Abstract

We measured the contrast sensitivity (CS) of a group of older subjects through natural pupils and compared the results with those from a group of younger subjects. We also measured each subject’s monochromatic ocular wave-front aberrations using a crossed-cylinder aberroscope and calculated their modulation transfer functions (MTF’s) and root-mean-squared (RMS) wave-front aberrations for fixed pupil diameters of 4 mm and 6 mm and for a natural pupil diameter. The CS at a natural pupil diameter and the MTF computed for a fixed pupil diameter were found to be significantly poorer for the older group than for the younger group. However, the older group showed very similar MTF’s and significantly smaller RMS wave-front aberrations compared with the younger group at their natural pupil diameters, owing to the effects of age-related miosis. These results suggest that although monochromatic ocular wave-front aberrations for a given pupil size increase with age, the reduction in CS with age is not due to this increase.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Owsley, R. Sekuler, D. Siemson, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983).
    [CrossRef] [PubMed]
  2. J. D. Morrison, C. McGrath, “Assessment of the optical contributions to the age related deterioration in vision,” Q. J. Exp. Physiol. 70, 249–269 (1985).
    [PubMed]
  3. D. B. Elliott, “Contrast sensitivity decline with ageing: a neural or optical phenomenon?” Ophthalmic Physiol. Opt. 7, 415–419 (1987).
    [CrossRef] [PubMed]
  4. K. B. Burton, C. Owsley, M. E. Sloane, “Aging and neural spatial contrast sensitivity: photopic vision,” Vision Res. 33, 939–946 (1993).
    [CrossRef] [PubMed]
  5. D. B. Elliott, D. Whitaker, D. MacVeigh, “Neural contribution to spatiotemporal contrast sensitivity decline in healthy aging eyes,” Vision Res. 30, 541–547 (1990).
    [CrossRef]
  6. C. Owsley, T. Gardner, R. Sekuler, H. Lieberman, “Role of the crystalline lens in the spatial vision loss of the elderly,” Invest. Ophthalmol. Visual Sci. 26, 1165–1170 (1985).
  7. J. K. IJspeert, P. W. T. De Waard, T. J. T. P. van den Berg, P. T. V. M. de Jong, “The intraocular straylight function in 129 healthy volunteers—dependence on angle, age and pigmentation,” Vision Res. 30, 699–707 (1990).
    [CrossRef]
  8. I. L. Bailey, M. A. Bullimore, “A new test for the evaluation of disability glare,” Optom. Vision Sci. 68, 911–917 (1991).
    [CrossRef]
  9. D. Regan, “Specific tests and specific blindnesses: keys, locks and parallel processing,” Optom. Vision Sci. 68, 489–512 (1991).
    [CrossRef]
  10. R. P. Hemenger, “Intraocular light scatter in normal vision loss with age,” Appl. Opt. 23, 1972–1974 (1984).
    [CrossRef] [PubMed]
  11. P. Artal, M. Ferro, I. Miranda, R. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10, 1656–1662 (1993).
    [CrossRef] [PubMed]
  12. A. Guirao, M. Redondo, C. Gonzalez, E. Geragthy, S. Norrby, P. Artal, “Average optical modulation transfer function of the human eye in a normal population as a function of age,” Invest. Ophthalmol. Visual Sci. Suppl, 38, S1014 (1997).
  13. G. Walsh, M. J. Cox, “A new computerised video-aberroscope for the determination of the aberration of the human eye,” Ophthalmic. Physiol. Opt. 15, 403–408 (1995).
    [CrossRef] [PubMed]
  14. D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
    [CrossRef] [PubMed]
  15. B. Howland, H. C. Howland, “Subjective measurement of higher order aberrations of the eye,” Science 193, 580–582 (1976).
    [CrossRef] [PubMed]
  16. H. C. Howland, B. Howland, “A subjective method for the measurement of monochromatic aberrations of the eye,” J. Opt. Soc. Am. 67, 1508–1518 (1977).
    [CrossRef] [PubMed]
  17. M. J. Cox, G. Walsh, “Reliability and validity studies of a new computer-assisted crossed-cylinder aberroscope,” Optom. Vision Sci. 74, 570–580 (1997).
    [CrossRef]
  18. D. A. Atchison, M. J. Collins, C. F. Wildsoet, J. Christensen, M. D. Waterworth, “Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique,” Vision Res. 35, 313–323 (1995).
    [CrossRef] [PubMed]
  19. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1975), pp. 464–468.
  20. H. Howland, “Section of neurobiology and behaviour,” Cornell University, Ithaca, New York 14853-2702 (personal communication, August1997).
  21. H. H. Hopkins, “The application of frequency response techniques in optics,” Proc. Phys. Soc. 79, 889–919 (1962).
    [CrossRef]
  22. J. Liang, B. Grimm, S. Goelz, J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
    [CrossRef]
  23. G. Smith, R. A. Applegate, H. C. Howland, “The crossed-cylinder aberroscope: an alternative method of calculation of the aberrations,” Ophthalmic Physiol. Opt. 16, 222–229 (1996).
    [CrossRef] [PubMed]
  24. B. Winn, D. Whitaker, D. B. Elliott, N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Visual Sci. 35, 1132–1137 (1994).
  25. G. Walsh, W. N. Charman, H. C. Howland, “Objective technique for the determination of monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984).
    [CrossRef] [PubMed]
  26. G. Walsh, W. N. Charman, “Measurement of the axial wavefront aberration of the human eye,” Ophthalmic Physiol. Opt. 5, 23–31 (1985).
    [CrossRef] [PubMed]
  27. T. O. Salmon, L. N. Thibos, A. Bradley, “Comparison of the eye’s wave-front aberration measured psychophysically and with the Shack–Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15, 2457–2465 (1998).
    [CrossRef]
  28. M. C. W. Campbell, E. M. Harrison, P. Simonet, “Psychophysical measurement of the blur on the retina due to optical aberrations of the eye,” Vision Res. 30, 1587–1602 (1990).
    [CrossRef] [PubMed]
  29. P. Artal, I. Iglesias, N. López-Gil, D. G. Green, “Double-pass measurements of the retinal-image quality with unequal entrance and exit pupil sizes and the reversibility of the eye’s optical system,” J. Opt. Soc. Am. A 12, 2358–2366 (1995).
    [CrossRef]
  30. I. Iglesias, E. Berrio, P. Artal, “Estimates of the ocular wave aberration from pairs of double-pass retinal images,” J. Opt. Soc. Am. A 15, 2466–2476 (1998).
    [CrossRef]
  31. J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
    [CrossRef]
  32. R. Navarro, E. Moreno, C. Dorronsoro, “Monochromatic aberrations and point-spread functions of the human eye across the visual field,” J. Opt. Soc. Am. A 15, 2522–2529 (1998).
    [CrossRef]
  33. G. Smith, R. A. Applegate, D. A. Atchison, “Assessment of the accuracy of the crossed-cylinder aberroscope technique,” J. Opt. Soc. Am. A 15, 2477–2487 (1998).
    [CrossRef]
  34. J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
    [CrossRef]
  35. W. N. Charman, “Wavefront aberration of the eye: a review,” Optom. Vision Sci. 68, 574–583 (1991).
    [CrossRef]
  36. N. López-Gil, H. C. Howland, B. Howland, N. Charman, R. Applegate, “Generation of third-order spherical and coma aberrations by use of radially symmetrical fourth-order lenses,” J. Opt. Soc. Am. A 15, 2563–2571 (1998).
    [CrossRef]
  37. T. C. A. Jenkins, “Aberrations of the human eye and their effects on vision: Part 1,” Br. J. Physiol. Opt. 20, 59–91 (1963).
    [PubMed]
  38. J. Mustonen, J. Rovamo, R. Näsänen, “The effects of grating area and spatial frequency on contrast sensitivity as a function of light level,” Vision Res. 33, 2065–2072 (1993).
    [CrossRef] [PubMed]
  39. P. D. Spear, “Neural bases of visual deficits during aging,” Vision Res. 33, 2589–2609 (1993).
    [CrossRef] [PubMed]

1998 (6)

1997 (3)

J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
[CrossRef]

A. Guirao, M. Redondo, C. Gonzalez, E. Geragthy, S. Norrby, P. Artal, “Average optical modulation transfer function of the human eye in a normal population as a function of age,” Invest. Ophthalmol. Visual Sci. Suppl, 38, S1014 (1997).

M. J. Cox, G. Walsh, “Reliability and validity studies of a new computer-assisted crossed-cylinder aberroscope,” Optom. Vision Sci. 74, 570–580 (1997).
[CrossRef]

1996 (1)

G. Smith, R. A. Applegate, H. C. Howland, “The crossed-cylinder aberroscope: an alternative method of calculation of the aberrations,” Ophthalmic Physiol. Opt. 16, 222–229 (1996).
[CrossRef] [PubMed]

1995 (3)

D. A. Atchison, M. J. Collins, C. F. Wildsoet, J. Christensen, M. D. Waterworth, “Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique,” Vision Res. 35, 313–323 (1995).
[CrossRef] [PubMed]

G. Walsh, M. J. Cox, “A new computerised video-aberroscope for the determination of the aberration of the human eye,” Ophthalmic. Physiol. Opt. 15, 403–408 (1995).
[CrossRef] [PubMed]

P. Artal, I. Iglesias, N. López-Gil, D. G. Green, “Double-pass measurements of the retinal-image quality with unequal entrance and exit pupil sizes and the reversibility of the eye’s optical system,” J. Opt. Soc. Am. A 12, 2358–2366 (1995).
[CrossRef]

1994 (2)

J. Liang, B. Grimm, S. Goelz, J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
[CrossRef]

B. Winn, D. Whitaker, D. B. Elliott, N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Visual Sci. 35, 1132–1137 (1994).

1993 (4)

K. B. Burton, C. Owsley, M. E. Sloane, “Aging and neural spatial contrast sensitivity: photopic vision,” Vision Res. 33, 939–946 (1993).
[CrossRef] [PubMed]

J. Mustonen, J. Rovamo, R. Näsänen, “The effects of grating area and spatial frequency on contrast sensitivity as a function of light level,” Vision Res. 33, 2065–2072 (1993).
[CrossRef] [PubMed]

P. D. Spear, “Neural bases of visual deficits during aging,” Vision Res. 33, 2589–2609 (1993).
[CrossRef] [PubMed]

P. Artal, M. Ferro, I. Miranda, R. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10, 1656–1662 (1993).
[CrossRef] [PubMed]

1991 (4)

W. N. Charman, “Wavefront aberration of the eye: a review,” Optom. Vision Sci. 68, 574–583 (1991).
[CrossRef]

I. L. Bailey, M. A. Bullimore, “A new test for the evaluation of disability glare,” Optom. Vision Sci. 68, 911–917 (1991).
[CrossRef]

D. Regan, “Specific tests and specific blindnesses: keys, locks and parallel processing,” Optom. Vision Sci. 68, 489–512 (1991).
[CrossRef]

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

1990 (3)

J. K. IJspeert, P. W. T. De Waard, T. J. T. P. van den Berg, P. T. V. M. de Jong, “The intraocular straylight function in 129 healthy volunteers—dependence on angle, age and pigmentation,” Vision Res. 30, 699–707 (1990).
[CrossRef]

D. B. Elliott, D. Whitaker, D. MacVeigh, “Neural contribution to spatiotemporal contrast sensitivity decline in healthy aging eyes,” Vision Res. 30, 541–547 (1990).
[CrossRef]

M. C. W. Campbell, E. M. Harrison, P. Simonet, “Psychophysical measurement of the blur on the retina due to optical aberrations of the eye,” Vision Res. 30, 1587–1602 (1990).
[CrossRef] [PubMed]

1987 (1)

D. B. Elliott, “Contrast sensitivity decline with ageing: a neural or optical phenomenon?” Ophthalmic Physiol. Opt. 7, 415–419 (1987).
[CrossRef] [PubMed]

1985 (3)

C. Owsley, T. Gardner, R. Sekuler, H. Lieberman, “Role of the crystalline lens in the spatial vision loss of the elderly,” Invest. Ophthalmol. Visual Sci. 26, 1165–1170 (1985).

J. D. Morrison, C. McGrath, “Assessment of the optical contributions to the age related deterioration in vision,” Q. J. Exp. Physiol. 70, 249–269 (1985).
[PubMed]

G. Walsh, W. N. Charman, “Measurement of the axial wavefront aberration of the human eye,” Ophthalmic Physiol. Opt. 5, 23–31 (1985).
[CrossRef] [PubMed]

1984 (2)

1983 (1)

C. Owsley, R. Sekuler, D. Siemson, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983).
[CrossRef] [PubMed]

1977 (1)

1976 (1)

B. Howland, H. C. Howland, “Subjective measurement of higher order aberrations of the eye,” Science 193, 580–582 (1976).
[CrossRef] [PubMed]

1963 (1)

T. C. A. Jenkins, “Aberrations of the human eye and their effects on vision: Part 1,” Br. J. Physiol. Opt. 20, 59–91 (1963).
[PubMed]

1962 (1)

H. H. Hopkins, “The application of frequency response techniques in optics,” Proc. Phys. Soc. 79, 889–919 (1962).
[CrossRef]

Applegate, R.

Applegate, R. A.

G. Smith, R. A. Applegate, D. A. Atchison, “Assessment of the accuracy of the crossed-cylinder aberroscope technique,” J. Opt. Soc. Am. A 15, 2477–2487 (1998).
[CrossRef]

G. Smith, R. A. Applegate, H. C. Howland, “The crossed-cylinder aberroscope: an alternative method of calculation of the aberrations,” Ophthalmic Physiol. Opt. 16, 222–229 (1996).
[CrossRef] [PubMed]

Artal, P.

Atchison, D. A.

G. Smith, R. A. Applegate, D. A. Atchison, “Assessment of the accuracy of the crossed-cylinder aberroscope technique,” J. Opt. Soc. Am. A 15, 2477–2487 (1998).
[CrossRef]

D. A. Atchison, M. J. Collins, C. F. Wildsoet, J. Christensen, M. D. Waterworth, “Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique,” Vision Res. 35, 313–323 (1995).
[CrossRef] [PubMed]

Bailey, I. L.

I. L. Bailey, M. A. Bullimore, “A new test for the evaluation of disability glare,” Optom. Vision Sci. 68, 911–917 (1991).
[CrossRef]

Berrio, E.

Bille, J. F.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1975), pp. 464–468.

Bradley, A.

Bullimore, M. A.

I. L. Bailey, M. A. Bullimore, “A new test for the evaluation of disability glare,” Optom. Vision Sci. 68, 911–917 (1991).
[CrossRef]

Burns, S. A.

Burton, K. B.

K. B. Burton, C. Owsley, M. E. Sloane, “Aging and neural spatial contrast sensitivity: photopic vision,” Vision Res. 33, 939–946 (1993).
[CrossRef] [PubMed]

Campbell, M. C. W.

M. C. W. Campbell, E. M. Harrison, P. Simonet, “Psychophysical measurement of the blur on the retina due to optical aberrations of the eye,” Vision Res. 30, 1587–1602 (1990).
[CrossRef] [PubMed]

Charman, N.

Charman, W. N.

W. N. Charman, “Wavefront aberration of the eye: a review,” Optom. Vision Sci. 68, 574–583 (1991).
[CrossRef]

G. Walsh, W. N. Charman, “Measurement of the axial wavefront aberration of the human eye,” Ophthalmic Physiol. Opt. 5, 23–31 (1985).
[CrossRef] [PubMed]

G. Walsh, W. N. Charman, H. C. Howland, “Objective technique for the determination of monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984).
[CrossRef] [PubMed]

Christensen, J.

D. A. Atchison, M. J. Collins, C. F. Wildsoet, J. Christensen, M. D. Waterworth, “Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique,” Vision Res. 35, 313–323 (1995).
[CrossRef] [PubMed]

Collins, M. J.

D. A. Atchison, M. J. Collins, C. F. Wildsoet, J. Christensen, M. D. Waterworth, “Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique,” Vision Res. 35, 313–323 (1995).
[CrossRef] [PubMed]

Cox, M. J.

M. J. Cox, G. Walsh, “Reliability and validity studies of a new computer-assisted crossed-cylinder aberroscope,” Optom. Vision Sci. 74, 570–580 (1997).
[CrossRef]

G. Walsh, M. J. Cox, “A new computerised video-aberroscope for the determination of the aberration of the human eye,” Ophthalmic. Physiol. Opt. 15, 403–408 (1995).
[CrossRef] [PubMed]

de Jong, P. T. V. M.

J. K. IJspeert, P. W. T. De Waard, T. J. T. P. van den Berg, P. T. V. M. de Jong, “The intraocular straylight function in 129 healthy volunteers—dependence on angle, age and pigmentation,” Vision Res. 30, 699–707 (1990).
[CrossRef]

De Waard, P. W. T.

J. K. IJspeert, P. W. T. De Waard, T. J. T. P. van den Berg, P. T. V. M. de Jong, “The intraocular straylight function in 129 healthy volunteers—dependence on angle, age and pigmentation,” Vision Res. 30, 699–707 (1990).
[CrossRef]

Dorronsoro, C.

Elliott, D. B.

B. Winn, D. Whitaker, D. B. Elliott, N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Visual Sci. 35, 1132–1137 (1994).

D. B. Elliott, D. Whitaker, D. MacVeigh, “Neural contribution to spatiotemporal contrast sensitivity decline in healthy aging eyes,” Vision Res. 30, 541–547 (1990).
[CrossRef]

D. B. Elliott, “Contrast sensitivity decline with ageing: a neural or optical phenomenon?” Ophthalmic Physiol. Opt. 7, 415–419 (1987).
[CrossRef] [PubMed]

Ferro, M.

Gardner, T.

C. Owsley, T. Gardner, R. Sekuler, H. Lieberman, “Role of the crystalline lens in the spatial vision loss of the elderly,” Invest. Ophthalmol. Visual Sci. 26, 1165–1170 (1985).

Geragthy, E.

A. Guirao, M. Redondo, C. Gonzalez, E. Geragthy, S. Norrby, P. Artal, “Average optical modulation transfer function of the human eye in a normal population as a function of age,” Invest. Ophthalmol. Visual Sci. Suppl, 38, S1014 (1997).

Goelz, S.

Gonzalez, C.

A. Guirao, M. Redondo, C. Gonzalez, E. Geragthy, S. Norrby, P. Artal, “Average optical modulation transfer function of the human eye in a normal population as a function of age,” Invest. Ophthalmol. Visual Sci. Suppl, 38, S1014 (1997).

Green, D. G.

Grimm, B.

Guirao, A.

A. Guirao, M. Redondo, C. Gonzalez, E. Geragthy, S. Norrby, P. Artal, “Average optical modulation transfer function of the human eye in a normal population as a function of age,” Invest. Ophthalmol. Visual Sci. Suppl, 38, S1014 (1997).

Harrison, E. M.

M. C. W. Campbell, E. M. Harrison, P. Simonet, “Psychophysical measurement of the blur on the retina due to optical aberrations of the eye,” Vision Res. 30, 1587–1602 (1990).
[CrossRef] [PubMed]

He, J. C.

Hemenger, R. P.

Hopkins, H. H.

H. H. Hopkins, “The application of frequency response techniques in optics,” Proc. Phys. Soc. 79, 889–919 (1962).
[CrossRef]

Howland, B.

Howland, H.

H. Howland, “Section of neurobiology and behaviour,” Cornell University, Ithaca, New York 14853-2702 (personal communication, August1997).

Howland, H. C.

Iglesias, I.

IJspeert, J. K.

J. K. IJspeert, P. W. T. De Waard, T. J. T. P. van den Berg, P. T. V. M. de Jong, “The intraocular straylight function in 129 healthy volunteers—dependence on angle, age and pigmentation,” Vision Res. 30, 699–707 (1990).
[CrossRef]

Jenkins, T. C. A.

T. C. A. Jenkins, “Aberrations of the human eye and their effects on vision: Part 1,” Br. J. Physiol. Opt. 20, 59–91 (1963).
[PubMed]

Liang, J.

Lieberman, H.

C. Owsley, T. Gardner, R. Sekuler, H. Lieberman, “Role of the crystalline lens in the spatial vision loss of the elderly,” Invest. Ophthalmol. Visual Sci. 26, 1165–1170 (1985).

López-Gil, N.

MacVeigh, D.

D. B. Elliott, D. Whitaker, D. MacVeigh, “Neural contribution to spatiotemporal contrast sensitivity decline in healthy aging eyes,” Vision Res. 30, 541–547 (1990).
[CrossRef]

Marcos, S.

McGrath, C.

J. D. Morrison, C. McGrath, “Assessment of the optical contributions to the age related deterioration in vision,” Q. J. Exp. Physiol. 70, 249–269 (1985).
[PubMed]

Miranda, I.

Moreno, E.

Morrison, J. D.

J. D. Morrison, C. McGrath, “Assessment of the optical contributions to the age related deterioration in vision,” Q. J. Exp. Physiol. 70, 249–269 (1985).
[PubMed]

Mustonen, J.

J. Mustonen, J. Rovamo, R. Näsänen, “The effects of grating area and spatial frequency on contrast sensitivity as a function of light level,” Vision Res. 33, 2065–2072 (1993).
[CrossRef] [PubMed]

Näsänen, R.

J. Mustonen, J. Rovamo, R. Näsänen, “The effects of grating area and spatial frequency on contrast sensitivity as a function of light level,” Vision Res. 33, 2065–2072 (1993).
[CrossRef] [PubMed]

Navarro, R.

Norrby, S.

A. Guirao, M. Redondo, C. Gonzalez, E. Geragthy, S. Norrby, P. Artal, “Average optical modulation transfer function of the human eye in a normal population as a function of age,” Invest. Ophthalmol. Visual Sci. Suppl, 38, S1014 (1997).

Owsley, C.

K. B. Burton, C. Owsley, M. E. Sloane, “Aging and neural spatial contrast sensitivity: photopic vision,” Vision Res. 33, 939–946 (1993).
[CrossRef] [PubMed]

C. Owsley, T. Gardner, R. Sekuler, H. Lieberman, “Role of the crystalline lens in the spatial vision loss of the elderly,” Invest. Ophthalmol. Visual Sci. 26, 1165–1170 (1985).

C. Owsley, R. Sekuler, D. Siemson, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983).
[CrossRef] [PubMed]

Pelli, D. G.

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

Phillips, N. J.

B. Winn, D. Whitaker, D. B. Elliott, N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Visual Sci. 35, 1132–1137 (1994).

Redondo, M.

A. Guirao, M. Redondo, C. Gonzalez, E. Geragthy, S. Norrby, P. Artal, “Average optical modulation transfer function of the human eye in a normal population as a function of age,” Invest. Ophthalmol. Visual Sci. Suppl, 38, S1014 (1997).

Regan, D.

D. Regan, “Specific tests and specific blindnesses: keys, locks and parallel processing,” Optom. Vision Sci. 68, 489–512 (1991).
[CrossRef]

Rovamo, J.

J. Mustonen, J. Rovamo, R. Näsänen, “The effects of grating area and spatial frequency on contrast sensitivity as a function of light level,” Vision Res. 33, 2065–2072 (1993).
[CrossRef] [PubMed]

Salmon, T. O.

Sekuler, R.

C. Owsley, T. Gardner, R. Sekuler, H. Lieberman, “Role of the crystalline lens in the spatial vision loss of the elderly,” Invest. Ophthalmol. Visual Sci. 26, 1165–1170 (1985).

C. Owsley, R. Sekuler, D. Siemson, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983).
[CrossRef] [PubMed]

Siemson, D.

C. Owsley, R. Sekuler, D. Siemson, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983).
[CrossRef] [PubMed]

Simonet, P.

M. C. W. Campbell, E. M. Harrison, P. Simonet, “Psychophysical measurement of the blur on the retina due to optical aberrations of the eye,” Vision Res. 30, 1587–1602 (1990).
[CrossRef] [PubMed]

Sloane, M. E.

K. B. Burton, C. Owsley, M. E. Sloane, “Aging and neural spatial contrast sensitivity: photopic vision,” Vision Res. 33, 939–946 (1993).
[CrossRef] [PubMed]

Smith, G.

G. Smith, R. A. Applegate, D. A. Atchison, “Assessment of the accuracy of the crossed-cylinder aberroscope technique,” J. Opt. Soc. Am. A 15, 2477–2487 (1998).
[CrossRef]

G. Smith, R. A. Applegate, H. C. Howland, “The crossed-cylinder aberroscope: an alternative method of calculation of the aberrations,” Ophthalmic Physiol. Opt. 16, 222–229 (1996).
[CrossRef] [PubMed]

Spear, P. D.

P. D. Spear, “Neural bases of visual deficits during aging,” Vision Res. 33, 2589–2609 (1993).
[CrossRef] [PubMed]

Thibos, L. N.

van den Berg, T. J. T. P.

J. K. IJspeert, P. W. T. De Waard, T. J. T. P. van den Berg, P. T. V. M. de Jong, “The intraocular straylight function in 129 healthy volunteers—dependence on angle, age and pigmentation,” Vision Res. 30, 699–707 (1990).
[CrossRef]

Walsh, G.

M. J. Cox, G. Walsh, “Reliability and validity studies of a new computer-assisted crossed-cylinder aberroscope,” Optom. Vision Sci. 74, 570–580 (1997).
[CrossRef]

G. Walsh, M. J. Cox, “A new computerised video-aberroscope for the determination of the aberration of the human eye,” Ophthalmic. Physiol. Opt. 15, 403–408 (1995).
[CrossRef] [PubMed]

G. Walsh, W. N. Charman, “Measurement of the axial wavefront aberration of the human eye,” Ophthalmic Physiol. Opt. 5, 23–31 (1985).
[CrossRef] [PubMed]

G. Walsh, W. N. Charman, H. C. Howland, “Objective technique for the determination of monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984).
[CrossRef] [PubMed]

Waterworth, M. D.

D. A. Atchison, M. J. Collins, C. F. Wildsoet, J. Christensen, M. D. Waterworth, “Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique,” Vision Res. 35, 313–323 (1995).
[CrossRef] [PubMed]

Webb, R. H.

Whitaker, D.

B. Winn, D. Whitaker, D. B. Elliott, N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Visual Sci. 35, 1132–1137 (1994).

D. B. Elliott, D. Whitaker, D. MacVeigh, “Neural contribution to spatiotemporal contrast sensitivity decline in healthy aging eyes,” Vision Res. 30, 541–547 (1990).
[CrossRef]

Wildsoet, C. F.

D. A. Atchison, M. J. Collins, C. F. Wildsoet, J. Christensen, M. D. Waterworth, “Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique,” Vision Res. 35, 313–323 (1995).
[CrossRef] [PubMed]

Williams, D. R.

Winn, B.

B. Winn, D. Whitaker, D. B. Elliott, N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Visual Sci. 35, 1132–1137 (1994).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1975), pp. 464–468.

Zhang, L.

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

Appl. Opt. (1)

Br. J. Physiol. Opt. (1)

T. C. A. Jenkins, “Aberrations of the human eye and their effects on vision: Part 1,” Br. J. Physiol. Opt. 20, 59–91 (1963).
[PubMed]

Invest. Ophthalmol. Visual Sci. (2)

B. Winn, D. Whitaker, D. B. Elliott, N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Invest. Ophthalmol. Visual Sci. 35, 1132–1137 (1994).

C. Owsley, T. Gardner, R. Sekuler, H. Lieberman, “Role of the crystalline lens in the spatial vision loss of the elderly,” Invest. Ophthalmol. Visual Sci. 26, 1165–1170 (1985).

Invest. Ophthalmol. Visual Sci. Suppl (1)

A. Guirao, M. Redondo, C. Gonzalez, E. Geragthy, S. Norrby, P. Artal, “Average optical modulation transfer function of the human eye in a normal population as a function of age,” Invest. Ophthalmol. Visual Sci. Suppl, 38, S1014 (1997).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (11)

P. Artal, I. Iglesias, N. López-Gil, D. G. Green, “Double-pass measurements of the retinal-image quality with unequal entrance and exit pupil sizes and the reversibility of the eye’s optical system,” J. Opt. Soc. Am. A 12, 2358–2366 (1995).
[CrossRef]

J. Liang, B. Grimm, S. Goelz, J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
[CrossRef]

G. Walsh, W. N. Charman, H. C. Howland, “Objective technique for the determination of monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984).
[CrossRef] [PubMed]

J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
[CrossRef]

T. O. Salmon, L. N. Thibos, A. Bradley, “Comparison of the eye’s wave-front aberration measured psychophysically and with the Shack–Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15, 2457–2465 (1998).
[CrossRef]

I. Iglesias, E. Berrio, P. Artal, “Estimates of the ocular wave aberration from pairs of double-pass retinal images,” J. Opt. Soc. Am. A 15, 2466–2476 (1998).
[CrossRef]

G. Smith, R. A. Applegate, D. A. Atchison, “Assessment of the accuracy of the crossed-cylinder aberroscope technique,” J. Opt. Soc. Am. A 15, 2477–2487 (1998).
[CrossRef]

R. Navarro, E. Moreno, C. Dorronsoro, “Monochromatic aberrations and point-spread functions of the human eye across the visual field,” J. Opt. Soc. Am. A 15, 2522–2529 (1998).
[CrossRef]

N. López-Gil, H. C. Howland, B. Howland, N. Charman, R. Applegate, “Generation of third-order spherical and coma aberrations by use of radially symmetrical fourth-order lenses,” J. Opt. Soc. Am. A 15, 2563–2571 (1998).
[CrossRef]

J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
[CrossRef]

P. Artal, M. Ferro, I. Miranda, R. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10, 1656–1662 (1993).
[CrossRef] [PubMed]

Ophthalmic Physiol. Opt. (3)

G. Walsh, W. N. Charman, “Measurement of the axial wavefront aberration of the human eye,” Ophthalmic Physiol. Opt. 5, 23–31 (1985).
[CrossRef] [PubMed]

G. Smith, R. A. Applegate, H. C. Howland, “The crossed-cylinder aberroscope: an alternative method of calculation of the aberrations,” Ophthalmic Physiol. Opt. 16, 222–229 (1996).
[CrossRef] [PubMed]

D. B. Elliott, “Contrast sensitivity decline with ageing: a neural or optical phenomenon?” Ophthalmic Physiol. Opt. 7, 415–419 (1987).
[CrossRef] [PubMed]

Ophthalmic. Physiol. Opt. (1)

G. Walsh, M. J. Cox, “A new computerised video-aberroscope for the determination of the aberration of the human eye,” Ophthalmic. Physiol. Opt. 15, 403–408 (1995).
[CrossRef] [PubMed]

Optom. Vision Sci. (4)

M. J. Cox, G. Walsh, “Reliability and validity studies of a new computer-assisted crossed-cylinder aberroscope,” Optom. Vision Sci. 74, 570–580 (1997).
[CrossRef]

I. L. Bailey, M. A. Bullimore, “A new test for the evaluation of disability glare,” Optom. Vision Sci. 68, 911–917 (1991).
[CrossRef]

D. Regan, “Specific tests and specific blindnesses: keys, locks and parallel processing,” Optom. Vision Sci. 68, 489–512 (1991).
[CrossRef]

W. N. Charman, “Wavefront aberration of the eye: a review,” Optom. Vision Sci. 68, 574–583 (1991).
[CrossRef]

Proc. Phys. Soc. (1)

H. H. Hopkins, “The application of frequency response techniques in optics,” Proc. Phys. Soc. 79, 889–919 (1962).
[CrossRef]

Q. J. Exp. Physiol. (1)

J. D. Morrison, C. McGrath, “Assessment of the optical contributions to the age related deterioration in vision,” Q. J. Exp. Physiol. 70, 249–269 (1985).
[PubMed]

Science (1)

B. Howland, H. C. Howland, “Subjective measurement of higher order aberrations of the eye,” Science 193, 580–582 (1976).
[CrossRef] [PubMed]

Vision Res. (9)

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

D. A. Atchison, M. J. Collins, C. F. Wildsoet, J. Christensen, M. D. Waterworth, “Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique,” Vision Res. 35, 313–323 (1995).
[CrossRef] [PubMed]

C. Owsley, R. Sekuler, D. Siemson, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689–699 (1983).
[CrossRef] [PubMed]

K. B. Burton, C. Owsley, M. E. Sloane, “Aging and neural spatial contrast sensitivity: photopic vision,” Vision Res. 33, 939–946 (1993).
[CrossRef] [PubMed]

D. B. Elliott, D. Whitaker, D. MacVeigh, “Neural contribution to spatiotemporal contrast sensitivity decline in healthy aging eyes,” Vision Res. 30, 541–547 (1990).
[CrossRef]

J. K. IJspeert, P. W. T. De Waard, T. J. T. P. van den Berg, P. T. V. M. de Jong, “The intraocular straylight function in 129 healthy volunteers—dependence on angle, age and pigmentation,” Vision Res. 30, 699–707 (1990).
[CrossRef]

M. C. W. Campbell, E. M. Harrison, P. Simonet, “Psychophysical measurement of the blur on the retina due to optical aberrations of the eye,” Vision Res. 30, 1587–1602 (1990).
[CrossRef] [PubMed]

J. Mustonen, J. Rovamo, R. Näsänen, “The effects of grating area and spatial frequency on contrast sensitivity as a function of light level,” Vision Res. 33, 2065–2072 (1993).
[CrossRef] [PubMed]

P. D. Spear, “Neural bases of visual deficits during aging,” Vision Res. 33, 2589–2609 (1993).
[CrossRef] [PubMed]

Other (2)

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1975), pp. 464–468.

H. Howland, “Section of neurobiology and behaviour,” Cornell University, Ithaca, New York 14853-2702 (personal communication, August1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the aberroscope system. L1–L3, lenses; B1–B4, beam splitters; M1,M2 mirrors; A, aperture; G, graticule. The aberroscope receives light with a vergence of -1.50 D after refraction of the collimated light from the laser by a -50-D lens, L1. The retinal grid image is received by the cooled CCD camera via a 10-D objective lens, L2. An image of the entrance pupil of the eye is obtained by beam splitters B2, B3, and B4 and formed at a second CCD camera by objective lens L3. The graticule, G, can be used to align this image of the entrance pupil with the chief ray of the aberroscope (see text for details). This graticule is conjugate with the plane of the entrance pupil of the eye and the CCD camera. It is positioned to be coincident with the center of the aberroscope grid, hence allowing alignment of the grid on the pupil center.

Fig. 2
Fig. 2

Scatterplot showing the measured and predicted values of the C11 Zernike coefficient for a series of 13 model eyes exhibiting both positive and negative spherical aberration. The solid line shows the line of equality between measured and predicted values. The dashed line shows the regression of the measured value onto the predicted value.

Fig. 3
Fig. 3

Contour plots of wave-front aberration for a model eye constructed from a PMMA button with an ellipsoidal front surface and a plane back surface and a diffuse plane reflector to act as a retina. Apical radius of curvature of the button is 7.396 mm, p value is 0.755 and center thickness is 4.75 mm. The horizontal and vertical scales show positive values representing displacement upward and to the right as we travel along the direction of a ray as it enters the model eye. Contour intervals are separated by 0.5 μm with 0 at the pupil center; solid lines show at every 5th contour interval. All wave-front aberration is positive in this case; (a) radially symmetric predicted wave-front aberration calculated from the physical parameters of the model eye, (b) wave-front aberration measured with the crossed-cylinder aberroscope.

Fig. 4
Fig. 4

Log CSF’s for the younger subject group (circles, solid curve) and the older subject group (squares, dashed curve). Error bars show ±1 standard error of the mean (SEM).

Fig. 5
Fig. 5

CSF’s for the younger subject group (circles, solid curve) and the older subject group (squares, dashed curve). Error bars show ±1 SEM.

Fig. 6
Fig. 6

MTF’s for the younger subject group (circles, solid curve) and the older subject group (squares, dashed curve) for a 4-mm pupil diameter. Error bars show ±1 SEM.

Fig. 7
Fig. 7

MTF’s for the younger subject group (circles, solid curve) and the older subject group (squares, dashed curve) for a 6-mm pupil diameter. Error bars show ±1 SEM.

Fig. 8
Fig. 8

MTF’s for the younger subject group (circles, solid curve) and the older subject group (squares, dashed curve) for a natural pupil diameter. Error bars show ±1 SEM.

Tables (4)

Tables Icon

Table 1 Zernike Polynomial Terms

Tables Icon

Table 2 4th-Order Zernike Polynomial Coefficients, C12C15, for a 6-mm Pupil Diameter for Measurement of 13 Rotationally Symmetrical Model Eyes

Tables Icon

Table 3 3rd- and 4th-Order Zernike Polynomial Coefficients C7C15 (mean±standard deviation)

Tables Icon

Table 4 3rd- and 4th-Order Components of RMS Wave-Front Aberration (mean±standard deviation)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

W(x, y)=a+bx+cy+dx2+exy+fy2+gx3+hx2y+ixy2+jy3+kx4+lx3y+mx2y2+nxy3+oy4,
W(X, Y)=iCiZi,
0.94×predictedvalue-0.005.

Metrics