Abstract

Image enhancement through a turbid medium by use of polarization gating methods in a microscopic imaging system is studied both theoretically and experimentally. A Monte Carlo simulation model based on Mie theory and geometric optics is adopted to calculate, for use with polarization gating and pinhole gating methods, image resolution of a sharp edge embedded in a turbid medium consisting of polystyrene beads. Both theoretical and experimental results show that polarization gating methods, particularly the differential polarization gating method, can be efficient in suppressing scattered photons, thus leading to image enhancement. In addition, a theoretical comparison of polarization gating and pinhole gating methods, based on the trade-off between resolution and signal strength, reveals that polarization gating methods are superior to the pinhole gating method when signal strength is weak.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription