Abstract

Spectrally resolved white-light interferometry was used to measure the wavelength dependence of refractive index (i.e., dispersion) for various ocular components. Verification of the technique's efficacy was substantiated by accurate measurement of the dispersive properties of water and fused silica, which have both been well-characterized in the past by single-wavelength measurement of the refractive index. The dispersion of bovine and rabbit aqueous and vitreous humors was measured from 400 to 1100 nm. In addition, the dispersion was measured from 400 to 700 nm for aqueous and vitreous humors extracted from goat and rhesus monkey eyes. An unsuccessful attempt was also made to use the technique for dispersion measurement of bovine cornea and lens. The principles of white-light interferometry, including image analysis, measurement accuracy, and limitations of the technique, are discussed. In addition, alternate techniques and previous measurements of ocular dispersion are reviewed.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Sáinz, J. Calatroni, G. Tribillon, “Refractometry of liquid samples with spectrally resolved white-light interferometry,” Meas. Sci. Technol. 1, 356–361 (1990).
    [CrossRef]
  2. A. L. Guerrero, C. Sáinz, H. Perrin, R. Castell, J. Calatroni, “Refractive index distribution measurements by means of spectrally resolved white-light interferometry,” Opt. Laser Technol. 24, 333–339 (1992).
    [CrossRef]
  3. C. Sáinz, P. Jourdain, R. Escalona, J. Calatroni, “Real time interferometric measurements of dispersion curves,” Opt. Commun. 111, 632–641 (1994).
    [CrossRef]
  4. D. J. Stolarski, R. J. Thomas, G. D. Noojin, D. J. Payne, B. A. Rockwell, “White-light interferometric measurements of aqueous media dispersive properties,” in Laser–Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE2975, 155–162 (1997).
    [CrossRef]
  5. S. Diddams, J.-C. Diels, “Dispersion measurements with white-light interferometry,” J. Opt. Soc. Am. B 13, 1120–1129 (1996).
    [CrossRef]
  6. C. D. Mobley, “The optical properties of water,” in Handbook of Optics: Fundamentals, Techniques, and Design, M. Bass, ed. (McGraw-Hill, New York, 1995), pp. 43.17–43.18.
  7. H. El-Kashef, “Optical and electrical properties of materials,” Rev. Sci. Instrum. 65, 2056–2061 (1994).
    [CrossRef]
  8. E. Moreels, C. de Greef, R. Finsy, “Laser light refractometer,” Appl. Opt. 23, 3010–3013 (1984).
    [CrossRef] [PubMed]
  9. A. A. Zaidi, Y. Makdisi, K. S. Bhatia, I. Abutahun, “Accurate method for the determination of the refractive index of liquids using a laser,” Rev. Sci. Instrum. 60, 803–805 (1989).
    [CrossRef]
  10. K. Kuhler, E. L. Dereniak, M. Buchanan, “Measurement of the index of refraction of the plastic phenoxy PKFE,” Appl. Opt. 30, 1711–1714 (1991).
    [CrossRef] [PubMed]
  11. S. Nemoto, “Measurement of the refractive index of liquid using laser beam displacement,” Appl. Opt. 31, 6690–6694 (1992).
    [CrossRef] [PubMed]
  12. H. M. Dobbins, E. R. Peck, “Change of refractive index of water as a function of temperature,” J. Opt. Soc. Am. 63, 318–320 (1973).
    [CrossRef]
  13. G. Abbate, A. Attanasio, U. Bernini, E. Ragozzino, R. Somma, “The direct determination of the temperature dependence of the refractive index of liquids and solids,” J. Phys. D 9, 1945–1951 (1976).
    [CrossRef]
  14. W. Lu, W. M. Worek, “Two-wavelength interferometric technique for measuring the refractive index of salt-water solutions,” Appl. Opt. 32, 3992–4002 (1993).
    [CrossRef] [PubMed]
  15. D. Stolarski, G. Noojin, R. Thomas, B. Rockwell, “Interferometric measurement of index of refraction as a function of wavelength in ocular media,” in Laser–Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 420–426 (1996).
    [CrossRef]
  16. B. Richerzhagen, “Interferometer for measuring the absolute refractive index of liquid water as a function of temperature at 1.064 μm,” Appl. Opt. 35, 1650–1653 (1996).
    [CrossRef] [PubMed]
  17. J. M. St-Arnaud, J. Ge, J. Orbriot, T. K. Bose, “An accurate method for refractive index measurements of liquids using two Michelson laser interferometers,” Rev. Sci. Instrum. 62, 1411–1414 (1991).
    [CrossRef]
  18. A. Suhadolnik, A. Babnik, J. Mozina, “Refractive index measurement with optical fiber Mach-Zehnder interferometer,” in Chemical, Biochemical, and Environmental Fiber Sensors IV, R. A. Lieberman, ed., Proc. SPIE1796, 364–370 (1992).
    [CrossRef]
  19. T. H. Barnes, K. Matsumoto, T. Eiju, K. Matsuda, N. Ooyama, “Grating interferometer with extremely high stability, suitable for measuring small refractive index changes,” Appl. Opt. 30, 745–751 (1991).
    [CrossRef] [PubMed]
  20. B. J. Pernick, “Nonlinear regression analysis for the Sellmeier dispersion equation of CdS,” Appl. Opt. 22, 1133–1134 (1983).
    [CrossRef] [PubMed]
  21. R. H. H. Kröger, “Methods to estimate dispersion in vertebrate ocular media,” J. Opt. Soc. Am. A 9, 1486–1490 (1992).
    [CrossRef] [PubMed]
  22. C. K. Carniglia, K. N. Schrader, P. A. O'Connell, S. R. Tuenge, “Refractive index determination using an orthogonalized dispersion equation,” Appl. Opt. 28, 2902–2906 (1989).
    [CrossRef] [PubMed]
  23. N. E. Dorsey, Properties of the Ordinary Water Substance in All Its Phases (Reinhold, New York, 1940).
  24. M. R. Querry, D. M. Wieliczka, D. J. Segelstein, “booker (H2O),” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, New York, 1991), pp. 1059–1077.
  25. L. W. Tilton, J. K. Taylor, “Refractive index and dispersion of distilled water for visible radiation, at temperatures 0 to 60°,” J. Res. Natl. Bur. Stand. 20, 419–477 (1938).
    [CrossRef]
  26. G. Westheimer, “Optical properties of vertebrae eyes,” in Physiology of Photoreceptor Organs, Vol. VII/2 of Handbook of Sensory Physiology, M. G. F. Fuortes, ed. (Springer-Verlag, Berlin, 1972), Chap. 11, pp. 449–482.
  27. Y. Le Grand, S. G. E. Hage, Physiological Optics (Springer-Verlag, New York, 1980).
  28. A. Hughes, “A useful table of reduced schematic eyes for vertebrates which includes computed longitudinal chromatic aberrations,” Vision Res. 19, 1273–1275 (1979).
    [CrossRef] [PubMed]
  29. C. J. Murphy, H. C. Howland, “The optics of comparative ophthalmoscopy,” Vision Res. 27, 599–607 (1987).
    [CrossRef] [PubMed]
  30. Y. Le Grand, Form and Space Vision (Indiana U. Press, Bloomington, 1967), pp. 5–9.
  31. J. G. Sivak, T. Mandelman, “Chromatic dispersion of the ocular media,” Vision Res. 22, 997–1003 (1982).
    [CrossRef] [PubMed]
  32. T. Mandelman, J. G. Sivak, “Longitudinal chromatic aberration of the vertebrate eye,” Vision Res. 23, 1555–1559 (1983).
    [CrossRef] [PubMed]
  33. A. Chaudhuri, P. E. Hallett, J. A. Parker, “Aspheric curvatures, refractive indices, and chromatic aberration for the rat eye,” Vision Res. 23, 1351–1361 (1983).
    [CrossRef]
  34. S. Nakao, S. Fujimoto, “Model of the refractive-index distribution in the rabbit crystalline lens,” J. Opt. Soc. Am. 58, 1351–1361 (1968).
    [CrossRef]
  35. R. H. H. Kröger, M. C. W. Campbell, “Dispersion and longitudinal chromatic aberration of the crystalline lens of the African cichlid fish Haplochromis burtoni,” J. Opt. Soc. Am. A 13, 2341–2347 (1996).
    [CrossRef]
  36. D. A. Palmer, J. Sivak, “Crystalline lens dispersion,” J. Opt. Soc. Am. 71, 780–782 (1981).
    [CrossRef] [PubMed]
  37. P. Simonet, M. C. W. Campbell, “The optical tranverse chromatic aberration on the fovea of the human eye,” Vision Res. 30, 187–206 (1990).
    [CrossRef]
  38. B. Gilmartin, R. E. Hogan, “The magnitude of the longitudinal chromatic aberration of the human eye between 458 and 633-nm,” Vision Res. 11, 1747–1753 (1985).
    [CrossRef]
  39. F. A. Duck, Physical Properties of Tissues: A Comprehensive Reference Book (Academic, London, 1990).
  40. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20, 2258–2260 (1995).
    [CrossRef] [PubMed]
  41. W. Drexler, C. K. Hitzenberger, A. Baumgartner, O. Findl, H. Sattmann, A. F. Fercher, “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry,” Exp. Eye Res. 66, 25–33 (1998).
    [CrossRef] [PubMed]
  42. E. Hecht, Optics, 3rd ed. (Addison Wesley Longman, Reading, Mass., 1998).
  43. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).
    [CrossRef]
  44. R. W. Austin, G. Halikas, “The index of refraction of seawater,” (Scripps Institution of Oceanography, University of California, San Diego, Calif.1976).
  45. E. R. Peck, “Sellmeier fits with linear regression; multiple data sets; dispersion formulas for helium,” Appl. Opt. 22, 2906–2913 (1983).
    [CrossRef] [PubMed]
  46. K. Schmid, A. Penzkofer, “Refractive-index measurements with a Pellin–Broca prism apparatus,” Appl. Opt. 22, 1824–1827 (1983).
    [CrossRef]

1998 (1)

W. Drexler, C. K. Hitzenberger, A. Baumgartner, O. Findl, H. Sattmann, A. F. Fercher, “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry,” Exp. Eye Res. 66, 25–33 (1998).
[CrossRef] [PubMed]

1996 (3)

1995 (1)

1994 (2)

C. Sáinz, P. Jourdain, R. Escalona, J. Calatroni, “Real time interferometric measurements of dispersion curves,” Opt. Commun. 111, 632–641 (1994).
[CrossRef]

H. El-Kashef, “Optical and electrical properties of materials,” Rev. Sci. Instrum. 65, 2056–2061 (1994).
[CrossRef]

1993 (1)

1992 (3)

R. H. H. Kröger, “Methods to estimate dispersion in vertebrate ocular media,” J. Opt. Soc. Am. A 9, 1486–1490 (1992).
[CrossRef] [PubMed]

S. Nemoto, “Measurement of the refractive index of liquid using laser beam displacement,” Appl. Opt. 31, 6690–6694 (1992).
[CrossRef] [PubMed]

A. L. Guerrero, C. Sáinz, H. Perrin, R. Castell, J. Calatroni, “Refractive index distribution measurements by means of spectrally resolved white-light interferometry,” Opt. Laser Technol. 24, 333–339 (1992).
[CrossRef]

1991 (3)

1990 (2)

P. Simonet, M. C. W. Campbell, “The optical tranverse chromatic aberration on the fovea of the human eye,” Vision Res. 30, 187–206 (1990).
[CrossRef]

C. Sáinz, J. Calatroni, G. Tribillon, “Refractometry of liquid samples with spectrally resolved white-light interferometry,” Meas. Sci. Technol. 1, 356–361 (1990).
[CrossRef]

1989 (2)

A. A. Zaidi, Y. Makdisi, K. S. Bhatia, I. Abutahun, “Accurate method for the determination of the refractive index of liquids using a laser,” Rev. Sci. Instrum. 60, 803–805 (1989).
[CrossRef]

C. K. Carniglia, K. N. Schrader, P. A. O'Connell, S. R. Tuenge, “Refractive index determination using an orthogonalized dispersion equation,” Appl. Opt. 28, 2902–2906 (1989).
[CrossRef] [PubMed]

1987 (1)

C. J. Murphy, H. C. Howland, “The optics of comparative ophthalmoscopy,” Vision Res. 27, 599–607 (1987).
[CrossRef] [PubMed]

1985 (1)

B. Gilmartin, R. E. Hogan, “The magnitude of the longitudinal chromatic aberration of the human eye between 458 and 633-nm,” Vision Res. 11, 1747–1753 (1985).
[CrossRef]

1984 (1)

1983 (5)

1982 (1)

J. G. Sivak, T. Mandelman, “Chromatic dispersion of the ocular media,” Vision Res. 22, 997–1003 (1982).
[CrossRef] [PubMed]

1981 (1)

1979 (1)

A. Hughes, “A useful table of reduced schematic eyes for vertebrates which includes computed longitudinal chromatic aberrations,” Vision Res. 19, 1273–1275 (1979).
[CrossRef] [PubMed]

1976 (1)

G. Abbate, A. Attanasio, U. Bernini, E. Ragozzino, R. Somma, “The direct determination of the temperature dependence of the refractive index of liquids and solids,” J. Phys. D 9, 1945–1951 (1976).
[CrossRef]

1973 (1)

1968 (1)

S. Nakao, S. Fujimoto, “Model of the refractive-index distribution in the rabbit crystalline lens,” J. Opt. Soc. Am. 58, 1351–1361 (1968).
[CrossRef]

1965 (1)

1938 (1)

L. W. Tilton, J. K. Taylor, “Refractive index and dispersion of distilled water for visible radiation, at temperatures 0 to 60°,” J. Res. Natl. Bur. Stand. 20, 419–477 (1938).
[CrossRef]

Abbate, G.

G. Abbate, A. Attanasio, U. Bernini, E. Ragozzino, R. Somma, “The direct determination of the temperature dependence of the refractive index of liquids and solids,” J. Phys. D 9, 1945–1951 (1976).
[CrossRef]

Abutahun, I.

A. A. Zaidi, Y. Makdisi, K. S. Bhatia, I. Abutahun, “Accurate method for the determination of the refractive index of liquids using a laser,” Rev. Sci. Instrum. 60, 803–805 (1989).
[CrossRef]

Attanasio, A.

G. Abbate, A. Attanasio, U. Bernini, E. Ragozzino, R. Somma, “The direct determination of the temperature dependence of the refractive index of liquids and solids,” J. Phys. D 9, 1945–1951 (1976).
[CrossRef]

Austin, R. W.

R. W. Austin, G. Halikas, “The index of refraction of seawater,” (Scripps Institution of Oceanography, University of California, San Diego, Calif.1976).

Babnik, A.

A. Suhadolnik, A. Babnik, J. Mozina, “Refractive index measurement with optical fiber Mach-Zehnder interferometer,” in Chemical, Biochemical, and Environmental Fiber Sensors IV, R. A. Lieberman, ed., Proc. SPIE1796, 364–370 (1992).
[CrossRef]

Barnes, T. H.

Baumgartner, A.

W. Drexler, C. K. Hitzenberger, A. Baumgartner, O. Findl, H. Sattmann, A. F. Fercher, “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry,” Exp. Eye Res. 66, 25–33 (1998).
[CrossRef] [PubMed]

Bernini, U.

G. Abbate, A. Attanasio, U. Bernini, E. Ragozzino, R. Somma, “The direct determination of the temperature dependence of the refractive index of liquids and solids,” J. Phys. D 9, 1945–1951 (1976).
[CrossRef]

Bhatia, K. S.

A. A. Zaidi, Y. Makdisi, K. S. Bhatia, I. Abutahun, “Accurate method for the determination of the refractive index of liquids using a laser,” Rev. Sci. Instrum. 60, 803–805 (1989).
[CrossRef]

Bose, T. K.

J. M. St-Arnaud, J. Ge, J. Orbriot, T. K. Bose, “An accurate method for refractive index measurements of liquids using two Michelson laser interferometers,” Rev. Sci. Instrum. 62, 1411–1414 (1991).
[CrossRef]

Bouma, B. E.

Brezinski, M. E.

Buchanan, M.

Calatroni, J.

C. Sáinz, P. Jourdain, R. Escalona, J. Calatroni, “Real time interferometric measurements of dispersion curves,” Opt. Commun. 111, 632–641 (1994).
[CrossRef]

A. L. Guerrero, C. Sáinz, H. Perrin, R. Castell, J. Calatroni, “Refractive index distribution measurements by means of spectrally resolved white-light interferometry,” Opt. Laser Technol. 24, 333–339 (1992).
[CrossRef]

C. Sáinz, J. Calatroni, G. Tribillon, “Refractometry of liquid samples with spectrally resolved white-light interferometry,” Meas. Sci. Technol. 1, 356–361 (1990).
[CrossRef]

Campbell, M. C. W.

Carniglia, C. K.

Castell, R.

A. L. Guerrero, C. Sáinz, H. Perrin, R. Castell, J. Calatroni, “Refractive index distribution measurements by means of spectrally resolved white-light interferometry,” Opt. Laser Technol. 24, 333–339 (1992).
[CrossRef]

Chaudhuri, A.

A. Chaudhuri, P. E. Hallett, J. A. Parker, “Aspheric curvatures, refractive indices, and chromatic aberration for the rat eye,” Vision Res. 23, 1351–1361 (1983).
[CrossRef]

de Greef, C.

Dereniak, E. L.

Diddams, S.

Diels, J.-C.

Dobbins, H. M.

Dorsey, N. E.

N. E. Dorsey, Properties of the Ordinary Water Substance in All Its Phases (Reinhold, New York, 1940).

Drexler, W.

W. Drexler, C. K. Hitzenberger, A. Baumgartner, O. Findl, H. Sattmann, A. F. Fercher, “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry,” Exp. Eye Res. 66, 25–33 (1998).
[CrossRef] [PubMed]

Duck, F. A.

F. A. Duck, Physical Properties of Tissues: A Comprehensive Reference Book (Academic, London, 1990).

Eiju, T.

El-Kashef, H.

H. El-Kashef, “Optical and electrical properties of materials,” Rev. Sci. Instrum. 65, 2056–2061 (1994).
[CrossRef]

Escalona, R.

C. Sáinz, P. Jourdain, R. Escalona, J. Calatroni, “Real time interferometric measurements of dispersion curves,” Opt. Commun. 111, 632–641 (1994).
[CrossRef]

Fercher, A. F.

W. Drexler, C. K. Hitzenberger, A. Baumgartner, O. Findl, H. Sattmann, A. F. Fercher, “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry,” Exp. Eye Res. 66, 25–33 (1998).
[CrossRef] [PubMed]

Findl, O.

W. Drexler, C. K. Hitzenberger, A. Baumgartner, O. Findl, H. Sattmann, A. F. Fercher, “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry,” Exp. Eye Res. 66, 25–33 (1998).
[CrossRef] [PubMed]

Finsy, R.

Fujimoto, J. G.

Fujimoto, S.

S. Nakao, S. Fujimoto, “Model of the refractive-index distribution in the rabbit crystalline lens,” J. Opt. Soc. Am. 58, 1351–1361 (1968).
[CrossRef]

Ge, J.

J. M. St-Arnaud, J. Ge, J. Orbriot, T. K. Bose, “An accurate method for refractive index measurements of liquids using two Michelson laser interferometers,” Rev. Sci. Instrum. 62, 1411–1414 (1991).
[CrossRef]

Gilmartin, B.

B. Gilmartin, R. E. Hogan, “The magnitude of the longitudinal chromatic aberration of the human eye between 458 and 633-nm,” Vision Res. 11, 1747–1753 (1985).
[CrossRef]

Guerrero, A. L.

A. L. Guerrero, C. Sáinz, H. Perrin, R. Castell, J. Calatroni, “Refractive index distribution measurements by means of spectrally resolved white-light interferometry,” Opt. Laser Technol. 24, 333–339 (1992).
[CrossRef]

Hage, S. G. E.

Y. Le Grand, S. G. E. Hage, Physiological Optics (Springer-Verlag, New York, 1980).

Halikas, G.

R. W. Austin, G. Halikas, “The index of refraction of seawater,” (Scripps Institution of Oceanography, University of California, San Diego, Calif.1976).

Hallett, P. E.

A. Chaudhuri, P. E. Hallett, J. A. Parker, “Aspheric curvatures, refractive indices, and chromatic aberration for the rat eye,” Vision Res. 23, 1351–1361 (1983).
[CrossRef]

Hecht, E.

E. Hecht, Optics, 3rd ed. (Addison Wesley Longman, Reading, Mass., 1998).

Hee, M. R.

Hitzenberger, C. K.

W. Drexler, C. K. Hitzenberger, A. Baumgartner, O. Findl, H. Sattmann, A. F. Fercher, “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry,” Exp. Eye Res. 66, 25–33 (1998).
[CrossRef] [PubMed]

Hogan, R. E.

B. Gilmartin, R. E. Hogan, “The magnitude of the longitudinal chromatic aberration of the human eye between 458 and 633-nm,” Vision Res. 11, 1747–1753 (1985).
[CrossRef]

Howland, H. C.

C. J. Murphy, H. C. Howland, “The optics of comparative ophthalmoscopy,” Vision Res. 27, 599–607 (1987).
[CrossRef] [PubMed]

Hughes, A.

A. Hughes, “A useful table of reduced schematic eyes for vertebrates which includes computed longitudinal chromatic aberrations,” Vision Res. 19, 1273–1275 (1979).
[CrossRef] [PubMed]

Jourdain, P.

C. Sáinz, P. Jourdain, R. Escalona, J. Calatroni, “Real time interferometric measurements of dispersion curves,” Opt. Commun. 111, 632–641 (1994).
[CrossRef]

Kröger, R. H. H.

Kuhler, K.

Le Grand, Y.

Y. Le Grand, S. G. E. Hage, Physiological Optics (Springer-Verlag, New York, 1980).

Y. Le Grand, Form and Space Vision (Indiana U. Press, Bloomington, 1967), pp. 5–9.

Lu, W.

Makdisi, Y.

A. A. Zaidi, Y. Makdisi, K. S. Bhatia, I. Abutahun, “Accurate method for the determination of the refractive index of liquids using a laser,” Rev. Sci. Instrum. 60, 803–805 (1989).
[CrossRef]

Malitson, I. H.

Mandelman, T.

T. Mandelman, J. G. Sivak, “Longitudinal chromatic aberration of the vertebrate eye,” Vision Res. 23, 1555–1559 (1983).
[CrossRef] [PubMed]

J. G. Sivak, T. Mandelman, “Chromatic dispersion of the ocular media,” Vision Res. 22, 997–1003 (1982).
[CrossRef] [PubMed]

Matsuda, K.

Matsumoto, K.

Mobley, C. D.

C. D. Mobley, “The optical properties of water,” in Handbook of Optics: Fundamentals, Techniques, and Design, M. Bass, ed. (McGraw-Hill, New York, 1995), pp. 43.17–43.18.

Moreels, E.

Mozina, J.

A. Suhadolnik, A. Babnik, J. Mozina, “Refractive index measurement with optical fiber Mach-Zehnder interferometer,” in Chemical, Biochemical, and Environmental Fiber Sensors IV, R. A. Lieberman, ed., Proc. SPIE1796, 364–370 (1992).
[CrossRef]

Murphy, C. J.

C. J. Murphy, H. C. Howland, “The optics of comparative ophthalmoscopy,” Vision Res. 27, 599–607 (1987).
[CrossRef] [PubMed]

Nakao, S.

S. Nakao, S. Fujimoto, “Model of the refractive-index distribution in the rabbit crystalline lens,” J. Opt. Soc. Am. 58, 1351–1361 (1968).
[CrossRef]

Nemoto, S.

Noojin, G.

D. Stolarski, G. Noojin, R. Thomas, B. Rockwell, “Interferometric measurement of index of refraction as a function of wavelength in ocular media,” in Laser–Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 420–426 (1996).
[CrossRef]

Noojin, G. D.

D. J. Stolarski, R. J. Thomas, G. D. Noojin, D. J. Payne, B. A. Rockwell, “White-light interferometric measurements of aqueous media dispersive properties,” in Laser–Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE2975, 155–162 (1997).
[CrossRef]

O'Connell, P. A.

Ooyama, N.

Orbriot, J.

J. M. St-Arnaud, J. Ge, J. Orbriot, T. K. Bose, “An accurate method for refractive index measurements of liquids using two Michelson laser interferometers,” Rev. Sci. Instrum. 62, 1411–1414 (1991).
[CrossRef]

Palmer, D. A.

Parker, J. A.

A. Chaudhuri, P. E. Hallett, J. A. Parker, “Aspheric curvatures, refractive indices, and chromatic aberration for the rat eye,” Vision Res. 23, 1351–1361 (1983).
[CrossRef]

Payne, D. J.

D. J. Stolarski, R. J. Thomas, G. D. Noojin, D. J. Payne, B. A. Rockwell, “White-light interferometric measurements of aqueous media dispersive properties,” in Laser–Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE2975, 155–162 (1997).
[CrossRef]

Peck, E. R.

Penzkofer, A.

Pernick, B. J.

Perrin, H.

A. L. Guerrero, C. Sáinz, H. Perrin, R. Castell, J. Calatroni, “Refractive index distribution measurements by means of spectrally resolved white-light interferometry,” Opt. Laser Technol. 24, 333–339 (1992).
[CrossRef]

Querry, M. R.

M. R. Querry, D. M. Wieliczka, D. J. Segelstein, “booker (H2O),” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, New York, 1991), pp. 1059–1077.

Ragozzino, E.

G. Abbate, A. Attanasio, U. Bernini, E. Ragozzino, R. Somma, “The direct determination of the temperature dependence of the refractive index of liquids and solids,” J. Phys. D 9, 1945–1951 (1976).
[CrossRef]

Richerzhagen, B.

Rockwell, B.

D. Stolarski, G. Noojin, R. Thomas, B. Rockwell, “Interferometric measurement of index of refraction as a function of wavelength in ocular media,” in Laser–Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 420–426 (1996).
[CrossRef]

Rockwell, B. A.

D. J. Stolarski, R. J. Thomas, G. D. Noojin, D. J. Payne, B. A. Rockwell, “White-light interferometric measurements of aqueous media dispersive properties,” in Laser–Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE2975, 155–162 (1997).
[CrossRef]

Sáinz, C.

C. Sáinz, P. Jourdain, R. Escalona, J. Calatroni, “Real time interferometric measurements of dispersion curves,” Opt. Commun. 111, 632–641 (1994).
[CrossRef]

A. L. Guerrero, C. Sáinz, H. Perrin, R. Castell, J. Calatroni, “Refractive index distribution measurements by means of spectrally resolved white-light interferometry,” Opt. Laser Technol. 24, 333–339 (1992).
[CrossRef]

C. Sáinz, J. Calatroni, G. Tribillon, “Refractometry of liquid samples with spectrally resolved white-light interferometry,” Meas. Sci. Technol. 1, 356–361 (1990).
[CrossRef]

Sattmann, H.

W. Drexler, C. K. Hitzenberger, A. Baumgartner, O. Findl, H. Sattmann, A. F. Fercher, “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry,” Exp. Eye Res. 66, 25–33 (1998).
[CrossRef] [PubMed]

Schmid, K.

Schrader, K. N.

Segelstein, D. J.

M. R. Querry, D. M. Wieliczka, D. J. Segelstein, “booker (H2O),” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, New York, 1991), pp. 1059–1077.

Simonet, P.

P. Simonet, M. C. W. Campbell, “The optical tranverse chromatic aberration on the fovea of the human eye,” Vision Res. 30, 187–206 (1990).
[CrossRef]

Sivak, J.

Sivak, J. G.

T. Mandelman, J. G. Sivak, “Longitudinal chromatic aberration of the vertebrate eye,” Vision Res. 23, 1555–1559 (1983).
[CrossRef] [PubMed]

J. G. Sivak, T. Mandelman, “Chromatic dispersion of the ocular media,” Vision Res. 22, 997–1003 (1982).
[CrossRef] [PubMed]

Somma, R.

G. Abbate, A. Attanasio, U. Bernini, E. Ragozzino, R. Somma, “The direct determination of the temperature dependence of the refractive index of liquids and solids,” J. Phys. D 9, 1945–1951 (1976).
[CrossRef]

Southern, J. F.

St-Arnaud, J. M.

J. M. St-Arnaud, J. Ge, J. Orbriot, T. K. Bose, “An accurate method for refractive index measurements of liquids using two Michelson laser interferometers,” Rev. Sci. Instrum. 62, 1411–1414 (1991).
[CrossRef]

Stolarski, D.

D. Stolarski, G. Noojin, R. Thomas, B. Rockwell, “Interferometric measurement of index of refraction as a function of wavelength in ocular media,” in Laser–Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 420–426 (1996).
[CrossRef]

Stolarski, D. J.

D. J. Stolarski, R. J. Thomas, G. D. Noojin, D. J. Payne, B. A. Rockwell, “White-light interferometric measurements of aqueous media dispersive properties,” in Laser–Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE2975, 155–162 (1997).
[CrossRef]

Suhadolnik, A.

A. Suhadolnik, A. Babnik, J. Mozina, “Refractive index measurement with optical fiber Mach-Zehnder interferometer,” in Chemical, Biochemical, and Environmental Fiber Sensors IV, R. A. Lieberman, ed., Proc. SPIE1796, 364–370 (1992).
[CrossRef]

Taylor, J. K.

L. W. Tilton, J. K. Taylor, “Refractive index and dispersion of distilled water for visible radiation, at temperatures 0 to 60°,” J. Res. Natl. Bur. Stand. 20, 419–477 (1938).
[CrossRef]

Tearney, G. J.

Thomas, R.

D. Stolarski, G. Noojin, R. Thomas, B. Rockwell, “Interferometric measurement of index of refraction as a function of wavelength in ocular media,” in Laser–Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 420–426 (1996).
[CrossRef]

Thomas, R. J.

D. J. Stolarski, R. J. Thomas, G. D. Noojin, D. J. Payne, B. A. Rockwell, “White-light interferometric measurements of aqueous media dispersive properties,” in Laser–Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE2975, 155–162 (1997).
[CrossRef]

Tilton, L. W.

L. W. Tilton, J. K. Taylor, “Refractive index and dispersion of distilled water for visible radiation, at temperatures 0 to 60°,” J. Res. Natl. Bur. Stand. 20, 419–477 (1938).
[CrossRef]

Tribillon, G.

C. Sáinz, J. Calatroni, G. Tribillon, “Refractometry of liquid samples with spectrally resolved white-light interferometry,” Meas. Sci. Technol. 1, 356–361 (1990).
[CrossRef]

Tuenge, S. R.

Westheimer, G.

G. Westheimer, “Optical properties of vertebrae eyes,” in Physiology of Photoreceptor Organs, Vol. VII/2 of Handbook of Sensory Physiology, M. G. F. Fuortes, ed. (Springer-Verlag, Berlin, 1972), Chap. 11, pp. 449–482.

Wieliczka, D. M.

M. R. Querry, D. M. Wieliczka, D. J. Segelstein, “booker (H2O),” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, New York, 1991), pp. 1059–1077.

Worek, W. M.

Zaidi, A. A.

A. A. Zaidi, Y. Makdisi, K. S. Bhatia, I. Abutahun, “Accurate method for the determination of the refractive index of liquids using a laser,” Rev. Sci. Instrum. 60, 803–805 (1989).
[CrossRef]

Appl. Opt. (10)

T. H. Barnes, K. Matsumoto, T. Eiju, K. Matsuda, N. Ooyama, “Grating interferometer with extremely high stability, suitable for measuring small refractive index changes,” Appl. Opt. 30, 745–751 (1991).
[CrossRef] [PubMed]

K. Kuhler, E. L. Dereniak, M. Buchanan, “Measurement of the index of refraction of the plastic phenoxy PKFE,” Appl. Opt. 30, 1711–1714 (1991).
[CrossRef] [PubMed]

W. Lu, W. M. Worek, “Two-wavelength interferometric technique for measuring the refractive index of salt-water solutions,” Appl. Opt. 32, 3992–4002 (1993).
[CrossRef] [PubMed]

B. Richerzhagen, “Interferometer for measuring the absolute refractive index of liquid water as a function of temperature at 1.064 μm,” Appl. Opt. 35, 1650–1653 (1996).
[CrossRef] [PubMed]

K. Schmid, A. Penzkofer, “Refractive-index measurements with a Pellin–Broca prism apparatus,” Appl. Opt. 22, 1824–1827 (1983).
[CrossRef]

E. R. Peck, “Sellmeier fits with linear regression; multiple data sets; dispersion formulas for helium,” Appl. Opt. 22, 2906–2913 (1983).
[CrossRef] [PubMed]

E. Moreels, C. de Greef, R. Finsy, “Laser light refractometer,” Appl. Opt. 23, 3010–3013 (1984).
[CrossRef] [PubMed]

C. K. Carniglia, K. N. Schrader, P. A. O'Connell, S. R. Tuenge, “Refractive index determination using an orthogonalized dispersion equation,” Appl. Opt. 28, 2902–2906 (1989).
[CrossRef] [PubMed]

S. Nemoto, “Measurement of the refractive index of liquid using laser beam displacement,” Appl. Opt. 31, 6690–6694 (1992).
[CrossRef] [PubMed]

B. J. Pernick, “Nonlinear regression analysis for the Sellmeier dispersion equation of CdS,” Appl. Opt. 22, 1133–1134 (1983).
[CrossRef] [PubMed]

Exp. Eye Res. (1)

W. Drexler, C. K. Hitzenberger, A. Baumgartner, O. Findl, H. Sattmann, A. F. Fercher, “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry,” Exp. Eye Res. 66, 25–33 (1998).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

G. Abbate, A. Attanasio, U. Bernini, E. Ragozzino, R. Somma, “The direct determination of the temperature dependence of the refractive index of liquids and solids,” J. Phys. D 9, 1945–1951 (1976).
[CrossRef]

J. Res. Natl. Bur. Stand. (1)

L. W. Tilton, J. K. Taylor, “Refractive index and dispersion of distilled water for visible radiation, at temperatures 0 to 60°,” J. Res. Natl. Bur. Stand. 20, 419–477 (1938).
[CrossRef]

Meas. Sci. Technol. (1)

C. Sáinz, J. Calatroni, G. Tribillon, “Refractometry of liquid samples with spectrally resolved white-light interferometry,” Meas. Sci. Technol. 1, 356–361 (1990).
[CrossRef]

Opt. Commun. (1)

C. Sáinz, P. Jourdain, R. Escalona, J. Calatroni, “Real time interferometric measurements of dispersion curves,” Opt. Commun. 111, 632–641 (1994).
[CrossRef]

Opt. Laser Technol. (1)

A. L. Guerrero, C. Sáinz, H. Perrin, R. Castell, J. Calatroni, “Refractive index distribution measurements by means of spectrally resolved white-light interferometry,” Opt. Laser Technol. 24, 333–339 (1992).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (3)

H. El-Kashef, “Optical and electrical properties of materials,” Rev. Sci. Instrum. 65, 2056–2061 (1994).
[CrossRef]

A. A. Zaidi, Y. Makdisi, K. S. Bhatia, I. Abutahun, “Accurate method for the determination of the refractive index of liquids using a laser,” Rev. Sci. Instrum. 60, 803–805 (1989).
[CrossRef]

J. M. St-Arnaud, J. Ge, J. Orbriot, T. K. Bose, “An accurate method for refractive index measurements of liquids using two Michelson laser interferometers,” Rev. Sci. Instrum. 62, 1411–1414 (1991).
[CrossRef]

Vision Res. (7)

A. Hughes, “A useful table of reduced schematic eyes for vertebrates which includes computed longitudinal chromatic aberrations,” Vision Res. 19, 1273–1275 (1979).
[CrossRef] [PubMed]

C. J. Murphy, H. C. Howland, “The optics of comparative ophthalmoscopy,” Vision Res. 27, 599–607 (1987).
[CrossRef] [PubMed]

P. Simonet, M. C. W. Campbell, “The optical tranverse chromatic aberration on the fovea of the human eye,” Vision Res. 30, 187–206 (1990).
[CrossRef]

B. Gilmartin, R. E. Hogan, “The magnitude of the longitudinal chromatic aberration of the human eye between 458 and 633-nm,” Vision Res. 11, 1747–1753 (1985).
[CrossRef]

J. G. Sivak, T. Mandelman, “Chromatic dispersion of the ocular media,” Vision Res. 22, 997–1003 (1982).
[CrossRef] [PubMed]

T. Mandelman, J. G. Sivak, “Longitudinal chromatic aberration of the vertebrate eye,” Vision Res. 23, 1555–1559 (1983).
[CrossRef] [PubMed]

A. Chaudhuri, P. E. Hallett, J. A. Parker, “Aspheric curvatures, refractive indices, and chromatic aberration for the rat eye,” Vision Res. 23, 1351–1361 (1983).
[CrossRef]

Other (12)

E. Hecht, Optics, 3rd ed. (Addison Wesley Longman, Reading, Mass., 1998).

R. W. Austin, G. Halikas, “The index of refraction of seawater,” (Scripps Institution of Oceanography, University of California, San Diego, Calif.1976).

F. A. Duck, Physical Properties of Tissues: A Comprehensive Reference Book (Academic, London, 1990).

Y. Le Grand, Form and Space Vision (Indiana U. Press, Bloomington, 1967), pp. 5–9.

G. Westheimer, “Optical properties of vertebrae eyes,” in Physiology of Photoreceptor Organs, Vol. VII/2 of Handbook of Sensory Physiology, M. G. F. Fuortes, ed. (Springer-Verlag, Berlin, 1972), Chap. 11, pp. 449–482.

Y. Le Grand, S. G. E. Hage, Physiological Optics (Springer-Verlag, New York, 1980).

A. Suhadolnik, A. Babnik, J. Mozina, “Refractive index measurement with optical fiber Mach-Zehnder interferometer,” in Chemical, Biochemical, and Environmental Fiber Sensors IV, R. A. Lieberman, ed., Proc. SPIE1796, 364–370 (1992).
[CrossRef]

N. E. Dorsey, Properties of the Ordinary Water Substance in All Its Phases (Reinhold, New York, 1940).

M. R. Querry, D. M. Wieliczka, D. J. Segelstein, “booker (H2O),” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, New York, 1991), pp. 1059–1077.

D. Stolarski, G. Noojin, R. Thomas, B. Rockwell, “Interferometric measurement of index of refraction as a function of wavelength in ocular media,” in Laser–Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 420–426 (1996).
[CrossRef]

D. J. Stolarski, R. J. Thomas, G. D. Noojin, D. J. Payne, B. A. Rockwell, “White-light interferometric measurements of aqueous media dispersive properties,” in Laser–Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE2975, 155–162 (1997).
[CrossRef]

C. D. Mobley, “The optical properties of water,” in Handbook of Optics: Fundamentals, Techniques, and Design, M. Bass, ed. (McGraw-Hill, New York, 1995), pp. 43.17–43.18.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical layout for white-light interferometry. A1, variable arm; A2, fixed arm; M1, dielectric-coated (broadband visible) mirror; M2–M5, aluminum mirrors; BS, fused silica beam splitter; I1–I4, iris apertures (I4 was used for initial alignment, with M4 removed); S1 and S2, sample and empty cuvettes; L1, -100-mm focal-length lens; L2, 750-mm-focal-length lens; L3, interferogram lens (several types were used); ND, neutral-density-filter stack; LP, 750-nm long-pass filter for infrared measurements; DMA, direct memory access.

Fig. 2
Fig. 2

Portions of images of white-light fringes: (a) nondispersive sample, (b) fused silica, and (c) illustration of stationary-phase position (arrow).

Fig. 3
Fig. 3

Measurement of the refractive index of fused silica. Dashed curve, calculation based on a three-term Sellmeier dispersion formula (Ref. 43); solid curve, compilation of index curves obtained from several interferograms.

Fig. 4
Fig. 4

Measurement of the refractive index of water. Points represent values obtained from previous measurements.15,24,25,44 Solid curve, compilation of index curves obtained from several interferograms.

Fig. 5
Fig. 5

Measurement of refractive indices of (a) bovine aqueous humor and (b) vitreous humor. Points represent values obtained from previous measurements.31 Solid curves, compilation of index curves obtained from several interferograms; dashed curves, index data fitted to Cornu's formula, Eq. (25).

Tables (3)

Tables Icon

Table 1 Fit Parameters for Cornu's Formula, Eq. (25), for All Species a

Tables Icon

Table 2 Mean and Maximum Added Corrections (Absolute Value) and Standard Deviations for All Data

Tables Icon

Table 3 Comparison between Bovine and Water Dispersion a

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

Δn=n(σ)-n(σ0),
n(σ)=n0+dndσ (σ-σ0)+12 d2ndσ2 (σ-σ0)2.
Δ(σ)=d[n(σ)-1]-S0,
ϕ(σ)=4πσΔ(σ)=4πσ{d[n(σ)-1]-S0}.
I=I1+I2+2I1I2 cos ϕ,
Imax=I1+I2+2I1I2,
Imin=I1+I2-2I1I2.
I=I0(1+γ cos ϕ),
I0=Imax+Imin2,
γ=Imax-IminImax+Imin,
ϕimg(σ)=cos-12I(σ)-(Imax+Imin)Imax-Imin,
ϕfit(σ)=Aσ3+Bσ2+Cσ+D,
A=2πd d2ndσ2,
B=4πddndσ-σ d2ndσ2,
C=4πdn-S0d-1-σ dndσ+σ22 d2ndσ2.
ϕ(σ0)=mπ,m=0, 1, 2,  .
Aσ02+Bσ0+C=4π(dn0-d-S0),
=4πΔ0.
m=4σ0Δ0=Aσ03+Bσ02+Cσ0π.
Δ0=m4σ0.
ϕcorr(σ)=ϕimg(σ)-ϕimg(σ0)+4πσ0Δ0.
ϕnd(σ)=4πσΔ0=mπσσ0,
Δn=n-n0=ϕcorr(σ)-σnd(σ)4πσd.
n0=1+Δ0+S0d.
n=n+K/(λ+Λ),
δ(Δn)Δn2πσdΔnD+2δ(σ)Δσ+δ(d)d,
A=1.45×10-5±6.69×10-8,
B=-4.28×10-1±2.13×10-3,
C=3.13×103±1.70×101.

Metrics