Abstract

Image enhancement through a turbid medium by use of polarization gating methods in a microscopic imaging system is studied both theoretically and experimentally. A Monte Carlo simulation model based on Mie theory and geometric optics is adopted to calculate, for use with polarization gating and pinhole gating methods, image resolution of a sharp edge embedded in a turbid medium consisting of polystyrene beads. Both theoretical and experimental results show that polarization gating methods, particularly the differential polarization gating method, can be efficient in suppressing scattered photons, thus leading to image enhancement. In addition, a theoretical comparison of polarization gating and pinhole gating methods, based on the trade-off between resolution and signal strength, reveals that polarization gating methods are superior to the pinhole gating method when signal strength is weak.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kempe, W. Rudolph, E. Welsch, “Comparative study of confocal and heterodyne microscopy for imaging through scattering media,” J. Opt. Soc. Am. A 13, 46–52 (1996).
    [CrossRef]
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flott, K. Gregory, C. A. Pulianfito, J. G. Fujimoto, “Optical coherent tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  3. M. Toida, M. Kondo, T. Ichimura, H. Inaba, “Two-dimensional coherent detection imaging in multiplescattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
    [CrossRef]
  4. Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, R. R. Alfano, “Fourier spatial filter acts as a temporal gating for light propagating through a turbid medium,” Opt. Lett. 20, 1498–1501 (1995).
    [CrossRef] [PubMed]
  5. J. M. Schmitt, A. Knüttel, M. Yadlowsky, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. A 11, 2226–2234 (1994).
    [CrossRef]
  6. M. Gu, T. Tannous, C. J. R. Sheppard, “Effect of an annular pupil on confocal imaging through highly scattering media,” Opt. Lett. 21, 312–314 (1996).
    [CrossRef] [PubMed]
  7. X. Gan, S. Schilders, M. Gu, “Combination of annular aperture and polarization gating methods for efficient microscopic imaging through a turbid medium: theoretical analysis,” Microsc. Microanal. 3, 495–503 (1997).
  8. S. Schilders, X. Gan, M. Gu, “Microscopic imaging through turbid media by use of an annular objective for angle gating,” Appl. Opt. 37, 5320–5326 (1998).
    [CrossRef]
  9. J. M. Schmitt, A. H. Gandjbakhche, R. F. Bonner, “Use of polarization light to discriminate short path photons in a multiply scattering medium,” Appl. Opt. 31, 6535–6546 (1992).
    [CrossRef] [PubMed]
  10. A. H. Hielscher, J. R. Mourant, I. J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt. 36, 125–135 (1997).
    [CrossRef] [PubMed]
  11. S. G. Demos, R. R. Alfano, “Optical polarization imaging,” Appl. Opt. 36, 150–155 (1997).
    [CrossRef] [PubMed]
  12. S. P. Morgan, M. P. Khong, M. G. Somekh, “Effects of polarization state and scatter concentration on optical imaging through scattering media,” Appl. Opt. 36, 1560–1565 (1997).
    [CrossRef] [PubMed]
  13. P. Bruscaglioni, G. Zaccaniti, Q. Wei, “Transmission of a pulsed polarized light beam through thick turbid media: numerical results,” Appl. Opt. 32, 6142–6150 (1997).
    [CrossRef]
  14. S. Schilders, X. Gan, M. Gu, “Resolution improvement in microscopic imaging through turbid media based on differential polarization gating,” Appl. Opt. 37, 4300–4302 (1998).
    [CrossRef]
  15. J. M. Schmitt, S. H. Xiang, “Cross-polarized backscatter in optical coherence tomography of biological tissue,” Opt. Lett. 23, 1160–1162 (1998).
    [CrossRef]
  16. D. G. Papaioannou, G. W. Hooft, J. J. M. Baselman, M. J. C. van Gemert, “Image quality in time-resolved transillumination of a highly scattering medium,” Appl. Opt. 34, 6144–6157 (1995).
    [CrossRef] [PubMed]
  17. J. G. Fujimoto, S. De Silvestri, E. P. Ippen, C. A. Puliafito, R. Margolis, A. Oseroff, “Femtosecond optical ranging in biological systems,” Opt. Lett. 3, 150–153 (1986).
    [CrossRef]
  18. S. L Jacques, “Time resolved propagation of ultrashort laser pulses within turbid tissue,” Appl. Opt. 28, 2223–2229 (1989).
    [CrossRef] [PubMed]
  19. F. C. Mackintosh, J. X. Zhu, D. J. Pine, D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
    [CrossRef]
  20. K. M. Yoo, R. R. Alfano, “Time-resolved depolarization of multiple backscattered light from random media,” Phys. Lett. A 142, 531–536 (1989).
    [CrossRef]
  21. X. Gan, S. P. Schilders, M. Gu, “Image formation in turbid media under a microscope,” J. Opt. Soc. Am. A 15, 2052–2058 (1998).
    [CrossRef]
  22. J. M. Schmitt, K. Ben-Letaief, “Efficient Monte Carlo simulation of confocal microscopy in biological tissue,” J. Opt. Soc. Am. A 13, 952–961 (1996).
    [CrossRef]
  23. Y. Hasegawa, Y. Yamada, M. Tamura, Y. Nomura, “Monte Carlo simulation of light transmission through living tissue,” Appl. Opt. 30, 4515–4520 (1991).
    [CrossRef] [PubMed]
  24. H. Key, E. R. Davis, P. C. Jackson, P. N. T. Wells, “Monte Carlo modeling of light propagation in breast tissue,” Phys. Med. Biol. 36, 591–602 (1991).
    [CrossRef] [PubMed]
  25. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).
  26. C. F. Bohern, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York,1983).
  27. P. Török, P. Verga, Z. Laczik, G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integration representation,” J. Opt. Soc. Am. A 12, 325–332 (1996).
    [CrossRef]
  28. S. P. Schilders, X. S. Gan, M. Gu, “Effect of scatterer size on microscopic imaging through turbid media based on differential polarization-gating,” Opt. Commun. 157, 238–248 (1998).
    [CrossRef]

1998 (5)

1997 (5)

1996 (4)

1995 (2)

1994 (1)

1992 (1)

1991 (4)

D. Huang, E. A. Swanson, C. P. Lin, J. S Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flott, K. Gregory, C. A. Pulianfito, J. G. Fujimoto, “Optical coherent tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

M. Toida, M. Kondo, T. Ichimura, H. Inaba, “Two-dimensional coherent detection imaging in multiplescattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

Y. Hasegawa, Y. Yamada, M. Tamura, Y. Nomura, “Monte Carlo simulation of light transmission through living tissue,” Appl. Opt. 30, 4515–4520 (1991).
[CrossRef] [PubMed]

H. Key, E. R. Davis, P. C. Jackson, P. N. T. Wells, “Monte Carlo modeling of light propagation in breast tissue,” Phys. Med. Biol. 36, 591–602 (1991).
[CrossRef] [PubMed]

1989 (3)

S. L Jacques, “Time resolved propagation of ultrashort laser pulses within turbid tissue,” Appl. Opt. 28, 2223–2229 (1989).
[CrossRef] [PubMed]

F. C. Mackintosh, J. X. Zhu, D. J. Pine, D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
[CrossRef]

K. M. Yoo, R. R. Alfano, “Time-resolved depolarization of multiple backscattered light from random media,” Phys. Lett. A 142, 531–536 (1989).
[CrossRef]

1986 (1)

J. G. Fujimoto, S. De Silvestri, E. P. Ippen, C. A. Puliafito, R. Margolis, A. Oseroff, “Femtosecond optical ranging in biological systems,” Opt. Lett. 3, 150–153 (1986).
[CrossRef]

Alfano, R. R.

Baselman, J. J. M.

Ben-Letaief, K.

Bigio, I. J.

Bohern, C. F.

C. F. Bohern, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York,1983).

Bonner, R. F.

Booker, G. R.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).

Bruscaglioni, P.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flott, K. Gregory, C. A. Pulianfito, J. G. Fujimoto, “Optical coherent tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Davis, E. R.

H. Key, E. R. Davis, P. C. Jackson, P. N. T. Wells, “Monte Carlo modeling of light propagation in breast tissue,” Phys. Med. Biol. 36, 591–602 (1991).
[CrossRef] [PubMed]

De Silvestri, S.

J. G. Fujimoto, S. De Silvestri, E. P. Ippen, C. A. Puliafito, R. Margolis, A. Oseroff, “Femtosecond optical ranging in biological systems,” Opt. Lett. 3, 150–153 (1986).
[CrossRef]

Demos, S. G.

Flott, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flott, K. Gregory, C. A. Pulianfito, J. G. Fujimoto, “Optical coherent tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flott, K. Gregory, C. A. Pulianfito, J. G. Fujimoto, “Optical coherent tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

J. G. Fujimoto, S. De Silvestri, E. P. Ippen, C. A. Puliafito, R. Margolis, A. Oseroff, “Femtosecond optical ranging in biological systems,” Opt. Lett. 3, 150–153 (1986).
[CrossRef]

Gan, X.

Gan, X. S.

S. P. Schilders, X. S. Gan, M. Gu, “Effect of scatterer size on microscopic imaging through turbid media based on differential polarization-gating,” Opt. Commun. 157, 238–248 (1998).
[CrossRef]

Gandjbakhche, A. H.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flott, K. Gregory, C. A. Pulianfito, J. G. Fujimoto, “Optical coherent tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gu, M.

Hasegawa, Y.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flott, K. Gregory, C. A. Pulianfito, J. G. Fujimoto, “Optical coherent tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hielscher, A. H.

Ho, P. P.

Hooft, G. W.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flott, K. Gregory, C. A. Pulianfito, J. G. Fujimoto, “Optical coherent tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Huffman, D. R.

C. F. Bohern, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York,1983).

Ichimura, T.

M. Toida, M. Kondo, T. Ichimura, H. Inaba, “Two-dimensional coherent detection imaging in multiplescattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

Inaba, H.

M. Toida, M. Kondo, T. Ichimura, H. Inaba, “Two-dimensional coherent detection imaging in multiplescattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

Ippen, E. P.

J. G. Fujimoto, S. De Silvestri, E. P. Ippen, C. A. Puliafito, R. Margolis, A. Oseroff, “Femtosecond optical ranging in biological systems,” Opt. Lett. 3, 150–153 (1986).
[CrossRef]

Jackson, P. C.

H. Key, E. R. Davis, P. C. Jackson, P. N. T. Wells, “Monte Carlo modeling of light propagation in breast tissue,” Phys. Med. Biol. 36, 591–602 (1991).
[CrossRef] [PubMed]

Jacques, S. L

Kempe, M.

Key, H.

H. Key, E. R. Davis, P. C. Jackson, P. N. T. Wells, “Monte Carlo modeling of light propagation in breast tissue,” Phys. Med. Biol. 36, 591–602 (1991).
[CrossRef] [PubMed]

Khong, M. P.

Knüttel, A.

Kondo, M.

M. Toida, M. Kondo, T. Ichimura, H. Inaba, “Two-dimensional coherent detection imaging in multiplescattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

Laczik, Z.

Liang, X.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flott, K. Gregory, C. A. Pulianfito, J. G. Fujimoto, “Optical coherent tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Mackintosh, F. C.

F. C. Mackintosh, J. X. Zhu, D. J. Pine, D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
[CrossRef]

Margolis, R.

J. G. Fujimoto, S. De Silvestri, E. P. Ippen, C. A. Puliafito, R. Margolis, A. Oseroff, “Femtosecond optical ranging in biological systems,” Opt. Lett. 3, 150–153 (1986).
[CrossRef]

Morgan, S. P.

Mourant, J. R.

Nomura, Y.

Oseroff, A.

J. G. Fujimoto, S. De Silvestri, E. P. Ippen, C. A. Puliafito, R. Margolis, A. Oseroff, “Femtosecond optical ranging in biological systems,” Opt. Lett. 3, 150–153 (1986).
[CrossRef]

Papaioannou, D. G.

Pine, D. J.

F. C. Mackintosh, J. X. Zhu, D. J. Pine, D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
[CrossRef]

Puliafito, C. A.

J. G. Fujimoto, S. De Silvestri, E. P. Ippen, C. A. Puliafito, R. Margolis, A. Oseroff, “Femtosecond optical ranging in biological systems,” Opt. Lett. 3, 150–153 (1986).
[CrossRef]

Pulianfito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flott, K. Gregory, C. A. Pulianfito, J. G. Fujimoto, “Optical coherent tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Rudolph, W.

Schilders, S.

Schilders, S. P.

X. Gan, S. P. Schilders, M. Gu, “Image formation in turbid media under a microscope,” J. Opt. Soc. Am. A 15, 2052–2058 (1998).
[CrossRef]

S. P. Schilders, X. S. Gan, M. Gu, “Effect of scatterer size on microscopic imaging through turbid media based on differential polarization-gating,” Opt. Commun. 157, 238–248 (1998).
[CrossRef]

Schmitt, J. M.

Schuman, J. S

D. Huang, E. A. Swanson, C. P. Lin, J. S Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flott, K. Gregory, C. A. Pulianfito, J. G. Fujimoto, “Optical coherent tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Sheppard, C. J. R.

Somekh, M. G.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flott, K. Gregory, C. A. Pulianfito, J. G. Fujimoto, “Optical coherent tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flott, K. Gregory, C. A. Pulianfito, J. G. Fujimoto, “Optical coherent tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tamura, M.

Tannous, T.

Toida, M.

M. Toida, M. Kondo, T. Ichimura, H. Inaba, “Two-dimensional coherent detection imaging in multiplescattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

Török, P.

van Gemert, M. J. C.

Verga, P.

Wang, L.

Wang, Q. Z.

Wei, Q.

Weitz, D. A.

F. C. Mackintosh, J. X. Zhu, D. J. Pine, D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
[CrossRef]

Wells, P. N. T.

H. Key, E. R. Davis, P. C. Jackson, P. N. T. Wells, “Monte Carlo modeling of light propagation in breast tissue,” Phys. Med. Biol. 36, 591–602 (1991).
[CrossRef] [PubMed]

Welsch, E.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, “Cross-polarized backscatter in optical coherence tomography of biological tissue,” Opt. Lett. 23, 1160–1162 (1998).
[CrossRef]

Yadlowsky, M.

Yamada, Y.

Yoo, K. M.

K. M. Yoo, R. R. Alfano, “Time-resolved depolarization of multiple backscattered light from random media,” Phys. Lett. A 142, 531–536 (1989).
[CrossRef]

Zaccaniti, G.

Zhu, J. X.

F. C. Mackintosh, J. X. Zhu, D. J. Pine, D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
[CrossRef]

Appl. Opt. (10)

S. Schilders, X. Gan, M. Gu, “Microscopic imaging through turbid media by use of an annular objective for angle gating,” Appl. Opt. 37, 5320–5326 (1998).
[CrossRef]

J. M. Schmitt, A. H. Gandjbakhche, R. F. Bonner, “Use of polarization light to discriminate short path photons in a multiply scattering medium,” Appl. Opt. 31, 6535–6546 (1992).
[CrossRef] [PubMed]

A. H. Hielscher, J. R. Mourant, I. J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt. 36, 125–135 (1997).
[CrossRef] [PubMed]

S. G. Demos, R. R. Alfano, “Optical polarization imaging,” Appl. Opt. 36, 150–155 (1997).
[CrossRef] [PubMed]

S. P. Morgan, M. P. Khong, M. G. Somekh, “Effects of polarization state and scatter concentration on optical imaging through scattering media,” Appl. Opt. 36, 1560–1565 (1997).
[CrossRef] [PubMed]

P. Bruscaglioni, G. Zaccaniti, Q. Wei, “Transmission of a pulsed polarized light beam through thick turbid media: numerical results,” Appl. Opt. 32, 6142–6150 (1997).
[CrossRef]

S. Schilders, X. Gan, M. Gu, “Resolution improvement in microscopic imaging through turbid media based on differential polarization gating,” Appl. Opt. 37, 4300–4302 (1998).
[CrossRef]

D. G. Papaioannou, G. W. Hooft, J. J. M. Baselman, M. J. C. van Gemert, “Image quality in time-resolved transillumination of a highly scattering medium,” Appl. Opt. 34, 6144–6157 (1995).
[CrossRef] [PubMed]

S. L Jacques, “Time resolved propagation of ultrashort laser pulses within turbid tissue,” Appl. Opt. 28, 2223–2229 (1989).
[CrossRef] [PubMed]

Y. Hasegawa, Y. Yamada, M. Tamura, Y. Nomura, “Monte Carlo simulation of light transmission through living tissue,” Appl. Opt. 30, 4515–4520 (1991).
[CrossRef] [PubMed]

Appl. Phys. B (1)

M. Toida, M. Kondo, T. Ichimura, H. Inaba, “Two-dimensional coherent detection imaging in multiplescattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

J. Opt. Soc. Am. A (5)

Microsc. Microanal. (1)

X. Gan, S. Schilders, M. Gu, “Combination of annular aperture and polarization gating methods for efficient microscopic imaging through a turbid medium: theoretical analysis,” Microsc. Microanal. 3, 495–503 (1997).

Opt. Commun. (1)

S. P. Schilders, X. S. Gan, M. Gu, “Effect of scatterer size on microscopic imaging through turbid media based on differential polarization-gating,” Opt. Commun. 157, 238–248 (1998).
[CrossRef]

Opt. Lett. (4)

M. Gu, T. Tannous, C. J. R. Sheppard, “Effect of an annular pupil on confocal imaging through highly scattering media,” Opt. Lett. 21, 312–314 (1996).
[CrossRef] [PubMed]

J. G. Fujimoto, S. De Silvestri, E. P. Ippen, C. A. Puliafito, R. Margolis, A. Oseroff, “Femtosecond optical ranging in biological systems,” Opt. Lett. 3, 150–153 (1986).
[CrossRef]

Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, R. R. Alfano, “Fourier spatial filter acts as a temporal gating for light propagating through a turbid medium,” Opt. Lett. 20, 1498–1501 (1995).
[CrossRef] [PubMed]

J. M. Schmitt, S. H. Xiang, “Cross-polarized backscatter in optical coherence tomography of biological tissue,” Opt. Lett. 23, 1160–1162 (1998).
[CrossRef]

Phys. Lett. A (1)

K. M. Yoo, R. R. Alfano, “Time-resolved depolarization of multiple backscattered light from random media,” Phys. Lett. A 142, 531–536 (1989).
[CrossRef]

Phys. Med. Biol. (1)

H. Key, E. R. Davis, P. C. Jackson, P. N. T. Wells, “Monte Carlo modeling of light propagation in breast tissue,” Phys. Med. Biol. 36, 591–602 (1991).
[CrossRef] [PubMed]

Phys. Rev. B (1)

F. C. Mackintosh, J. X. Zhu, D. J. Pine, D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flott, K. Gregory, C. A. Pulianfito, J. G. Fujimoto, “Optical coherent tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (2)

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).

C. F. Bohern, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York,1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Flow chart of the Monte Carlo simulation program.

Fig. 2
Fig. 2

Schematic diagram of a reflection scanning optical microscope.

Fig. 3
Fig. 3

Degree of polarization γ as a function of optical thickness n (N.A., 0.25; vd).

Fig. 4
Fig. 4

Image resolution as a function of optical thickness n for an absorption edge embedded in a turbid medium consisting of 0.48-μm beads (N.A., 0.25; vd).

Fig. 5
Fig. 5

Improvement in transverse resolution as a function of optical thickness n for an absorption edge embedded in a turbid medium consisting of 0.48-μm beads (N.A., 0.25; vd).

Fig. 6
Fig. 6

Transverse resolution as a function of optical thickness n for an absorption edge embedded in a turbid medium consisting of 0.48-μm beads (N.A., 0.25; vd=150 μm).

Fig. 7
Fig. 7

Improvement in transverse resolution as a function of optical thickness n for an absorption edge embedded in a turbid medium consisting of 0.48-μm beads (N.A., 0.25; vd=150 μm).

Fig. 8
Fig. 8

Degree of polarization for a turbid medium consisting of 0.48-μm beads with and without a confocal pinhole of 150 μm.

Fig. 9
Fig. 9

Measured degree of polarization for a turbid medium consisting of 0.48-μm beads with and without a confocal pinhole of 150 μm.

Fig. 10
Fig. 10

Measured transverse resolution as a function of optical thickness n for an absorption edge embedded in a turbid medium consisting of 0.48-μm beads (N.A., 0.25). (a) vd, (b) vd=150 μm.

Fig. 11
Fig. 11

Transverse resolution as a function of signal strength for a turbid medium consisting of 0.48-μm beads (N.A., 0.25). (a) n=9, (b) n=15.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Iinc=IiQiUiVi,
Iscatafter=MIscatbefore,
M=S11(θ)S12(θ)00S12(θ)S11(θ)0000S33(θ)S34(θ)00S34(θ)S33(θ).
S11(θ)=[|S1(θ)|2+|S2(θ)|2]/2,
S12(θ)=[|S1(θ)|2-|S2(θ)|2]/2,
S33(θ)=[S1(θ)S2*(θ)+S2(θ)S1*(θ)]/2,
S34(θ)=[S1(θ)S2*(θ)-S2(θ)S1*(θ)]/2,
γ=Ip-IsIp+Is,
Ip=Iscat[1 1 0 0],
Is=Iscat[1 -1 0 0],

Metrics