 408, 310–316 (1998).
    [CrossRef]
  14. H. G. Tompkins, A User’s Guide to Ellipsometry, (Academic, London, 1993).
  15. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).
  16. F. Meyer, “Ellipsometric studies of adsorption reactions on clean surfaces,” Surf. Sci. 56, 37–48 (1976).
    [CrossRef]
  17. H. Albers, W. J. J. van der Wal, O. L. J. Gijzeman, G. A. Bootsma, “Ellipsometry LEED study of oxygen adsorption and carbon monoxide–oxygen interaction on Ag(110),” Surf. Sci. 77, 1–13 (1978).
    [CrossRef]
  18. G. Saidi, T. T. Tsotsis, “Reaction-rate oscillations during H2 oxidation over polycrystalline Pt—a CPD and ellipsometric investigation,” Surf. Sci. 161, L591–L596 (1985).
    [CrossRef]
  19. M. Erman, J. B. Theeten, “Spatially resolved ellipsometry,” J. Appl. Phys. 60, 859–873 (1986).
    [CrossRef]
  20. A.-H. Liu, P. C. Wayner, J. L. Plawsky, “Image scanning ellipsometry for measuring nonuniform film thickness profiles,” Appl. Opt. 33, 1223–1229 (1994).
    [CrossRef] [PubMed]
  21. K. Löschke, “Microscopy with an ellipsometric arrangement,” Krist. Tech. 14, 717–720 (1979).
    [CrossRef]
  22. M. Stenberg, T. Sandström, L. Stiblert, “New ellipsometric method for measurements on surfaces and surface-layers,” Mater. Sci. Eng. 42, 65–69 (1980).
    [CrossRef]
  23. D. Beaglehole, “Performance of a microscopic imaging ellipsometer,” Rev. Sci. Instrum. 59, 2557–2559 (1988).
    [CrossRef]
  24. R. F. Cohn, J. W. Wagner, J. Kruger, “Dynamic imaging microellipsometry: theory, system design, and feasibility demonstration,” Appl. Opt. 27, 4664–4671 (1988).
    [CrossRef] [PubMed]
  25. G. Haas, T. D. Pletcher, G. Bonilla, T. A. Jachimowski, H. H. Rotermund, J. Lauterbach, “Ellipsomicroscopy for surface imaging: a novel tool to investigate surface dynamics,” J. Vac. Sci. Technol. A 16, 1117–1121 (1998).
    [CrossRef]
  26. J. Humlicek, “Sensitivity extrema in multiple-angle ellipsometry,” J. Opt. Soc. Am. A 2, 713–722 (1985).
    [CrossRef]
  27. W. H. Weedon, S. W. McKnight, A. J. Devaney, “Selection of optimal angles for inversion of multiple-angle ellipsometry and reflectometry equations,” J. Opt. Soc. Am. A 8, 1881–1891 (1991).
    [CrossRef]
  28. E. Hecht, Optik (Addison Wesley, Bonn, 1994).
  29. R. J. Archer, C. V. Shank, “Ellipsometry with non-ideal compensators,” J. Opt. Soc. Am. 57, 191–194 (1967).
    [CrossRef]
  30. F. L. McCrackin, “Analyses and corrections of instrumental errors in ellipsometry,” J. Opt. Soc. Am. 60, 57–63 (1970).
    [CrossRef]
  31. R. M. A. Azzam, N. M. Bashara, “Specimen coherent scattering and compensator effects in ellipsometry,” J. Opt. Soc. Am. 61, 1236–1239 (1971).
    [CrossRef]
  32. R. J. Archer, “Determination of the properties of films on silicon by the method of ellipsometry,” J. Opt. Soc. Am. 52, 970–977 (1962).
    [CrossRef]
  33. G. Ertl, H. H. Rotermund, “Spatio-temporal pattern formation in reactions at surfaces,” Curr. Opin. Solid State Mater. Sci. 1, 617–621 (1996).
    [CrossRef]
  34. H. H. Rotermund, “Imaging surface reactions with a photoemission electron microscope,” J. Electron Spectrosc. Relat. Phenom. 98–99, 41–54 (1999).
    [CrossRef]
  35. S. Nettesheim, A. von Oertzen, H. H. Rotermund, G. Ertl, “Reaction diffusion patterns in the catalytic CO oxidation on Pt(110): front propagation and spiral waves,” J. Chem. Phys. 98, 9977–9985 (1993).
    [CrossRef]
  36. F. Schüth, B. E. Henry, L. D. Schmidt, “Oscillatory reactions in heterogeneous catalysis,” Adv. Catal. 39, 51–127 (1993).
    [CrossRef]
  37. K. Krischer, M. Eiswirth, G. Ertl, “Oscillatory CO oxidation on Pt(110): modelling of temporal self-organization,” J. Chem. Phys. 96, 9161–9172 (1992).
    [CrossRef]

1999 (1)

H. H. Rotermund, “Imaging surface reactions with a photoemission electron microscope,” J. Electron Spectrosc. Relat. Phenom. 98–99, 41–54 (1999).
[CrossRef]

1998 (2)

G. Haas, T. D. Pletcher, G. Bonilla, T. A. Jachimowski, H. H. Rotermund, J. Lauterbach, “Ellipsomicroscopy for surface imaging: a novel tool to investigate surface dynamics,” J. Vac. Sci. Technol. A 16, 1117–1121 (1998).
[CrossRef]

R. E. R. Colen, J. Christoph, F. Peña, H. H. Rotermund, “Oxidation of CO on Pt(111) at intermediate pressures,” Surf. Sci. 408, 310–316 (1998).
[CrossRef]

1997 (1)

H. H. Rotermund, “Imaging of dynamic processes on surfaces by light,” Surf. Sci. Rep. 29, 265–364 (1997).
[CrossRef]

1996 (1)

G. Ertl, H. H. Rotermund, “Spatio-temporal pattern formation in reactions at surfaces,” Curr. Opin. Solid State Mater. Sci. 1, 617–621 (1996).
[CrossRef]

1995 (2)

R. Imbihl, G. Ertl, “Oscillatory kinetics in heterogeneous catalysis,” Chem. Rev. 95, 697–733 (1995).
[CrossRef]

H. H. Rotermund, G. Haas, U. Franz, R. M. Tromp, G. Ertl, “Imaging pattern formation in surface reactions from ultrahigh vacuum up to atmospheric pressures,” Science 270, 608–610 (1995).
[CrossRef]

1994 (3)

R. Imbihl, “Temporal and spatial patterns in catalytic reactions on single crystal surfaces,” Heterog. Chem. Rev. 1, 125–133 (1994).

G. Ertl, “Reactions at well-defined surfaces,” Surf. Sci. 300, 742–754 (1994).
[CrossRef]

A.-H. Liu, P. C. Wayner, J. L. Plawsky, “Image scanning ellipsometry for measuring nonuniform film thickness profiles,” Appl. Opt. 33, 1223–1229 (1994).
[CrossRef] [PubMed]

1993 (3)

S. Nettesheim, A. von Oertzen, H. H. Rotermund, G. Ertl, “Reaction diffusion patterns in the catalytic CO oxidation on Pt(110): front propagation and spiral waves,” J. Chem. Phys. 98, 9977–9985 (1993).
[CrossRef]

F. Schüth, B. E. Henry, L. D. Schmidt, “Oscillatory reactions in heterogeneous catalysis,” Adv. Catal. 39, 51–127 (1993).
[CrossRef]

R. Imbihl, “Oscillatory reactions on single crystal surfaces,” Prog. Surf. Sci. 44, 185–343 (1993).
[CrossRef]

1992 (1)

K. Krischer, M. Eiswirth, G. Ertl, “Oscillatory CO oxidation on Pt(110): modelling of temporal self-organization,” J. Chem. Phys. 96, 9161–9172 (1992).
[CrossRef]

1991 (1)

1990 (1)

H. H. Rotermund, W. Engel, M. Kordesch, G. Ertl, “Imaging of spatio-temporal pattern evolution during carbon monoxide oxidation on platinum,” Nature 343, 355–357 (1990).
[CrossRef]

1988 (2)

1986 (2)

M. Erman, J. B. Theeten, “Spatially resolved ellipsometry,” J. Appl. Phys. 60, 859–873 (1986).
[CrossRef]

M. Eiswirth, G. Ertl, “Kinetic oscillations in the catalytic oxidation on a Pt(110) surface,” Surf. Sci. 177, 90–100 (1986).
[CrossRef]

1985 (3)

G. Saidi, T. T. Tsotsis, “Reaction-rate oscillations during H2 oxidation over polycrystalline Pt—a CPD and ellipsometric investigation,” Surf. Sci. 161, L591–L596 (1985).
[CrossRef]

P. Stoltze, J. Nørskov, “Bridging the pressure gap between ultrahigh-vacuum surface physics and high-pressure catalysis,” Phys. Rev. Lett. 55, 2502–2508 (1985).
[CrossRef] [PubMed]

J. Humlicek, “Sensitivity extrema in multiple-angle ellipsometry,” J. Opt. Soc. Am. A 2, 713–722 (1985).
[CrossRef]

1984 (1)

P. R. Norton, P. E. Bindner, K. Griffiths, J. A. Davies, J. Rüstig, “Kinetic oscillations in oxidation of CO over Pt(100)—a study by Rutherford backscattering, nuclear microanalysis, LEED, and work function techniques,” J. Chem. Phys. 80, 3859–3865 (1984).
[CrossRef]

1982 (1)

G. Ertl, P. R. Norton, J. Rüstig, “Kinetic oscillations in the platinum-catalyzed oxidation of CO,” Phys. Rev. Lett. 49, 177–180 (1982).
[CrossRef]

1980 (1)

M. Stenberg, T. Sandström, L. Stiblert, “New ellipsometric method for measurements on surfaces and surface-layers,” Mater. Sci. Eng. 42, 65–69 (1980).
[CrossRef]

1979 (1)

K. Löschke, “Microscopy with an ellipsometric arrangement,” Krist. Tech. 14, 717–720 (1979).
[CrossRef]

1978 (1)

H. Albers, W. J. J. van der Wal, O. L. J. Gijzeman, G. A. Bootsma, “Ellipsometry LEED study of oxygen adsorption and carbon monoxide–oxygen interaction on Ag(110),” Surf. Sci. 77, 1–13 (1978).
[CrossRef]

1976 (1)

F. Meyer, “Ellipsometric studies of adsorption reactions on clean surfaces,” Surf. Sci. 56, 37–48 (1976).
[CrossRef]

1971 (1)

1970 (1)

1967 (1)

1962 (1)

Albers, H.

H. Albers, W. J. J. van der Wal, O. L. J. Gijzeman, G. A. Bootsma, “Ellipsometry LEED study of oxygen adsorption and carbon monoxide–oxygen interaction on Ag(110),” Surf. Sci. 77, 1–13 (1978).
[CrossRef]

Archer, R. J.

Azzam, R. M. A.

Bashara, N. M.

Beaglehole, D.

D. Beaglehole, “Performance of a microscopic imaging ellipsometer,” Rev. Sci. Instrum. 59, 2557–2559 (1988).
[CrossRef]

Bindner, P. E.

P. R. Norton, P. E. Bindner, K. Griffiths, J. A. Davies, J. Rüstig, “Kinetic oscillations in oxidation of CO over Pt(100)—a study by Rutherford backscattering, nuclear microanalysis, LEED, and work function techniques,” J. Chem. Phys. 80, 3859–3865 (1984).
[CrossRef]

Bonilla, G.

G. Haas, T. D. Pletcher, G. Bonilla, T. A. Jachimowski, H. H. Rotermund, J. Lauterbach, “Ellipsomicroscopy for surface imaging: a novel tool to investigate surface dynamics,” J. Vac. Sci. Technol. A 16, 1117–1121 (1998).
[CrossRef]

Bootsma, G. A.

H. Albers, W. J. J. van der Wal, O. L. J. Gijzeman, G. A. Bootsma, “Ellipsometry LEED study of oxygen adsorption and carbon monoxide–oxygen interaction on Ag(110),” Surf. Sci. 77, 1–13 (1978).
[CrossRef]

Christoph, J.

R. E. R. Colen, J. Christoph, F. Peña, H. H. Rotermund, “Oxidation of CO on Pt(111) at intermediate pressures,” Surf. Sci. 408, 310–316 (1998).
[CrossRef]

Cohn, R. F.

Colen, R. E. R.

R. E. R. Colen, J. Christoph, F. Peña, H. H. Rotermund, “Oxidation of CO on Pt(111) at intermediate pressures,” Surf. Sci. 408, 310–316 (1998).
[CrossRef]

Davies, J. A.

P. R. Norton, P. E. Bindner, K. Griffiths, J. A. Davies, J. Rüstig, “Kinetic oscillations in oxidation of CO over Pt(100)—a study by Rutherford backscattering, nuclear microanalysis, LEED, and work function techniques,” J. Chem. Phys. 80, 3859–3865 (1984).
[CrossRef]

Devaney, A. J.

Eiswirth, M.

K. Krischer, M. Eiswirth, G. Ertl, “Oscillatory CO oxidation on Pt(110): modelling of temporal self-organization,” J. Chem. Phys. 96, 9161–9172 (1992).
[CrossRef]

M. Eiswirth, G. Ertl, “Kinetic oscillations in the catalytic oxidation on a Pt(110) surface,” Surf. Sci. 177, 90–100 (1986).
[CrossRef]

Engel, W.

H. H. Rotermund, W. Engel, M. Kordesch, G. Ertl, “Imaging of spatio-temporal pattern evolution during carbon monoxide oxidation on platinum,” Nature 343, 355–357 (1990).
[CrossRef]

Erman, M.

M. Erman, J. B. Theeten, “Spatially resolved ellipsometry,” J. Appl. Phys. 60, 859–873 (1986).
[CrossRef]

Ertl, G.

G. Ertl, H. H. Rotermund, “Spatio-temporal pattern formation in reactions at surfaces,” Curr. Opin. Solid State Mater. Sci. 1, 617–621 (1996).
[CrossRef]

H. H. Rotermund, G. Haas, U. Franz, R. M. Tromp, G. Ertl, “Imaging pattern formation in surface reactions from ultrahigh vacuum up to atmospheric pressures,” Science 270, 608–610 (1995).
[CrossRef]

R. Imbihl, G. Ertl, “Oscillatory kinetics in heterogeneous catalysis,” Chem. Rev. 95, 697–733 (1995).
[CrossRef]

G. Ertl, “Reactions at well-defined surfaces,” Surf. Sci. 300, 742–754 (1994).
[CrossRef]

S. Nettesheim, A. von Oertzen, H. H. Rotermund, G. Ertl, “Reaction diffusion patterns in the catalytic CO oxidation on Pt(110): front propagation and spiral waves,” J. Chem. Phys. 98, 9977–9985 (1993).
[CrossRef]

K. Krischer, M. Eiswirth, G. Ertl, “Oscillatory CO oxidation on Pt(110): modelling of temporal self-organization,” J. Chem. Phys. 96, 9161–9172 (1992).
[CrossRef]

H. H. Rotermund, W. Engel, M. Kordesch, G. Ertl, “Imaging of spatio-temporal pattern evolution during carbon monoxide oxidation on platinum,” Nature 343, 355–357 (1990).
[CrossRef]

M. Eiswirth, G. Ertl, “Kinetic oscillations in the catalytic oxidation on a Pt(110) surface,” Surf. Sci. 177, 90–100 (1986).
[CrossRef]

G. Ertl, P. R. Norton, J. Rüstig, “Kinetic oscillations in the platinum-catalyzed oxidation of CO,” Phys. Rev. Lett. 49, 177–180 (1982).
[CrossRef]

Franz, U.

H. H. Rotermund, G. Haas, U. Franz, R. M. Tromp, G. Ertl, “Imaging pattern formation in surface reactions from ultrahigh vacuum up to atmospheric pressures,” Science 270, 608–610 (1995).
[CrossRef]

Gijzeman, O. L. J.

H. Albers, W. J. J. van der Wal, O. L. J. Gijzeman, G. A. Bootsma, “Ellipsometry LEED study of oxygen adsorption and carbon monoxide–oxygen interaction on Ag(110),” Surf. Sci. 77, 1–13 (1978).
[CrossRef]

Griffiths, K.

P. R. Norton, P. E. Bindner, K. Griffiths, J. A. Davies, J. Rüstig, “Kinetic oscillations in oxidation of CO over Pt(100)—a study by Rutherford backscattering, nuclear microanalysis, LEED, and work function techniques,” J. Chem. Phys. 80, 3859–3865 (1984).
[CrossRef]

Haas, G.

G. Haas, T. D. Pletcher, G. Bonilla, T. A. Jachimowski, H. H. Rotermund, J. Lauterbach, “Ellipsomicroscopy for surface imaging: a novel tool to investigate surface dynamics,” J. Vac. Sci. Technol. A 16, 1117–1121 (1998).
[CrossRef]

H. H. Rotermund, G. Haas, U. Franz, R. M. Tromp, G. Ertl, “Imaging pattern formation in surface reactions from ultrahigh vacuum up to atmospheric pressures,” Science 270, 608–610 (1995).
[CrossRef]

Hecht, E.

E. Hecht, Optik (Addison Wesley, Bonn, 1994).

Henry, B. E.

F. Schüth, B. E. Henry, L. D. Schmidt, “Oscillatory reactions in heterogeneous catalysis,” Adv. Catal. 39, 51–127 (1993).
[CrossRef]

Humlicek, J.

Imbihl, R.

R. Imbihl, G. Ertl, “Oscillatory kinetics in heterogeneous catalysis,” Chem. Rev. 95, 697–733 (1995).
[CrossRef]

R. Imbihl, “Temporal and spatial patterns in catalytic reactions on single crystal surfaces,” Heterog. Chem. Rev. 1, 125–133 (1994).

R. Imbihl, “Oscillatory reactions on single crystal surfaces,” Prog. Surf. Sci. 44, 185–343 (1993).
[CrossRef]

Jachimowski, T. A.

G. Haas, T. D. Pletcher, G. Bonilla, T. A. Jachimowski, H. H. Rotermund, J. Lauterbach, “Ellipsomicroscopy for surface imaging: a novel tool to investigate surface dynamics,” J. Vac. Sci. Technol. A 16, 1117–1121 (1998).
[CrossRef]

Jaeger, N.

M. M. Slinko, N. Jaeger, “Oscillatory heterogeneous catalytic systems,” in Vol. 86 of Studies in Surface Science and Catalysis, B. Delmon, J. T. Yates, eds. (Elsevier, Amsterdam, 1994).

Kordesch, M.

H. H. Rotermund, W. Engel, M. Kordesch, G. Ertl, “Imaging of spatio-temporal pattern evolution during carbon monoxide oxidation on platinum,” Nature 343, 355–357 (1990).
[CrossRef]

Krischer, K.

K. Krischer, M. Eiswirth, G. Ertl, “Oscillatory CO oxidation on Pt(110): modelling of temporal self-organization,” J. Chem. Phys. 96, 9161–9172 (1992).
[CrossRef]

Kruger, J.

Lauterbach, J.

G. Haas, T. D. Pletcher, G. Bonilla, T. A. Jachimowski, H. H. Rotermund, J. Lauterbach, “Ellipsomicroscopy for surface imaging: a novel tool to investigate surface dynamics,” J. Vac. Sci. Technol. A 16, 1117–1121 (1998).
[CrossRef]

Liu, A.-H.

Löschke, K.

K. Löschke, “Microscopy with an ellipsometric arrangement,” Krist. Tech. 14, 717–720 (1979).
[CrossRef]

McCrackin, F. L.

McKnight, S. W.

Meyer, F.

F. Meyer, “Ellipsometric studies of adsorption reactions on clean surfaces,” Surf. Sci. 56, 37–48 (1976).
[CrossRef]

Nettesheim, S.

S. Nettesheim, A. von Oertzen, H. H. Rotermund, G. Ertl, “Reaction diffusion patterns in the catalytic CO oxidation on Pt(110): front propagation and spiral waves,” J. Chem. Phys. 98, 9977–9985 (1993).
[CrossRef]

Nørskov, J.

P. Stoltze, J. Nørskov, “Bridging the pressure gap between ultrahigh-vacuum surface physics and high-pressure catalysis,” Phys. Rev. Lett. 55, 2502–2508 (1985).
[CrossRef] [PubMed]

Norton, P. R.

P. R. Norton, P. E. Bindner, K. Griffiths, J. A. Davies, J. Rüstig, “Kinetic oscillations in oxidation of CO over Pt(100)—a study by Rutherford backscattering, nuclear microanalysis, LEED, and work function techniques,” J. Chem. Phys. 80, 3859–3865 (1984).
[CrossRef]

G. Ertl, P. R. Norton, J. Rüstig, “Kinetic oscillations in the platinum-catalyzed oxidation of CO,” Phys. Rev. Lett. 49, 177–180 (1982).
[CrossRef]

Peña, F.

R. E. R. Colen, J. Christoph, F. Peña, H. H. Rotermund, “Oxidation of CO on Pt(111) at intermediate pressures,” Surf. Sci. 408, 310–316 (1998).
[CrossRef]

Plawsky, J. L.

Pletcher, T. D.

G. Haas, T. D. Pletcher, G. Bonilla, T. A. Jachimowski, H. H. Rotermund, J. Lauterbach, “Ellipsomicroscopy for surface imaging: a novel tool to investigate surface dynamics,” J. Vac. Sci. Technol. A 16, 1117–1121 (1998).
[CrossRef]

Rotermund, H. H.

H. H. Rotermund, “Imaging surface reactions with a photoemission electron microscope,” J. Electron Spectrosc. Relat. Phenom. 98–99, 41–54 (1999).
[CrossRef]

G. Haas, T. D. Pletcher, G. Bonilla, T. A. Jachimowski, H. H. Rotermund, J. Lauterbach, “Ellipsomicroscopy for surface imaging: a novel tool to investigate surface dynamics,” J. Vac. Sci. Technol. A 16, 1117–1121 (1998).
[CrossRef]

R. E. R. Colen, J. Christoph, F. Peña, H. H. Rotermund, “Oxidation of CO on Pt(111) at intermediate pressures,” Surf. Sci. 408, 310–316 (1998).
[CrossRef]

H. H. Rotermund, “Imaging of dynamic processes on surfaces by light,” Surf. Sci. Rep. 29, 265–364 (1997).
[CrossRef]

G. Ertl, H. H. Rotermund, “Spatio-temporal pattern formation in reactions at surfaces,” Curr. Opin. Solid State Mater. Sci. 1, 617–621 (1996).
[CrossRef]

H. H. Rotermund, G. Haas, U. Franz, R. M. Tromp, G. Ertl, “Imaging pattern formation in surface reactions from ultrahigh vacuum up to atmospheric pressures,” Science 270, 608–610 (1995).
[CrossRef]

S. Nettesheim, A. von Oertzen, H. H. Rotermund, G. Ertl, “Reaction diffusion patterns in the catalytic CO oxidation on Pt(110): front propagation and spiral waves,” J. Chem. Phys. 98, 9977–9985 (1993).
[CrossRef]

H. H. Rotermund, W. Engel, M. Kordesch, G. Ertl, “Imaging of spatio-temporal pattern evolution during carbon monoxide oxidation on platinum,” Nature 343, 355–357 (1990).
[CrossRef]

Rüstig, J.

P. R. Norton, P. E. Bindner, K. Griffiths, J. A. Davies, J. Rüstig, “Kinetic oscillations in oxidation of CO over Pt(100)—a study by Rutherford backscattering, nuclear microanalysis, LEED, and work function techniques,” J. Chem. Phys. 80, 3859–3865 (1984).
[CrossRef]

G. Ertl, P. R. Norton, J. Rüstig, “Kinetic oscillations in the platinum-catalyzed oxidation of CO,” Phys. Rev. Lett. 49, 177–180 (1982).
[CrossRef]

Saidi, G.

G. Saidi, T. T. Tsotsis, “Reaction-rate oscillations during H2 oxidation over polycrystalline Pt—a CPD and ellipsometric investigation,” Surf. Sci. 161, L591–L596 (1985).
[CrossRef]

Sandström, T.

M. Stenberg, T. Sandström, L. Stiblert, “New ellipsometric method for measurements on surfaces and surface-layers,” Mater. Sci. Eng. 42, 65–69 (1980).
[CrossRef]

Schmidt, L. D.

F. Schüth, B. E. Henry, L. D. Schmidt, “Oscillatory reactions in heterogeneous catalysis,” Adv. Catal. 39, 51–127 (1993).
[CrossRef]

Schüth, F.

F. Schüth, B. E. Henry, L. D. Schmidt, “Oscillatory reactions in heterogeneous catalysis,” Adv. Catal. 39, 51–127 (1993).
[CrossRef]

Shank, C. V.

Slinko, M. M.

M. M. Slinko, N. Jaeger, “Oscillatory heterogeneous catalytic systems,” in Vol. 86 of Studies in Surface Science and Catalysis, B. Delmon, J. T. Yates, eds. (Elsevier, Amsterdam, 1994).

Stenberg, M.

M. Stenberg, T. Sandström, L. Stiblert, “New ellipsometric method for measurements on surfaces and surface-layers,” Mater. Sci. Eng. 42, 65–69 (1980).
[CrossRef]

Stiblert, L.

M. Stenberg, T. Sandström, L. Stiblert, “New ellipsometric method for measurements on surfaces and surface-layers,” Mater. Sci. Eng. 42, 65–69 (1980).
[CrossRef]

Stoltze, P.

P. Stoltze, J. Nørskov, “Bridging the pressure gap between ultrahigh-vacuum surface physics and high-pressure catalysis,” Phys. Rev. Lett. 55, 2502–2508 (1985).
[CrossRef] [PubMed]

Theeten, J. B.

M. Erman, J. B. Theeten, “Spatially resolved ellipsometry,” J. Appl. Phys. 60, 859–873 (1986).
[CrossRef]

Tompkins, H. G.

H. G. Tompkins, A User’s Guide to Ellipsometry, (Academic, London, 1993).

Tromp, R. M.

H. H. Rotermund, G. Haas, U. Franz, R. M. Tromp, G. Ertl, “Imaging pattern formation in surface reactions from ultrahigh vacuum up to atmospheric pressures,” Science 270, 608–610 (1995).
[CrossRef]

Tsotsis, T. T.

G. Saidi, T. T. Tsotsis, “Reaction-rate oscillations during H2 oxidation over polycrystalline Pt—a CPD and ellipsometric investigation,” Surf. Sci. 161, L591–L596 (1985).
[CrossRef]

van der Wal, W. J. J.

H. Albers, W. J. J. van der Wal, O. L. J. Gijzeman, G. A. Bootsma, “Ellipsometry LEED study of oxygen adsorption and carbon monoxide–oxygen interaction on Ag(110),” Surf. Sci. 77, 1–13 (1978).
[CrossRef]

von Oertzen, A.

S. Nettesheim, A. von Oertzen, H. H. Rotermund, G. Ertl, “Reaction diffusion patterns in the catalytic CO oxidation on Pt(110): front propagation and spiral waves,” J. Chem. Phys. 98, 9977–9985 (1993).
[CrossRef]

Wagner, J. W.

Wayner, P. C.

Weedon, W. H.

Adv. Catal. (1)

F. Schüth, B. E. Henry, L. D. Schmidt, “Oscillatory reactions in heterogeneous catalysis,” Adv. Catal. 39, 51–127 (1993).
[CrossRef]

Appl. Opt. (2)

Chem. Rev. (1)

R. Imbihl, G. Ertl, “Oscillatory kinetics in heterogeneous catalysis,” Chem. Rev. 95, 697–733 (1995).
[CrossRef]

Curr. Opin. Solid State Mater. Sci. (1)

G. Ertl, H. H. Rotermund, “Spatio-temporal pattern formation in reactions at surfaces,” Curr. Opin. Solid State Mater. Sci. 1, 617–621 (1996).
[CrossRef]

Heterog. Chem. Rev. (1)

R. Imbihl, “Temporal and spatial patterns in catalytic reactions on single crystal surfaces,” Heterog. Chem. Rev. 1, 125–133 (1994).

J. Appl. Phys. (1)

M. Erman, J. B. Theeten, “Spatially resolved ellipsometry,” J. Appl. Phys. 60, 859–873 (1986).
[CrossRef]

J. Chem. Phys. (3)

S. Nettesheim, A. von Oertzen, H. H. Rotermund, G. Ertl, “Reaction diffusion patterns in the catalytic CO oxidation on Pt(110): front propagation and spiral waves,” J. Chem. Phys. 98, 9977–9985 (1993).
[CrossRef]

K. Krischer, M. Eiswirth, G. Ertl, “Oscillatory CO oxidation on Pt(110): modelling of temporal self-organization,” J. Chem. Phys. 96, 9161–9172 (1992).
[CrossRef]

P. R. Norton, P. E. Bindner, K. Griffiths, J. A. Davies, J. Rüstig, “Kinetic oscillations in oxidation of CO over Pt(100)—a study by Rutherford backscattering, nuclear microanalysis, LEED, and work function techniques,” J. Chem. Phys. 80, 3859–3865 (1984).
[CrossRef]

J. Electron Spectrosc. Relat. Phenom. (1)

H. H. Rotermund, “Imaging surface reactions with a photoemission electron microscope,” J. Electron Spectrosc. Relat. Phenom. 98–99, 41–54 (1999).
[CrossRef]

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (2)

J. Vac. Sci. Technol. A (1)

G. Haas, T. D. Pletcher, G. Bonilla, T. A. Jachimowski, H. H. Rotermund, J. Lauterbach, “Ellipsomicroscopy for surface imaging: a novel tool to investigate surface dynamics,” J. Vac. Sci. Technol. A 16, 1117–1121 (1998).
[CrossRef]

Krist. Tech. (1)

K. Löschke, “Microscopy with an ellipsometric arrangement,” Krist. Tech. 14, 717–720 (1979).
[CrossRef]

Mater. Sci. Eng. (1)

M. Stenberg, T. Sandström, L. Stiblert, “New ellipsometric method for measurements on surfaces and surface-layers,” Mater. Sci. Eng. 42, 65–69 (1980).
[CrossRef]

Nature (1)

H. H. Rotermund, W. Engel, M. Kordesch, G. Ertl, “Imaging of spatio-temporal pattern evolution during carbon monoxide oxidation on platinum,” Nature 343, 355–357 (1990).
[CrossRef]

Phys. Rev. Lett. (2)

P. Stoltze, J. Nørskov, “Bridging the pressure gap between ultrahigh-vacuum surface physics and high-pressure catalysis,” Phys. Rev. Lett. 55, 2502–2508 (1985).
[CrossRef] [PubMed]

G. Ertl, P. R. Norton, J. Rüstig, “Kinetic oscillations in the platinum-catalyzed oxidation of CO,” Phys. Rev. Lett. 49, 177–180 (1982).
[CrossRef]

Prog. Surf. Sci. (1)

R. Imbihl, “Oscillatory reactions on single crystal surfaces,” Prog. Surf. Sci. 44, 185–343 (1993).
[CrossRef]

Rev. Sci. Instrum. (1)

D. Beaglehole, “Performance of a microscopic imaging ellipsometer,” Rev. Sci. Instrum. 59, 2557–2559 (1988).
[CrossRef]

Science (1)

H. H. Rotermund, G. Haas, U. Franz, R. M. Tromp, G. Ertl, “Imaging pattern formation in surface reactions from ultrahigh vacuum up to atmospheric pressures,” Science 270, 608–610 (1995).
[CrossRef]

Surf. Sci. (6)

R. E. R. Colen, J. Christoph, F. Peña, H. H. Rotermund, “Oxidation of CO on Pt(111) at intermediate pressures,” Surf. Sci. 408, 310–316 (1998).
[CrossRef]

G. Ertl, “Reactions at well-defined surfaces,” Surf. Sci. 300, 742–754 (1994).
[CrossRef]

M. Eiswirth, G. Ertl, “Kinetic oscillations in the catalytic oxidation on a Pt(110) surface,” Surf. Sci. 177, 90–100 (1986).
[CrossRef]

F. Meyer, “Ellipsometric studies of adsorption reactions on clean surfaces,” Surf. Sci. 56, 37–48 (1976).
[CrossRef]

H. Albers, W. J. J. van der Wal, O. L. J. Gijzeman, G. A. Bootsma, “Ellipsometry LEED study of oxygen adsorption and carbon monoxide–oxygen interaction on Ag(110),” Surf. Sci. 77, 1–13 (1978).
[CrossRef]

G. Saidi, T. T. Tsotsis, “Reaction-rate oscillations during H2 oxidation over polycrystalline Pt—a CPD and ellipsometric investigation,” Surf. Sci. 161, L591–L596 (1985).
[CrossRef]

Surf. Sci. Rep. (1)

H. H. Rotermund, “Imaging of dynamic processes on surfaces by light,” Surf. Sci. Rep. 29, 265–364 (1997).
[CrossRef]

Other (4)

M. M. Slinko, N. Jaeger, “Oscillatory heterogeneous catalytic systems,” in Vol. 86 of Studies in Surface Science and Catalysis, B. Delmon, J. T. Yates, eds. (Elsevier, Amsterdam, 1994).

H. G. Tompkins, A User’s Guide to Ellipsometry, (Academic, London, 1993).

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

E. Hecht, Optik (Addison Wesley, Bonn, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Raw EMSI data (no background subtraction) of the formation of target patterns on a Pt(110) single crystal. The surface temperature was 473 K at an oxygen pressure of 4.0×10-4 mbar and a CO/O2 ratio of 0.2. Bright patches are CO poisoned, and dark patches are reactive.

Fig. 2
Fig. 2

Positions of the polarizer (Pmax) and the compensator (Amax) showing maximum contrast as well as the resultant contrast are plotted as a function of the instrument parameter c. P0,a and A0,a have been subtracted from Pmax and Amax, respectively, to display the two curves on similar scales. Ψa,Δa,Ψb, and Δb are chosen according to the experimental values.

Fig. 3
Fig. 3

Setup of the EMSI instrument for in situ measurements on a reaction chamber.

Fig. 4
Fig. 4

Change in the ellipsometric parameters Ψ and Δ for a CO-poisoned and a reactive surface measured as a function of surface temperature. Ψ0 and Δ0 have been subtracted to show the two curves on similar scales. The lines are least-square fits of the respective data.

Fig. 5
Fig. 5

On the basis of the measured ellipsometric parameters Ψa,Ψb,Δa, and Δb and instrument parameter c, the optimum positions for the polarizer (Pmax) and compensator (Amax) and the theoretical contrast are plotted as a function of surface temperature. P0,a and A0,a have been subtracted to show the two curves on similar scales.

Fig. 6
Fig. 6

Formation of O islands, seen as dark patches, on an otherwise CO-poisoned Pt(110) surface. The surface temperature was 373 K at an oxygen pressure of 4.0×10-4 mbar and a CO/O2 ratio of 0.02.

Fig. 7
Fig. 7

Shadows of former O islands on a CO-poisoned Pt(110) catalyst at a surface temperature of 373 K, an oxygen pressure of 4.0×10-4 mbar, and a CO/O2 ratio of 0.025. The shadows formed after the CO/O2 ratio was increased to 0.025 for oxygen islands on an otherwise-CO-poisoned Pt(110) surface (see Fig. 6).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I=rp cos A[cos C cos(P-C)+i sin C sin(P-C)]+rs sin A[sin C cos(P-C)-i cos C sin(P-C)]2.
rp/rs=tan Ψ exp(iΔ).
I(P, A)=|rs|22 cos2 A0[sin2(A-A0)+sin 2A sin 2A0×sin2(P-P0)].
K=|Ib-Ia|Ib+Ia.
I=I0(I+c).
K=|Ib-Ia|Ib+Ia+2c.
I(P, Ψ)=I0[2|rs|2 sin2 Ψ(P-P0)2+c].

Metrics