Abstract

Near-field designs of Fresnel and Gabor zone plates are computationally analyzed by using versions that allow the foci to be brought closer to the plate than in the usual far-field applications. It is found that the Fresnel plate has a dominant primary conjugate pair of foci well inside the far-field region and a more intense primary focus and smaller off-focal-plane sidelobes than the near-field Gabor systems, thus yielding a superior imaging performance.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. H. Barrett, W. Swindell, Radiological Imaging (Academic, London, 1981).
  2. T. D. Beynon, I. Kirk, T. R. Mathews, “Gabor zone plate with binary transmittance values,” Opt. Lett. 17, 544–546 (1992).
    [CrossRef] [PubMed]
  3. P. W. McOwan, M. S. Gordon, W. J. Hossack, “A switchable liquid crystal binary Gabor lens,” Opt. Commun. 103, 189–193 (1993).
    [CrossRef]
  4. M. A. Gouker, S. S. Smith, “A millimeter-wave integrated-circuit antenna based on the Fresnel zone plate,” IEEE Trans. Microwave Theory Tech. 40, 968–977 (1992).
    [CrossRef]
  5. Y. Nomura, S. Katsura, “Diffraction of electromagnetic waves by circular plate and circular hole,” J. Phys. Soc. Jpn. 10, 285–304 (1955).
    [CrossRef]
  6. S. Inawashiro, “Diffraction of electromagnetic waves from an electric dipole by a conducting circular disc,” J. Phys. Soc. Jpn. 18, 273–287 (1963).
    [CrossRef]
  7. Y. Nomura, S. Katsura, “Diffraction of electromagnetic waves by ribbon and slit,” J. Phys. Soc. Jpn. 12, 190–200 (1957).
    [CrossRef]
  8. S. Cornbleet, Microwave Optics (Academic, London, 1976).
  9. Y. Ji, M. Fujita, “Design and analysis of a folded Fresnel zone plate antenna,” Int. J. Infrared Millim. Waves 15, 1385–1406 (1994).
    [CrossRef]
  10. G. W. Farnell, “Calculated intensity and phase distribution in the image space of a microwave lens,” Can. J. Phys. 35, 777–783 (1957).
    [CrossRef]
  11. F. Sobel, F. L. Wentworth, J. C. Wiltse, “Quasi-optical surface waveguide and other components for the 100–300 GHz region,” IRE Trans. Microwave Theory Tech. MTT9, 512–518 (1961).
  12. W. G. Sterns, “Near-zone field studies of quasi-optical antennas,” M.S. thesis (University of California, Berkeley, Berkeley, Calif., 1949).
  13. R. Plonsey, Monograph 281R (Institution of Electrical Engineers, London, 1958).
  14. S. Silver, “Microwave aperture antennas and diffraction theory,” J. Opt. Soc. Am. 52, 131–139 (1962).
    [CrossRef] [PubMed]
  15. J. Sluiter, M. H. A. J. Herben, O. J. G. Vullers, “Experimental validation of PO/UTD applied to Fresnel-zone plate antennas,” Microwave Opt. Technol. Lett. 9, 111–113 (1995).
    [CrossRef]
  16. A. Sommerfeld, Optics (Academic, London, 1954).
  17. J. B. Keller, “Geometrical theory of diffraction,” J. Opt. Soc. Am. 52, 116–130 (1962).
    [CrossRef] [PubMed]
  18. NAG FORTRAN Library, The Numerical Algorithms Group Limited, 1990.
  19. L. C. J. Baggen, J. J. Jeronimus, M. H. A. J. Herben, “The scan performance of the Fresnel-zone plate antenna: a comparison with the parabolic reflector antenna,” Microwave Opt. Technol. Lett. 6, 769–774 (1993).
    [CrossRef]
  20. M. H. A. J. Herben, R. Middelkoop, F. J. J. Gielkens, “Stationary phase method for far-field computation of defocused reflector antennas,” Electron. Lett. 16, 519–521 (1980).
    [CrossRef]

1995 (1)

J. Sluiter, M. H. A. J. Herben, O. J. G. Vullers, “Experimental validation of PO/UTD applied to Fresnel-zone plate antennas,” Microwave Opt. Technol. Lett. 9, 111–113 (1995).
[CrossRef]

1994 (1)

Y. Ji, M. Fujita, “Design and analysis of a folded Fresnel zone plate antenna,” Int. J. Infrared Millim. Waves 15, 1385–1406 (1994).
[CrossRef]

1993 (2)

L. C. J. Baggen, J. J. Jeronimus, M. H. A. J. Herben, “The scan performance of the Fresnel-zone plate antenna: a comparison with the parabolic reflector antenna,” Microwave Opt. Technol. Lett. 6, 769–774 (1993).
[CrossRef]

P. W. McOwan, M. S. Gordon, W. J. Hossack, “A switchable liquid crystal binary Gabor lens,” Opt. Commun. 103, 189–193 (1993).
[CrossRef]

1992 (2)

M. A. Gouker, S. S. Smith, “A millimeter-wave integrated-circuit antenna based on the Fresnel zone plate,” IEEE Trans. Microwave Theory Tech. 40, 968–977 (1992).
[CrossRef]

T. D. Beynon, I. Kirk, T. R. Mathews, “Gabor zone plate with binary transmittance values,” Opt. Lett. 17, 544–546 (1992).
[CrossRef] [PubMed]

1980 (1)

M. H. A. J. Herben, R. Middelkoop, F. J. J. Gielkens, “Stationary phase method for far-field computation of defocused reflector antennas,” Electron. Lett. 16, 519–521 (1980).
[CrossRef]

1963 (1)

S. Inawashiro, “Diffraction of electromagnetic waves from an electric dipole by a conducting circular disc,” J. Phys. Soc. Jpn. 18, 273–287 (1963).
[CrossRef]

1962 (2)

1961 (1)

F. Sobel, F. L. Wentworth, J. C. Wiltse, “Quasi-optical surface waveguide and other components for the 100–300 GHz region,” IRE Trans. Microwave Theory Tech. MTT9, 512–518 (1961).

1957 (2)

Y. Nomura, S. Katsura, “Diffraction of electromagnetic waves by ribbon and slit,” J. Phys. Soc. Jpn. 12, 190–200 (1957).
[CrossRef]

G. W. Farnell, “Calculated intensity and phase distribution in the image space of a microwave lens,” Can. J. Phys. 35, 777–783 (1957).
[CrossRef]

1955 (1)

Y. Nomura, S. Katsura, “Diffraction of electromagnetic waves by circular plate and circular hole,” J. Phys. Soc. Jpn. 10, 285–304 (1955).
[CrossRef]

Baggen, L. C. J.

L. C. J. Baggen, J. J. Jeronimus, M. H. A. J. Herben, “The scan performance of the Fresnel-zone plate antenna: a comparison with the parabolic reflector antenna,” Microwave Opt. Technol. Lett. 6, 769–774 (1993).
[CrossRef]

Barrett, H. H.

H. H. Barrett, W. Swindell, Radiological Imaging (Academic, London, 1981).

Beynon, T. D.

Cornbleet, S.

S. Cornbleet, Microwave Optics (Academic, London, 1976).

Farnell, G. W.

G. W. Farnell, “Calculated intensity and phase distribution in the image space of a microwave lens,” Can. J. Phys. 35, 777–783 (1957).
[CrossRef]

Fujita, M.

Y. Ji, M. Fujita, “Design and analysis of a folded Fresnel zone plate antenna,” Int. J. Infrared Millim. Waves 15, 1385–1406 (1994).
[CrossRef]

Gielkens, F. J. J.

M. H. A. J. Herben, R. Middelkoop, F. J. J. Gielkens, “Stationary phase method for far-field computation of defocused reflector antennas,” Electron. Lett. 16, 519–521 (1980).
[CrossRef]

Gordon, M. S.

P. W. McOwan, M. S. Gordon, W. J. Hossack, “A switchable liquid crystal binary Gabor lens,” Opt. Commun. 103, 189–193 (1993).
[CrossRef]

Gouker, M. A.

M. A. Gouker, S. S. Smith, “A millimeter-wave integrated-circuit antenna based on the Fresnel zone plate,” IEEE Trans. Microwave Theory Tech. 40, 968–977 (1992).
[CrossRef]

Herben, M. H. A. J.

J. Sluiter, M. H. A. J. Herben, O. J. G. Vullers, “Experimental validation of PO/UTD applied to Fresnel-zone plate antennas,” Microwave Opt. Technol. Lett. 9, 111–113 (1995).
[CrossRef]

L. C. J. Baggen, J. J. Jeronimus, M. H. A. J. Herben, “The scan performance of the Fresnel-zone plate antenna: a comparison with the parabolic reflector antenna,” Microwave Opt. Technol. Lett. 6, 769–774 (1993).
[CrossRef]

M. H. A. J. Herben, R. Middelkoop, F. J. J. Gielkens, “Stationary phase method for far-field computation of defocused reflector antennas,” Electron. Lett. 16, 519–521 (1980).
[CrossRef]

Hossack, W. J.

P. W. McOwan, M. S. Gordon, W. J. Hossack, “A switchable liquid crystal binary Gabor lens,” Opt. Commun. 103, 189–193 (1993).
[CrossRef]

Inawashiro, S.

S. Inawashiro, “Diffraction of electromagnetic waves from an electric dipole by a conducting circular disc,” J. Phys. Soc. Jpn. 18, 273–287 (1963).
[CrossRef]

Jeronimus, J. J.

L. C. J. Baggen, J. J. Jeronimus, M. H. A. J. Herben, “The scan performance of the Fresnel-zone plate antenna: a comparison with the parabolic reflector antenna,” Microwave Opt. Technol. Lett. 6, 769–774 (1993).
[CrossRef]

Ji, Y.

Y. Ji, M. Fujita, “Design and analysis of a folded Fresnel zone plate antenna,” Int. J. Infrared Millim. Waves 15, 1385–1406 (1994).
[CrossRef]

Katsura, S.

Y. Nomura, S. Katsura, “Diffraction of electromagnetic waves by ribbon and slit,” J. Phys. Soc. Jpn. 12, 190–200 (1957).
[CrossRef]

Y. Nomura, S. Katsura, “Diffraction of electromagnetic waves by circular plate and circular hole,” J. Phys. Soc. Jpn. 10, 285–304 (1955).
[CrossRef]

Keller, J. B.

Kirk, I.

Mathews, T. R.

McOwan, P. W.

P. W. McOwan, M. S. Gordon, W. J. Hossack, “A switchable liquid crystal binary Gabor lens,” Opt. Commun. 103, 189–193 (1993).
[CrossRef]

Middelkoop, R.

M. H. A. J. Herben, R. Middelkoop, F. J. J. Gielkens, “Stationary phase method for far-field computation of defocused reflector antennas,” Electron. Lett. 16, 519–521 (1980).
[CrossRef]

Nomura, Y.

Y. Nomura, S. Katsura, “Diffraction of electromagnetic waves by ribbon and slit,” J. Phys. Soc. Jpn. 12, 190–200 (1957).
[CrossRef]

Y. Nomura, S. Katsura, “Diffraction of electromagnetic waves by circular plate and circular hole,” J. Phys. Soc. Jpn. 10, 285–304 (1955).
[CrossRef]

Plonsey, R.

R. Plonsey, Monograph 281R (Institution of Electrical Engineers, London, 1958).

Silver, S.

Sluiter, J.

J. Sluiter, M. H. A. J. Herben, O. J. G. Vullers, “Experimental validation of PO/UTD applied to Fresnel-zone plate antennas,” Microwave Opt. Technol. Lett. 9, 111–113 (1995).
[CrossRef]

Smith, S. S.

M. A. Gouker, S. S. Smith, “A millimeter-wave integrated-circuit antenna based on the Fresnel zone plate,” IEEE Trans. Microwave Theory Tech. 40, 968–977 (1992).
[CrossRef]

Sobel, F.

F. Sobel, F. L. Wentworth, J. C. Wiltse, “Quasi-optical surface waveguide and other components for the 100–300 GHz region,” IRE Trans. Microwave Theory Tech. MTT9, 512–518 (1961).

Sommerfeld, A.

A. Sommerfeld, Optics (Academic, London, 1954).

Sterns, W. G.

W. G. Sterns, “Near-zone field studies of quasi-optical antennas,” M.S. thesis (University of California, Berkeley, Berkeley, Calif., 1949).

Swindell, W.

H. H. Barrett, W. Swindell, Radiological Imaging (Academic, London, 1981).

Vullers, O. J. G.

J. Sluiter, M. H. A. J. Herben, O. J. G. Vullers, “Experimental validation of PO/UTD applied to Fresnel-zone plate antennas,” Microwave Opt. Technol. Lett. 9, 111–113 (1995).
[CrossRef]

Wentworth, F. L.

F. Sobel, F. L. Wentworth, J. C. Wiltse, “Quasi-optical surface waveguide and other components for the 100–300 GHz region,” IRE Trans. Microwave Theory Tech. MTT9, 512–518 (1961).

Wiltse, J. C.

F. Sobel, F. L. Wentworth, J. C. Wiltse, “Quasi-optical surface waveguide and other components for the 100–300 GHz region,” IRE Trans. Microwave Theory Tech. MTT9, 512–518 (1961).

Can. J. Phys. (1)

G. W. Farnell, “Calculated intensity and phase distribution in the image space of a microwave lens,” Can. J. Phys. 35, 777–783 (1957).
[CrossRef]

Electron. Lett. (1)

M. H. A. J. Herben, R. Middelkoop, F. J. J. Gielkens, “Stationary phase method for far-field computation of defocused reflector antennas,” Electron. Lett. 16, 519–521 (1980).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

M. A. Gouker, S. S. Smith, “A millimeter-wave integrated-circuit antenna based on the Fresnel zone plate,” IEEE Trans. Microwave Theory Tech. 40, 968–977 (1992).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

Y. Ji, M. Fujita, “Design and analysis of a folded Fresnel zone plate antenna,” Int. J. Infrared Millim. Waves 15, 1385–1406 (1994).
[CrossRef]

IRE Trans. Microwave Theory Tech. (1)

F. Sobel, F. L. Wentworth, J. C. Wiltse, “Quasi-optical surface waveguide and other components for the 100–300 GHz region,” IRE Trans. Microwave Theory Tech. MTT9, 512–518 (1961).

J. Opt. Soc. Am. (2)

J. Phys. Soc. Jpn. (3)

Y. Nomura, S. Katsura, “Diffraction of electromagnetic waves by circular plate and circular hole,” J. Phys. Soc. Jpn. 10, 285–304 (1955).
[CrossRef]

S. Inawashiro, “Diffraction of electromagnetic waves from an electric dipole by a conducting circular disc,” J. Phys. Soc. Jpn. 18, 273–287 (1963).
[CrossRef]

Y. Nomura, S. Katsura, “Diffraction of electromagnetic waves by ribbon and slit,” J. Phys. Soc. Jpn. 12, 190–200 (1957).
[CrossRef]

Microwave Opt. Technol. Lett. (2)

J. Sluiter, M. H. A. J. Herben, O. J. G. Vullers, “Experimental validation of PO/UTD applied to Fresnel-zone plate antennas,” Microwave Opt. Technol. Lett. 9, 111–113 (1995).
[CrossRef]

L. C. J. Baggen, J. J. Jeronimus, M. H. A. J. Herben, “The scan performance of the Fresnel-zone plate antenna: a comparison with the parabolic reflector antenna,” Microwave Opt. Technol. Lett. 6, 769–774 (1993).
[CrossRef]

Opt. Commun. (1)

P. W. McOwan, M. S. Gordon, W. J. Hossack, “A switchable liquid crystal binary Gabor lens,” Opt. Commun. 103, 189–193 (1993).
[CrossRef]

Opt. Lett. (1)

Other (6)

A. Sommerfeld, Optics (Academic, London, 1954).

NAG FORTRAN Library, The Numerical Algorithms Group Limited, 1990.

S. Cornbleet, Microwave Optics (Academic, London, 1976).

W. G. Sterns, “Near-zone field studies of quasi-optical antennas,” M.S. thesis (University of California, Berkeley, Berkeley, Calif., 1949).

R. Plonsey, Monograph 281R (Institution of Electrical Engineers, London, 1958).

H. H. Barrett, W. Swindell, Radiological Imaging (Academic, London, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Zone plate geometry.

Fig. 2
Fig. 2

Binary Gabor zone plate.

Fig. 3
Fig. 3

Sommerfeld and Kirchhoff solutions at a range of 0.1 m.

Fig. 4
Fig. 4

Sommerfeld and Kirchhoff solutions at a range of 10 m.

Fig. 5
Fig. 5

Along-axis diffraction pattern for a stretched Gabor plate of f=0.5 m(λ=10-2 m).

Fig. 6
Fig. 6

Along-axis diffraction pattern for a stretched Fresnel plate of f=0.5 m(λ=10-2 m).

Fig. 7
Fig. 7

Along-axis diffraction pattern for a stretched Fresnel plate of f=100 m(λ=10-2 m).

Fig. 8
Fig. 8

Focal transverse plane diffraction pattern in the focal plane for a stretched Gabor plate of f=0.5 m(λ=10-2 m).

Fig. 9
Fig. 9

Focal transverse plane diffraction pattern in the focal plane for a stretched Fresnel plate of f=0.5 m (λ=10-2 m).

Tables (4)

Tables Icon

Table 1 Along-Axis Intensities for the Stretched Gabor Plate for a Selection of Focal Lengths

Tables Icon

Table 2 Along-Axis Intensities for the Stretched Fresnel Zone Plate for a Selection of Focal Lengths

Tables Icon

Table 3 Focal Transverse Plane Intensities for the Stretched Gabor Plate for a Selection of Focal Lengths

Tables Icon

Table 4 Focal Transverse Plane Intensities for the Stretched Fresnel Plate for a Selection of Focal Lengths

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

r1=f λ+λ221/2
rn=nf λ+nλ221/2.
t(r)=12+2πsinπr2r12+23πsin3πr2r12+
=12+1iπp=-1pexp-iπpr2r12,p=1, 3, 5,.
tL(r)=expikr22 fL
t(r)=121±cosπr2r12,
t(r)=121±cos2πλf2-r2-f.
E1=A0 exp(ikz),
E2=A1 exp(ikr2+z2)r2+z2,
I=|E1+E2|2,
t(r)=121±cos2πλf2-r2-ffr2+f2,
U(P)=-iB2λAts[1-cos(nˆ, s)]exp(iks)dS,
Ez=exp(iπ/4)πexp[-ikr cos(θ-α0)]×F-2kr cos12(θ-α0)-exp[-ikr cos(θ+α0)]×F-2kr cos12(θ+α0),
F(a)=aexp(iμ2)dμ.

Metrics