Abstract

A three-dimensional tomographic reconstruction algorithm for an absorptive perturbation in tissue is derived. The input consists of multiple two-dimensional projected views of tissue that is backilluminated with diffuse photon density waves. The algorithm is based on a generalization of the projection-slice theorem and consists of depth estimation, image deconvolution, filtering, and backprojection. The formalism provides estimates of the number of views necessary to achieve a given spatial resolution in the reconstruction. The algorithm is demonstrated with data simulated to mimic the absorption of a contrast agent in human tissue. The effects of noise and uncertainties in the depth estimate are explored.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Deans, The Radon Transform and Some of Its Applications (Wiley, New York, 1983).
  2. S. Webb, The Physics of Three-Dimensional Radiation Therapy, Conformal Radiotherapy, Radiosurgery, and Treatment Planning (Institute of Physics, Bristol, UK, 1993).
  3. M. A. O’Leary, D. Boas, B. Chance, A. Yodh, “Experimental images of heterogeneous turbid media,” Opt. Lett. 20, 426–428 (1985).
    [CrossRef]
  4. A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48 (March), 34–40 (1995) and references therein.
    [CrossRef]
  5. S. R. Arridge, J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
    [CrossRef] [PubMed]
  6. I. W. Kwee, Y. Tanikawa, S. Proskurin, S. R. Arridge, D. T. Delphy, Y. Yamada, “Performance of a null-space image reconstruction algorithm,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 185–196 (1997).
    [CrossRef]
  7. J. C. Schotland, “Continuous-wave diffusion imaging,” J. Opt. Soc. Am. A 14, 275–279 (1997).
    [CrossRef]
  8. Y. Yao, Y. Pei, Y. Wang, R. L. Barbour, “A Born type iterative method for imaging of heterogeneous scattering media and its application to simulated breast tissue,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 232–240 (1997).
    [CrossRef]
  9. M. V. Klibanov, T. R. Lucas, R. M. Frank, “New imaging algorithm in diffusion tomography,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 272–283 (1997).
    [CrossRef]
  10. See, for example, B. Chance, R. Alfano, eds., Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, Proc. SPIE2979, 1–864 (1997).
  11. J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. Essenpreis, M. S. Patterson, “Optical properties of phantoms and tissue measured in vivo from 0.9–1.3 µm using spatially resolved diffuse reflectance,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 325–334 (1997).
    [CrossRef]
  12. V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
    [CrossRef] [PubMed]
  13. W.-F. Cheong, S. A. Prahl, A. J. Welch, “A review of optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]
  14. R. J. Grable, D. P. Rohler, S. Kla, “Optical tomography breast imaging,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 197–210 (1997).
    [CrossRef]
  15. S. A. Walker, A. E. Cerussi, E. Gratton, “Back-projection image reconstruction using photon density waves in tissues,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 350–357 (1995).
    [CrossRef]
  16. S. B. Colak, H. Schomberg, G. W. ’t Hooft, M. B. van der Mark, “Optical backprojection tomography in heterogeneous diffusive media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 282–289.
  17. S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, “Optical image reconstruction with deconvolution in light diffusing media,” in Photon Migration in Tissues, B. Chance, D. T. Delpy, G. J. Mueller, eds., Proc. SPIE2626, 306–315 (1995).
    [CrossRef]
  18. A. J. Devaney, “Reconstructive tomography with diffracting wavefields,” Inverse Probl. 2, 161–183 (1986).
    [CrossRef]
  19. X. D. Li, T. Durduran, A. G. Yodh, B. Chance, D. N. Pattanayak, “Diffraction tomography for biochemical imaging with diffuse-photon density waves,” Opt. Lett. 22, 573–575 (1997).
    [CrossRef] [PubMed]
  20. F. Natterer, The Mathematics of Computerized Tomography (Wiley, New York, 1986).
  21. S. C. Feng, F.-A. Zeng, B. Chance, “Analytical perturbation theory of photon migration in the presence of a single absorbing or scattering defect sphere,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 54–63 (1995).
    [CrossRef]
  22. D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
    [CrossRef] [PubMed]
  23. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
    [CrossRef]
  24. L. S. Heuser, F. N. Miller, “Differential macromolecular leakage from the vasculature of tumors,” Cancer 57, 461–464 (1986).
    [CrossRef] [PubMed]
  25. X. Li, B. Beauvoit, R. White, S. Nioka, B. Chance, A. Yodh, “Tumor localization using fluorescence of indocyanine green (ICG) in rat models,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 789–797 (1995).
    [CrossRef]
  26. M. M. Haglund, D. W. Hochman, A. M. Spence, M. S. Berger, “Enhanced optical imaging of rat gliomas and tumor margins,” Neurosurgery 35, 930–940 (1994).
    [CrossRef] [PubMed]
  27. N. Weidner, J. P. Semple, W. R. Welch, J. Folkman, “Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma,” N. Eng. J. Med. 324, 1–7 (1991).
    [CrossRef]
  28. S. P. Gopinath, C. S. Robertson, R. G. Grossman, B. Chance, “Near-infrared spectroscopic localization of intra- cranial hematomas,” J. Neurosurg. 79, 43–47 (1993).
    [CrossRef] [PubMed]
  29. M. Braunstein, R. W. Chan, R. Y. Levine, “Simulation of dye-enhanced near-IR transillumination imaging of tumors,” in Proceedings of the IEEE Engineering in Medicine and Biology 19th Annual International Conference (IEEE, New York, 1997), p. 93.
  30. M. Braunstein, R. W. Chan, R. Y. Levine, “Dye-enhanced multispectral transillumination for breast cancer detection: feasibility measurements,” in Proceedings of the IEEE Engineering in Medicine and Biology 19th Annual International Conference (IEEE, New York, 1997), p. 91.
  31. S. Zhou, M. A. O’Leary, S. Nioka, B. Chance, “Breast tumor detection using continuous wave light source,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 809–817 (1995).
    [CrossRef]
  32. T. Carski, Indocyanine Green: History, Chemistry, Pharmacology, Indications, Adverse Reactions, Investigation and Prognosis: An Investigative Brochure (Becton Dickinson, Cockeysville, Md., 1995).
  33. X. Wu, L. Stinger, G. W. Faris, “Determination of tissue properties by immersion in a matched scattering fluid,” in Optical Tomography and Spectroscopy of Tissues: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 300–306 (1997).
    [CrossRef]
  34. A. Ishimaru, Wave Propagation and Scattering in Random Media, Volume 1, Single Scattering and Transport Theory (Academic, New York, 1978), pp. 175–185.
  35. R. Y. Levine, E. A. Gregerson, M. M. Urie, “The application of the x-ray transform to 3D conformal radiotherapy,” in Computational Radiology and Imaging: Therapy and Diagnostics, C. Borgers, F. Natterer, eds. (Springer-Verlag, New York, 1999).
  36. B. P. Medoff, “Image reconstruction from limited data: theory and applications in computerized tomography,” in Image Recovery: Theory and Application, H. Stark, ed. (Academic, New York, 1987).
  37. M. Braunstein, R. Y. Levine, “Optimum beam configurations in tomographic intensity modulated radiation therapy,” Phys. Med. Biol. (to be published).
  38. W. Neutsch, “Optimal spherical design and numerical integration on the sphere,” J. Comput. Phys. 51, 313–325 (1983).
    [CrossRef]
  39. R. L. Siddon, “Fast calculation of the exact radiological path for a three-dimensional CT array,” Med. Phys. 12, 252–255 (1985).
    [CrossRef] [PubMed]
  40. G. T. Gullberg, T. F. Budinger, “The use of filtering methods to compensate for constant attenuation in single-photon emission computed tomography,” IEEE Trans. Biomed. Eng. BME-28, 142–157 (1981).
    [CrossRef]
  41. R. A. Crowther, D. J. DeRosier, A. Klug, “The reconstruction of a three-dimensional structure from projections and its application to electron microscopy,” Proc. R. Soc. London, Ser. A 317, 319–340 (1970).
    [CrossRef]

1998

1997

1995

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48 (March), 34–40 (1995) and references therein.
[CrossRef]

1994

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

M. M. Haglund, D. W. Hochman, A. M. Spence, M. S. Berger, “Enhanced optical imaging of rat gliomas and tumor margins,” Neurosurgery 35, 930–940 (1994).
[CrossRef] [PubMed]

1993

S. P. Gopinath, C. S. Robertson, R. G. Grossman, B. Chance, “Near-infrared spectroscopic localization of intra- cranial hematomas,” J. Neurosurg. 79, 43–47 (1993).
[CrossRef] [PubMed]

1991

N. Weidner, J. P. Semple, W. R. Welch, J. Folkman, “Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma,” N. Eng. J. Med. 324, 1–7 (1991).
[CrossRef]

1990

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

W.-F. Cheong, S. A. Prahl, A. J. Welch, “A review of optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

1986

A. J. Devaney, “Reconstructive tomography with diffracting wavefields,” Inverse Probl. 2, 161–183 (1986).
[CrossRef]

L. S. Heuser, F. N. Miller, “Differential macromolecular leakage from the vasculature of tumors,” Cancer 57, 461–464 (1986).
[CrossRef] [PubMed]

1985

M. A. O’Leary, D. Boas, B. Chance, A. Yodh, “Experimental images of heterogeneous turbid media,” Opt. Lett. 20, 426–428 (1985).
[CrossRef]

R. L. Siddon, “Fast calculation of the exact radiological path for a three-dimensional CT array,” Med. Phys. 12, 252–255 (1985).
[CrossRef] [PubMed]

1983

W. Neutsch, “Optimal spherical design and numerical integration on the sphere,” J. Comput. Phys. 51, 313–325 (1983).
[CrossRef]

1981

G. T. Gullberg, T. F. Budinger, “The use of filtering methods to compensate for constant attenuation in single-photon emission computed tomography,” IEEE Trans. Biomed. Eng. BME-28, 142–157 (1981).
[CrossRef]

1970

R. A. Crowther, D. J. DeRosier, A. Klug, “The reconstruction of a three-dimensional structure from projections and its application to electron microscopy,” Proc. R. Soc. London, Ser. A 317, 319–340 (1970).
[CrossRef]

’t Hooft, G. W.

S. B. Colak, H. Schomberg, G. W. ’t Hooft, M. B. van der Mark, “Optical backprojection tomography in heterogeneous diffusive media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 282–289.

S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, “Optical image reconstruction with deconvolution in light diffusing media,” in Photon Migration in Tissues, B. Chance, D. T. Delpy, G. J. Mueller, eds., Proc. SPIE2626, 306–315 (1995).
[CrossRef]

Arridge, S. R.

S. R. Arridge, J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[CrossRef] [PubMed]

I. W. Kwee, Y. Tanikawa, S. Proskurin, S. R. Arridge, D. T. Delphy, Y. Yamada, “Performance of a null-space image reconstruction algorithm,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 185–196 (1997).
[CrossRef]

Barbour, R. L.

Y. Yao, Y. Pei, Y. Wang, R. L. Barbour, “A Born type iterative method for imaging of heterogeneous scattering media and its application to simulated breast tissue,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 232–240 (1997).
[CrossRef]

Beauvoit, B.

X. Li, B. Beauvoit, R. White, S. Nioka, B. Chance, A. Yodh, “Tumor localization using fluorescence of indocyanine green (ICG) in rat models,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 789–797 (1995).
[CrossRef]

Berger, M. S.

M. M. Haglund, D. W. Hochman, A. M. Spence, M. S. Berger, “Enhanced optical imaging of rat gliomas and tumor margins,” Neurosurgery 35, 930–940 (1994).
[CrossRef] [PubMed]

Boas, D.

Boas, D. A.

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

Braunstein, M.

M. Braunstein, R. W. Chan, R. Y. Levine, “Simulation of dye-enhanced near-IR transillumination imaging of tumors,” in Proceedings of the IEEE Engineering in Medicine and Biology 19th Annual International Conference (IEEE, New York, 1997), p. 93.

M. Braunstein, R. W. Chan, R. Y. Levine, “Dye-enhanced multispectral transillumination for breast cancer detection: feasibility measurements,” in Proceedings of the IEEE Engineering in Medicine and Biology 19th Annual International Conference (IEEE, New York, 1997), p. 91.

M. Braunstein, R. Y. Levine, “Optimum beam configurations in tomographic intensity modulated radiation therapy,” Phys. Med. Biol. (to be published).

Bruulsema, J. T.

J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. Essenpreis, M. S. Patterson, “Optical properties of phantoms and tissue measured in vivo from 0.9–1.3 µm using spatially resolved diffuse reflectance,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 325–334 (1997).
[CrossRef]

Budinger, T. F.

G. T. Gullberg, T. F. Budinger, “The use of filtering methods to compensate for constant attenuation in single-photon emission computed tomography,” IEEE Trans. Biomed. Eng. BME-28, 142–157 (1981).
[CrossRef]

Carski, T.

T. Carski, Indocyanine Green: History, Chemistry, Pharmacology, Indications, Adverse Reactions, Investigation and Prognosis: An Investigative Brochure (Becton Dickinson, Cockeysville, Md., 1995).

Cerussi, A. E.

S. A. Walker, A. E. Cerussi, E. Gratton, “Back-projection image reconstruction using photon density waves in tissues,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 350–357 (1995).
[CrossRef]

Chan, R. W.

M. Braunstein, R. W. Chan, R. Y. Levine, “Dye-enhanced multispectral transillumination for breast cancer detection: feasibility measurements,” in Proceedings of the IEEE Engineering in Medicine and Biology 19th Annual International Conference (IEEE, New York, 1997), p. 91.

M. Braunstein, R. W. Chan, R. Y. Levine, “Simulation of dye-enhanced near-IR transillumination imaging of tumors,” in Proceedings of the IEEE Engineering in Medicine and Biology 19th Annual International Conference (IEEE, New York, 1997), p. 93.

Chance, B.

X. D. Li, T. Durduran, A. G. Yodh, B. Chance, D. N. Pattanayak, “Diffraction tomography for biochemical imaging with diffuse-photon density waves,” Opt. Lett. 22, 573–575 (1997).
[CrossRef] [PubMed]

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48 (March), 34–40 (1995) and references therein.
[CrossRef]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

S. P. Gopinath, C. S. Robertson, R. G. Grossman, B. Chance, “Near-infrared spectroscopic localization of intra- cranial hematomas,” J. Neurosurg. 79, 43–47 (1993).
[CrossRef] [PubMed]

M. A. O’Leary, D. Boas, B. Chance, A. Yodh, “Experimental images of heterogeneous turbid media,” Opt. Lett. 20, 426–428 (1985).
[CrossRef]

S. C. Feng, F.-A. Zeng, B. Chance, “Analytical perturbation theory of photon migration in the presence of a single absorbing or scattering defect sphere,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 54–63 (1995).
[CrossRef]

X. Li, B. Beauvoit, R. White, S. Nioka, B. Chance, A. Yodh, “Tumor localization using fluorescence of indocyanine green (ICG) in rat models,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 789–797 (1995).
[CrossRef]

S. Zhou, M. A. O’Leary, S. Nioka, B. Chance, “Breast tumor detection using continuous wave light source,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 809–817 (1995).
[CrossRef]

Cheong, W.-F.

W.-F. Cheong, S. A. Prahl, A. J. Welch, “A review of optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Colak, S. B.

S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, “Optical image reconstruction with deconvolution in light diffusing media,” in Photon Migration in Tissues, B. Chance, D. T. Delpy, G. J. Mueller, eds., Proc. SPIE2626, 306–315 (1995).
[CrossRef]

S. B. Colak, H. Schomberg, G. W. ’t Hooft, M. B. van der Mark, “Optical backprojection tomography in heterogeneous diffusive media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 282–289.

Crowther, R. A.

R. A. Crowther, D. J. DeRosier, A. Klug, “The reconstruction of a three-dimensional structure from projections and its application to electron microscopy,” Proc. R. Soc. London, Ser. A 317, 319–340 (1970).
[CrossRef]

Deans, S. R.

S. R. Deans, The Radon Transform and Some of Its Applications (Wiley, New York, 1983).

Delphy, D. T.

I. W. Kwee, Y. Tanikawa, S. Proskurin, S. R. Arridge, D. T. Delphy, Y. Yamada, “Performance of a null-space image reconstruction algorithm,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 185–196 (1997).
[CrossRef]

DeRosier, D. J.

R. A. Crowther, D. J. DeRosier, A. Klug, “The reconstruction of a three-dimensional structure from projections and its application to electron microscopy,” Proc. R. Soc. London, Ser. A 317, 319–340 (1970).
[CrossRef]

Devaney, A. J.

A. J. Devaney, “Reconstructive tomography with diffracting wavefields,” Inverse Probl. 2, 161–183 (1986).
[CrossRef]

Durduran, T.

Essenpreis, M.

J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. Essenpreis, M. S. Patterson, “Optical properties of phantoms and tissue measured in vivo from 0.9–1.3 µm using spatially resolved diffuse reflectance,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 325–334 (1997).
[CrossRef]

Fantini, S.

Faris, G. W.

X. Wu, L. Stinger, G. W. Faris, “Determination of tissue properties by immersion in a matched scattering fluid,” in Optical Tomography and Spectroscopy of Tissues: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 300–306 (1997).
[CrossRef]

Farrell, T. J.

J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. Essenpreis, M. S. Patterson, “Optical properties of phantoms and tissue measured in vivo from 0.9–1.3 µm using spatially resolved diffuse reflectance,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 325–334 (1997).
[CrossRef]

Feng, S. C.

S. C. Feng, F.-A. Zeng, B. Chance, “Analytical perturbation theory of photon migration in the presence of a single absorbing or scattering defect sphere,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 54–63 (1995).
[CrossRef]

Folkman, J.

N. Weidner, J. P. Semple, W. R. Welch, J. Folkman, “Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma,” N. Eng. J. Med. 324, 1–7 (1991).
[CrossRef]

Franceschini, M. A.

Frank, G. L.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Frank, R. M.

M. V. Klibanov, T. R. Lucas, R. M. Frank, “New imaging algorithm in diffusion tomography,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 272–283 (1997).
[CrossRef]

Gopinath, S. P.

S. P. Gopinath, C. S. Robertson, R. G. Grossman, B. Chance, “Near-infrared spectroscopic localization of intra- cranial hematomas,” J. Neurosurg. 79, 43–47 (1993).
[CrossRef] [PubMed]

Grable, R. J.

R. J. Grable, D. P. Rohler, S. Kla, “Optical tomography breast imaging,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 197–210 (1997).
[CrossRef]

Gratton, E.

S. A. Walker, A. E. Cerussi, E. Gratton, “Back-projection image reconstruction using photon density waves in tissues,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 350–357 (1995).
[CrossRef]

Gregerson, E. A.

R. Y. Levine, E. A. Gregerson, M. M. Urie, “The application of the x-ray transform to 3D conformal radiotherapy,” in Computational Radiology and Imaging: Therapy and Diagnostics, C. Borgers, F. Natterer, eds. (Springer-Verlag, New York, 1999).

Grossman, R. G.

S. P. Gopinath, C. S. Robertson, R. G. Grossman, B. Chance, “Near-infrared spectroscopic localization of intra- cranial hematomas,” J. Neurosurg. 79, 43–47 (1993).
[CrossRef] [PubMed]

Gullberg, G. T.

G. T. Gullberg, T. F. Budinger, “The use of filtering methods to compensate for constant attenuation in single-photon emission computed tomography,” IEEE Trans. Biomed. Eng. BME-28, 142–157 (1981).
[CrossRef]

Haglund, M. M.

M. M. Haglund, D. W. Hochman, A. M. Spence, M. S. Berger, “Enhanced optical imaging of rat gliomas and tumor margins,” Neurosurgery 35, 930–940 (1994).
[CrossRef] [PubMed]

Hayward, J. E.

J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. Essenpreis, M. S. Patterson, “Optical properties of phantoms and tissue measured in vivo from 0.9–1.3 µm using spatially resolved diffuse reflectance,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 325–334 (1997).
[CrossRef]

Hebden, J. C.

S. R. Arridge, J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[CrossRef] [PubMed]

Heuser, L. S.

L. S. Heuser, F. N. Miller, “Differential macromolecular leakage from the vasculature of tumors,” Cancer 57, 461–464 (1986).
[CrossRef] [PubMed]

Hochman, D. W.

M. M. Haglund, D. W. Hochman, A. M. Spence, M. S. Berger, “Enhanced optical imaging of rat gliomas and tumor margins,” Neurosurgery 35, 930–940 (1994).
[CrossRef] [PubMed]

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media, Volume 1, Single Scattering and Transport Theory (Academic, New York, 1978), pp. 175–185.

Kaschke, M.

Kla, S.

R. J. Grable, D. P. Rohler, S. Kla, “Optical tomography breast imaging,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 197–210 (1997).
[CrossRef]

Klibanov, M. V.

M. V. Klibanov, T. R. Lucas, R. M. Frank, “New imaging algorithm in diffusion tomography,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 272–283 (1997).
[CrossRef]

Klug, A.

R. A. Crowther, D. J. DeRosier, A. Klug, “The reconstruction of a three-dimensional structure from projections and its application to electron microscopy,” Proc. R. Soc. London, Ser. A 317, 319–340 (1970).
[CrossRef]

Kwee, I. W.

I. W. Kwee, Y. Tanikawa, S. Proskurin, S. R. Arridge, D. T. Delphy, Y. Yamada, “Performance of a null-space image reconstruction algorithm,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 185–196 (1997).
[CrossRef]

Levine, R. Y.

M. Braunstein, R. Y. Levine, “Optimum beam configurations in tomographic intensity modulated radiation therapy,” Phys. Med. Biol. (to be published).

M. Braunstein, R. W. Chan, R. Y. Levine, “Dye-enhanced multispectral transillumination for breast cancer detection: feasibility measurements,” in Proceedings of the IEEE Engineering in Medicine and Biology 19th Annual International Conference (IEEE, New York, 1997), p. 91.

M. Braunstein, R. W. Chan, R. Y. Levine, “Simulation of dye-enhanced near-IR transillumination imaging of tumors,” in Proceedings of the IEEE Engineering in Medicine and Biology 19th Annual International Conference (IEEE, New York, 1997), p. 93.

R. Y. Levine, E. A. Gregerson, M. M. Urie, “The application of the x-ray transform to 3D conformal radiotherapy,” in Computational Radiology and Imaging: Therapy and Diagnostics, C. Borgers, F. Natterer, eds. (Springer-Verlag, New York, 1999).

Li, X.

X. Li, B. Beauvoit, R. White, S. Nioka, B. Chance, A. Yodh, “Tumor localization using fluorescence of indocyanine green (ICG) in rat models,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 789–797 (1995).
[CrossRef]

Li, X. D.

Lucas, T. R.

M. V. Klibanov, T. R. Lucas, R. M. Frank, “New imaging algorithm in diffusion tomography,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 272–283 (1997).
[CrossRef]

Medoff, B. P.

B. P. Medoff, “Image reconstruction from limited data: theory and applications in computerized tomography,” in Image Recovery: Theory and Application, H. Stark, ed. (Academic, New York, 1987).

Miller, F. N.

L. S. Heuser, F. N. Miller, “Differential macromolecular leakage from the vasculature of tumors,” Cancer 57, 461–464 (1986).
[CrossRef] [PubMed]

Moesta, K. T.

Natterer, F.

F. Natterer, The Mathematics of Computerized Tomography (Wiley, New York, 1986).

Neutsch, W.

W. Neutsch, “Optimal spherical design and numerical integration on the sphere,” J. Comput. Phys. 51, 313–325 (1983).
[CrossRef]

Nioka, S.

X. Li, B. Beauvoit, R. White, S. Nioka, B. Chance, A. Yodh, “Tumor localization using fluorescence of indocyanine green (ICG) in rat models,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 789–797 (1995).
[CrossRef]

S. Zhou, M. A. O’Leary, S. Nioka, B. Chance, “Breast tumor detection using continuous wave light source,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 809–817 (1995).
[CrossRef]

O’Leary, M. A.

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

M. A. O’Leary, D. Boas, B. Chance, A. Yodh, “Experimental images of heterogeneous turbid media,” Opt. Lett. 20, 426–428 (1985).
[CrossRef]

S. Zhou, M. A. O’Leary, S. Nioka, B. Chance, “Breast tumor detection using continuous wave light source,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 809–817 (1995).
[CrossRef]

Papaioannou, D. G.

S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, “Optical image reconstruction with deconvolution in light diffusing media,” in Photon Migration in Tissues, B. Chance, D. T. Delpy, G. J. Mueller, eds., Proc. SPIE2626, 306–315 (1995).
[CrossRef]

Pattanayak, D. N.

Patterson, M. S.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. Essenpreis, M. S. Patterson, “Optical properties of phantoms and tissue measured in vivo from 0.9–1.3 µm using spatially resolved diffuse reflectance,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 325–334 (1997).
[CrossRef]

Pei, Y.

Y. Yao, Y. Pei, Y. Wang, R. L. Barbour, “A Born type iterative method for imaging of heterogeneous scattering media and its application to simulated breast tissue,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 232–240 (1997).
[CrossRef]

Peters, V. G.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Prahl, S. A.

W.-F. Cheong, S. A. Prahl, A. J. Welch, “A review of optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Proskurin, S.

I. W. Kwee, Y. Tanikawa, S. Proskurin, S. R. Arridge, D. T. Delphy, Y. Yamada, “Performance of a null-space image reconstruction algorithm,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 185–196 (1997).
[CrossRef]

Robertson, C. S.

S. P. Gopinath, C. S. Robertson, R. G. Grossman, B. Chance, “Near-infrared spectroscopic localization of intra- cranial hematomas,” J. Neurosurg. 79, 43–47 (1993).
[CrossRef] [PubMed]

Rohler, D. P.

R. J. Grable, D. P. Rohler, S. Kla, “Optical tomography breast imaging,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 197–210 (1997).
[CrossRef]

Schlag, P. M.

Schomberg, H.

S. B. Colak, H. Schomberg, G. W. ’t Hooft, M. B. van der Mark, “Optical backprojection tomography in heterogeneous diffusive media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 282–289.

Schotland, J. C.

Semple, J. P.

N. Weidner, J. P. Semple, W. R. Welch, J. Folkman, “Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma,” N. Eng. J. Med. 324, 1–7 (1991).
[CrossRef]

Siddon, R. L.

R. L. Siddon, “Fast calculation of the exact radiological path for a three-dimensional CT array,” Med. Phys. 12, 252–255 (1985).
[CrossRef] [PubMed]

Spence, A. M.

M. M. Haglund, D. W. Hochman, A. M. Spence, M. S. Berger, “Enhanced optical imaging of rat gliomas and tumor margins,” Neurosurgery 35, 930–940 (1994).
[CrossRef] [PubMed]

Stinger, L.

X. Wu, L. Stinger, G. W. Faris, “Determination of tissue properties by immersion in a matched scattering fluid,” in Optical Tomography and Spectroscopy of Tissues: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 300–306 (1997).
[CrossRef]

Tanikawa, Y.

I. W. Kwee, Y. Tanikawa, S. Proskurin, S. R. Arridge, D. T. Delphy, Y. Yamada, “Performance of a null-space image reconstruction algorithm,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 185–196 (1997).
[CrossRef]

Urie, M. M.

R. Y. Levine, E. A. Gregerson, M. M. Urie, “The application of the x-ray transform to 3D conformal radiotherapy,” in Computational Radiology and Imaging: Therapy and Diagnostics, C. Borgers, F. Natterer, eds. (Springer-Verlag, New York, 1999).

van der Mark, M. B.

S. B. Colak, H. Schomberg, G. W. ’t Hooft, M. B. van der Mark, “Optical backprojection tomography in heterogeneous diffusive media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 282–289.

S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, “Optical image reconstruction with deconvolution in light diffusing media,” in Photon Migration in Tissues, B. Chance, D. T. Delpy, G. J. Mueller, eds., Proc. SPIE2626, 306–315 (1995).
[CrossRef]

Walker, S. A.

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
[CrossRef]

S. A. Walker, A. E. Cerussi, E. Gratton, “Back-projection image reconstruction using photon density waves in tissues,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 350–357 (1995).
[CrossRef]

Wang, Y.

Y. Yao, Y. Pei, Y. Wang, R. L. Barbour, “A Born type iterative method for imaging of heterogeneous scattering media and its application to simulated breast tissue,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 232–240 (1997).
[CrossRef]

Webb, S.

S. Webb, The Physics of Three-Dimensional Radiation Therapy, Conformal Radiotherapy, Radiosurgery, and Treatment Planning (Institute of Physics, Bristol, UK, 1993).

Weidner, N.

N. Weidner, J. P. Semple, W. R. Welch, J. Folkman, “Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma,” N. Eng. J. Med. 324, 1–7 (1991).
[CrossRef]

Welch, A. J.

W.-F. Cheong, S. A. Prahl, A. J. Welch, “A review of optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Welch, W. R.

N. Weidner, J. P. Semple, W. R. Welch, J. Folkman, “Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma,” N. Eng. J. Med. 324, 1–7 (1991).
[CrossRef]

White, R.

X. Li, B. Beauvoit, R. White, S. Nioka, B. Chance, A. Yodh, “Tumor localization using fluorescence of indocyanine green (ICG) in rat models,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 789–797 (1995).
[CrossRef]

Wu, X.

X. Wu, L. Stinger, G. W. Faris, “Determination of tissue properties by immersion in a matched scattering fluid,” in Optical Tomography and Spectroscopy of Tissues: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 300–306 (1997).
[CrossRef]

Wyman, D. R.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Yamada, Y.

I. W. Kwee, Y. Tanikawa, S. Proskurin, S. R. Arridge, D. T. Delphy, Y. Yamada, “Performance of a null-space image reconstruction algorithm,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 185–196 (1997).
[CrossRef]

Yao, Y.

Y. Yao, Y. Pei, Y. Wang, R. L. Barbour, “A Born type iterative method for imaging of heterogeneous scattering media and its application to simulated breast tissue,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 232–240 (1997).
[CrossRef]

Yodh, A.

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48 (March), 34–40 (1995) and references therein.
[CrossRef]

M. A. O’Leary, D. Boas, B. Chance, A. Yodh, “Experimental images of heterogeneous turbid media,” Opt. Lett. 20, 426–428 (1985).
[CrossRef]

X. Li, B. Beauvoit, R. White, S. Nioka, B. Chance, A. Yodh, “Tumor localization using fluorescence of indocyanine green (ICG) in rat models,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 789–797 (1995).
[CrossRef]

Yodh, A. G.

X. D. Li, T. Durduran, A. G. Yodh, B. Chance, D. N. Pattanayak, “Diffraction tomography for biochemical imaging with diffuse-photon density waves,” Opt. Lett. 22, 573–575 (1997).
[CrossRef] [PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

Zeng, F.-A.

S. C. Feng, F.-A. Zeng, B. Chance, “Analytical perturbation theory of photon migration in the presence of a single absorbing or scattering defect sphere,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 54–63 (1995).
[CrossRef]

Zhou, S.

S. Zhou, M. A. O’Leary, S. Nioka, B. Chance, “Breast tumor detection using continuous wave light source,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 809–817 (1995).
[CrossRef]

Appl. Opt.

Cancer

L. S. Heuser, F. N. Miller, “Differential macromolecular leakage from the vasculature of tumors,” Cancer 57, 461–464 (1986).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

W.-F. Cheong, S. A. Prahl, A. J. Welch, “A review of optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

IEEE Trans. Biomed. Eng.

G. T. Gullberg, T. F. Budinger, “The use of filtering methods to compensate for constant attenuation in single-photon emission computed tomography,” IEEE Trans. Biomed. Eng. BME-28, 142–157 (1981).
[CrossRef]

Inverse Probl.

A. J. Devaney, “Reconstructive tomography with diffracting wavefields,” Inverse Probl. 2, 161–183 (1986).
[CrossRef]

J. Comput. Phys.

W. Neutsch, “Optimal spherical design and numerical integration on the sphere,” J. Comput. Phys. 51, 313–325 (1983).
[CrossRef]

J. Neurosurg.

S. P. Gopinath, C. S. Robertson, R. G. Grossman, B. Chance, “Near-infrared spectroscopic localization of intra- cranial hematomas,” J. Neurosurg. 79, 43–47 (1993).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Med. Phys.

R. L. Siddon, “Fast calculation of the exact radiological path for a three-dimensional CT array,” Med. Phys. 12, 252–255 (1985).
[CrossRef] [PubMed]

N. Eng. J. Med.

N. Weidner, J. P. Semple, W. R. Welch, J. Folkman, “Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma,” N. Eng. J. Med. 324, 1–7 (1991).
[CrossRef]

Neurosurgery

M. M. Haglund, D. W. Hochman, A. M. Spence, M. S. Berger, “Enhanced optical imaging of rat gliomas and tumor margins,” Neurosurgery 35, 930–940 (1994).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Med. Biol.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

S. R. Arridge, J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[CrossRef] [PubMed]

Phys. Today

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48 (March), 34–40 (1995) and references therein.
[CrossRef]

Proc. Natl. Acad. Sci. USA

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

Proc. R. Soc. London, Ser. A

R. A. Crowther, D. J. DeRosier, A. Klug, “The reconstruction of a three-dimensional structure from projections and its application to electron microscopy,” Proc. R. Soc. London, Ser. A 317, 319–340 (1970).
[CrossRef]

Other

S. R. Deans, The Radon Transform and Some of Its Applications (Wiley, New York, 1983).

S. Webb, The Physics of Three-Dimensional Radiation Therapy, Conformal Radiotherapy, Radiosurgery, and Treatment Planning (Institute of Physics, Bristol, UK, 1993).

X. Li, B. Beauvoit, R. White, S. Nioka, B. Chance, A. Yodh, “Tumor localization using fluorescence of indocyanine green (ICG) in rat models,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 789–797 (1995).
[CrossRef]

M. Braunstein, R. W. Chan, R. Y. Levine, “Simulation of dye-enhanced near-IR transillumination imaging of tumors,” in Proceedings of the IEEE Engineering in Medicine and Biology 19th Annual International Conference (IEEE, New York, 1997), p. 93.

M. Braunstein, R. W. Chan, R. Y. Levine, “Dye-enhanced multispectral transillumination for breast cancer detection: feasibility measurements,” in Proceedings of the IEEE Engineering in Medicine and Biology 19th Annual International Conference (IEEE, New York, 1997), p. 91.

S. Zhou, M. A. O’Leary, S. Nioka, B. Chance, “Breast tumor detection using continuous wave light source,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 809–817 (1995).
[CrossRef]

T. Carski, Indocyanine Green: History, Chemistry, Pharmacology, Indications, Adverse Reactions, Investigation and Prognosis: An Investigative Brochure (Becton Dickinson, Cockeysville, Md., 1995).

X. Wu, L. Stinger, G. W. Faris, “Determination of tissue properties by immersion in a matched scattering fluid,” in Optical Tomography and Spectroscopy of Tissues: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 300–306 (1997).
[CrossRef]

A. Ishimaru, Wave Propagation and Scattering in Random Media, Volume 1, Single Scattering and Transport Theory (Academic, New York, 1978), pp. 175–185.

R. Y. Levine, E. A. Gregerson, M. M. Urie, “The application of the x-ray transform to 3D conformal radiotherapy,” in Computational Radiology and Imaging: Therapy and Diagnostics, C. Borgers, F. Natterer, eds. (Springer-Verlag, New York, 1999).

B. P. Medoff, “Image reconstruction from limited data: theory and applications in computerized tomography,” in Image Recovery: Theory and Application, H. Stark, ed. (Academic, New York, 1987).

M. Braunstein, R. Y. Levine, “Optimum beam configurations in tomographic intensity modulated radiation therapy,” Phys. Med. Biol. (to be published).

I. W. Kwee, Y. Tanikawa, S. Proskurin, S. R. Arridge, D. T. Delphy, Y. Yamada, “Performance of a null-space image reconstruction algorithm,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 185–196 (1997).
[CrossRef]

F. Natterer, The Mathematics of Computerized Tomography (Wiley, New York, 1986).

S. C. Feng, F.-A. Zeng, B. Chance, “Analytical perturbation theory of photon migration in the presence of a single absorbing or scattering defect sphere,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 54–63 (1995).
[CrossRef]

R. J. Grable, D. P. Rohler, S. Kla, “Optical tomography breast imaging,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 197–210 (1997).
[CrossRef]

S. A. Walker, A. E. Cerussi, E. Gratton, “Back-projection image reconstruction using photon density waves in tissues,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 350–357 (1995).
[CrossRef]

S. B. Colak, H. Schomberg, G. W. ’t Hooft, M. B. van der Mark, “Optical backprojection tomography in heterogeneous diffusive media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 282–289.

S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, “Optical image reconstruction with deconvolution in light diffusing media,” in Photon Migration in Tissues, B. Chance, D. T. Delpy, G. J. Mueller, eds., Proc. SPIE2626, 306–315 (1995).
[CrossRef]

Y. Yao, Y. Pei, Y. Wang, R. L. Barbour, “A Born type iterative method for imaging of heterogeneous scattering media and its application to simulated breast tissue,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 232–240 (1997).
[CrossRef]

M. V. Klibanov, T. R. Lucas, R. M. Frank, “New imaging algorithm in diffusion tomography,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 272–283 (1997).
[CrossRef]

See, for example, B. Chance, R. Alfano, eds., Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, Proc. SPIE2979, 1–864 (1997).

J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. Essenpreis, M. S. Patterson, “Optical properties of phantoms and tissue measured in vivo from 0.9–1.3 µm using spatially resolved diffuse reflectance,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 325–334 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Side view of tomographic DPDW measurement of contrast agent attenuation.

Fig. 2
Fig. 2

Geometry of multispectral 3D tomographic imaging of a contrast agent.

Fig. 3
Fig. 3

Distribution of tissue perturbation. A slice through the z=0 plane is shown. Axes are in units of millimeters, and the intensity has been normalized to 1.0 at the maximum.

Fig. 4
Fig. 4

Imaging directions for 3D transillumination reconstruction. Units are relative.

Fig. 5
Fig. 5

Relative intensity on the detector plane for one of the projection angles. The (x, y) points are in units of millimeters, and the z direction shows the relative intensity.

Fig. 6
Fig. 6

Reconstruction of tissue perturbations with the use of all 12 views. A slice through the z=0 plane is shown. Axes are in units of millimeters, and the intensity has been normalized to 1.0 at the maximum. No deconvolution was performed.

Fig. 7
Fig. 7

Same as Fig. 6, except that deconvolution of the projected images was performed before backprojection.

Fig. 8
Fig. 8

Same as Fig. 7, but noise has been added to the tissue volume to create the simulated images used for the reconstruction.

Fig. 9
Fig. 9

Same as Fig. 8, but with uncertainty in the depth estimation.

Fig. 10
Fig. 10

Geometry for determination of the number of views necessary for reconstruction to achieve a given resolution. It is assumed that the images have already been deconvolved, as discussed in the text.

Equations (47)

Equations on this page are rendered with MathJax. Learn more.

U1t=U(λtrans)-U(λabs),
U1t(rd, rs)=vD0δμa(r)U0(r, rs)G(rd-r)dr,
G(r)=18π2dpdqμ(p, q)exp[ipx+iqy-μ(p, q)z],
μ(p, q)=(κ02+p2+q2)1/2,
V0(z)=A1 exp(-κ0z)+A2 exp(-μtz),
U1t(rd)=vD0δμa(r)G(rd-r)V0(z)dr.
U1t(rd)=v8π2D0dpdqμ(p, q)exp(ipxd+iqyd)×dz V0(z)exp[-μ(p, q)(zd-z)]×dxdy δμa(x, y, z)exp(-ipx-iqy).
U˜1t(p, q, zd)=v8π2D01μ(p, q)dz V0(z)×exp[-μ(p, q)(zd-z)]δμ˜a(p, q, z),
|exp[-μ(p, q)(zd-z0-l)]-exp[-μ(p, q)(zd-z0+l)]|exp[-μ(p, q)(zd-z0)]=|exp[μ(p, q)l]-exp[-μ(p, q)l]|1.
l1(κ02+p2+q2)1/2<1κ0.
p2+q21l2-κ02,
U˜1t(p, q, zd)=vV0(zt)8π2D0exp[-μ(p, q)(zd-zt)]μ(p, q)×δμa(p, q, 0),
D˜θˆ=v8π2D0V0(zt)exp[-μ(p, q)Δz]μ(p, q),
U1t(rd)=V10exp{-κ0Δz[1+(p2+q2)/κ02]1/2}[1+(p2+q2)/κ02]1/2×exp[i(xdp+ydq)]dpdq,
U1t(xd, yd)=2πV10κ0 exp(-κ0Δz2+r2)Δz2+r2,
A(R)=0R2πrU1t(r)dr,
A(R)=(2π)2V10[exp(-κ0Δz)-exp(-κ0Δz2+R2)].
ψ(R)=lnA()-A(R)A()=κ0(Δz-Δz2+R2).
Δzˆ(R)=(ψ/κ0)2-R22(ψ/κ0),
V(θˆ, rd)=-δμa[(R0-t)θˆ+rd]dt,
δμa(r)=P#[JV],
P#[f(θˆ, rd)](r)=f[θˆ, (r·θˆ1)θˆ1+(r·θˆ2)θˆ2]dθˆ,
Jf˜(θˆ, k)=|k|f˜(θˆ, k),
δμˆa=P#[JDθˆ-1U1t],
MΔω2πWm(2πrmWm+5/2)2,
Θ(θˆ)=drd Pθˆ Pθˆ#[JDθˆ-1U1t](θˆ, rd)×[JDθˆ-1U1t](θˆ, rd),
δμa(r, θ, ϕ)=l=0m=-1lglm(r)Ylm(θ, ϕ),
δμ˜a(W, Θ, Φ)=l=0m=-llGlm(W)Ylm(Θ, Φ),
S2exp(iσθˆ·ωˆ)Ylm(ωˆ)dωˆ=(2π)3/2ilJl+1/2(σ)σYlm(θˆ),
δμ˜a(WΘˆ)= exp(i2πWθˆ·Θˆ)δμa(rθˆ)r2drdθˆ.
Glm(W)=(2π)ilW r3/2Jl+1/2(2πrW)glm(r)dr.
δμa(η)=V˜(θˆ, η),ηθ.
δμa(WΘˆjk)=V˜(Θˆj, WΘˆjk).
δμa(WΘˆjk)=lmGlm(W)Ylm(Θˆjk).
(Y·(WG))(jk)=WlmY(jk)(lm)Glm=V˜(Θˆj, WΘˆjk).
j=1MNj(L+1)2.
MΔω2πW(L+1)2.
MΔω2πW(2πrmaxW+5/2)2.
M(rmaxΔω)2πrmaxWmax,
M2πrmaxWmax+5/2,
(Y*TY)(lm)(lm)=j=1Mk=1NjY(lm)*(Θˆjk)Y(lm)(Θˆjk)
[f, g]=R2 f(x)g(x)dx,
f¯, g¯=R2 f¯(θˆ, y)g¯(θˆ, y)dy,
[f, P#g¯]=Pf, g¯,
f¯s(θˆ, y)=j=1Mδ(θˆ-θˆj)f¯(θˆj, y).
[δμa, δμas]=PP#[JV], (JV)s.
Θ(θˆ)=(PθˆPθˆ#[JV](θˆ, y))(JV(θˆ, y))dy,

Metrics