Abstract

A new sensing method for measuring flow velocity distribution directly by using low-coherence interference techniques is proposed and demonstrated. In this method a temporally fluctuating signal, not the Doppler frequency shift, is detected. Theoretical analysis shows that a spectrum of light backscattered from a particle takes a Gaussian form whose width is simply proportional to the flow velocity. The measured velocity is in good agreement with the actual flow velocity derived from the flow rate. The dynamic range of this sensing method is governed by the frequency range of the fast-Fourier-transform processor used and is estimated to be 1.4×10-414 m/s. The depth position can be adjusted with an accuracy of approximately 30 μm, which is determined by the coherence length of the light source.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Z. Cummins, N. Knable, Y. Yeh, “Observation of diffusion broadening of Rayleigh scattered light,” Phys. Rev. Lett. 12, 150–153 (1964).
    [CrossRef]
  2. M. J. Rudd, “The laser anemometer—a review,” Opt. Laser Technol. 3, 200–207 (1971).
    [CrossRef]
  3. J. B. Abbiss, T. W. Chubb, E. R. Pike, “Laser Doppler anemometry,” Opt. Laser Technol. 6, 249–261 (1974).
    [CrossRef]
  4. J. T. Ator, “Image-velocity sensing with parallel-slit recticles,” J. Opt. Soc. Am. 53, 1416–1422 (1963).
    [CrossRef]
  5. M. Gaster, “A new technique for the measurement of low fluid velocities,” J. Fluid Mech. 20, 183–192 (1964).
    [CrossRef]
  6. Y. Aizu, T. Asakura, “Principles and development of spatial filtering velocimetry,” Appl. Phys. B: Photophys. Laser Chem. 43, 209–224 (1987).
    [CrossRef]
  7. G. Stavis, “Optical diffraction velocimeter,” Instrum. Control Syst. 39, 99–102 (1966).
  8. V. V. Anismov, S. M. Kozel, G. R. Lokshin, “Space–time statistical properties of coherent radiation scattered by a moving diffuse reflector,” Opt. Spectrosc. (USSR) 27, 258–262 (1969).
  9. M. D. Stern, “In vivo evaluation of micro-circulation by coherent light scattering,” Nature 254, 56–58 (1975).
    [CrossRef] [PubMed]
  10. Y. Imai, H. Fujii, “High-particle-density flowmetry by use of a SLD,” in Optics in Complex Systems, F. Lanzl, H.-J. Preuss, G. Weigelt, eds., Proc. SPIE1319, 532–533 (1990).
    [CrossRef]
  11. W. J. O. Boyle, A. W. Palmer, K. T. V. Grattan, “A fluid flow measuring system using low coherence optical fiber Doppler anemometry,” in Proceedings of the 7th Optical Fiber Sensors ConferenceS. Rashleigh, ed. (The Institute of Radio and Electronic Engineers, Sydney, 1990), pp. 357–360.
  12. V. Gusmeroli, M. Martinelli, “Distributed laser Doppler velocimeter,” Opt. Lett. 17, 1358–1360 (1991).
    [CrossRef]
  13. D. A. Boas, K. K. Bizheva, A. M. Siegel, “Using dynamic low-coherence interferometry to image Brownian motion within highly scattering media,” Opt. Lett. 23, 319–321 (1998).
    [CrossRef]

1998 (1)

1991 (1)

1987 (1)

Y. Aizu, T. Asakura, “Principles and development of spatial filtering velocimetry,” Appl. Phys. B: Photophys. Laser Chem. 43, 209–224 (1987).
[CrossRef]

1975 (1)

M. D. Stern, “In vivo evaluation of micro-circulation by coherent light scattering,” Nature 254, 56–58 (1975).
[CrossRef] [PubMed]

1974 (1)

J. B. Abbiss, T. W. Chubb, E. R. Pike, “Laser Doppler anemometry,” Opt. Laser Technol. 6, 249–261 (1974).
[CrossRef]

1971 (1)

M. J. Rudd, “The laser anemometer—a review,” Opt. Laser Technol. 3, 200–207 (1971).
[CrossRef]

1969 (1)

V. V. Anismov, S. M. Kozel, G. R. Lokshin, “Space–time statistical properties of coherent radiation scattered by a moving diffuse reflector,” Opt. Spectrosc. (USSR) 27, 258–262 (1969).

1966 (1)

G. Stavis, “Optical diffraction velocimeter,” Instrum. Control Syst. 39, 99–102 (1966).

1964 (2)

M. Gaster, “A new technique for the measurement of low fluid velocities,” J. Fluid Mech. 20, 183–192 (1964).
[CrossRef]

H. Z. Cummins, N. Knable, Y. Yeh, “Observation of diffusion broadening of Rayleigh scattered light,” Phys. Rev. Lett. 12, 150–153 (1964).
[CrossRef]

1963 (1)

Abbiss, J. B.

J. B. Abbiss, T. W. Chubb, E. R. Pike, “Laser Doppler anemometry,” Opt. Laser Technol. 6, 249–261 (1974).
[CrossRef]

Aizu, Y.

Y. Aizu, T. Asakura, “Principles and development of spatial filtering velocimetry,” Appl. Phys. B: Photophys. Laser Chem. 43, 209–224 (1987).
[CrossRef]

Anismov, V. V.

V. V. Anismov, S. M. Kozel, G. R. Lokshin, “Space–time statistical properties of coherent radiation scattered by a moving diffuse reflector,” Opt. Spectrosc. (USSR) 27, 258–262 (1969).

Asakura, T.

Y. Aizu, T. Asakura, “Principles and development of spatial filtering velocimetry,” Appl. Phys. B: Photophys. Laser Chem. 43, 209–224 (1987).
[CrossRef]

Ator, J. T.

Bizheva, K. K.

Boas, D. A.

Boyle, W. J. O.

W. J. O. Boyle, A. W. Palmer, K. T. V. Grattan, “A fluid flow measuring system using low coherence optical fiber Doppler anemometry,” in Proceedings of the 7th Optical Fiber Sensors ConferenceS. Rashleigh, ed. (The Institute of Radio and Electronic Engineers, Sydney, 1990), pp. 357–360.

Chubb, T. W.

J. B. Abbiss, T. W. Chubb, E. R. Pike, “Laser Doppler anemometry,” Opt. Laser Technol. 6, 249–261 (1974).
[CrossRef]

Cummins, H. Z.

H. Z. Cummins, N. Knable, Y. Yeh, “Observation of diffusion broadening of Rayleigh scattered light,” Phys. Rev. Lett. 12, 150–153 (1964).
[CrossRef]

Fujii, H.

Y. Imai, H. Fujii, “High-particle-density flowmetry by use of a SLD,” in Optics in Complex Systems, F. Lanzl, H.-J. Preuss, G. Weigelt, eds., Proc. SPIE1319, 532–533 (1990).
[CrossRef]

Gaster, M.

M. Gaster, “A new technique for the measurement of low fluid velocities,” J. Fluid Mech. 20, 183–192 (1964).
[CrossRef]

Grattan, K. T. V.

W. J. O. Boyle, A. W. Palmer, K. T. V. Grattan, “A fluid flow measuring system using low coherence optical fiber Doppler anemometry,” in Proceedings of the 7th Optical Fiber Sensors ConferenceS. Rashleigh, ed. (The Institute of Radio and Electronic Engineers, Sydney, 1990), pp. 357–360.

Gusmeroli, V.

Imai, Y.

Y. Imai, H. Fujii, “High-particle-density flowmetry by use of a SLD,” in Optics in Complex Systems, F. Lanzl, H.-J. Preuss, G. Weigelt, eds., Proc. SPIE1319, 532–533 (1990).
[CrossRef]

Knable, N.

H. Z. Cummins, N. Knable, Y. Yeh, “Observation of diffusion broadening of Rayleigh scattered light,” Phys. Rev. Lett. 12, 150–153 (1964).
[CrossRef]

Kozel, S. M.

V. V. Anismov, S. M. Kozel, G. R. Lokshin, “Space–time statistical properties of coherent radiation scattered by a moving diffuse reflector,” Opt. Spectrosc. (USSR) 27, 258–262 (1969).

Lokshin, G. R.

V. V. Anismov, S. M. Kozel, G. R. Lokshin, “Space–time statistical properties of coherent radiation scattered by a moving diffuse reflector,” Opt. Spectrosc. (USSR) 27, 258–262 (1969).

Martinelli, M.

Palmer, A. W.

W. J. O. Boyle, A. W. Palmer, K. T. V. Grattan, “A fluid flow measuring system using low coherence optical fiber Doppler anemometry,” in Proceedings of the 7th Optical Fiber Sensors ConferenceS. Rashleigh, ed. (The Institute of Radio and Electronic Engineers, Sydney, 1990), pp. 357–360.

Pike, E. R.

J. B. Abbiss, T. W. Chubb, E. R. Pike, “Laser Doppler anemometry,” Opt. Laser Technol. 6, 249–261 (1974).
[CrossRef]

Rudd, M. J.

M. J. Rudd, “The laser anemometer—a review,” Opt. Laser Technol. 3, 200–207 (1971).
[CrossRef]

Siegel, A. M.

Stavis, G.

G. Stavis, “Optical diffraction velocimeter,” Instrum. Control Syst. 39, 99–102 (1966).

Stern, M. D.

M. D. Stern, “In vivo evaluation of micro-circulation by coherent light scattering,” Nature 254, 56–58 (1975).
[CrossRef] [PubMed]

Yeh, Y.

H. Z. Cummins, N. Knable, Y. Yeh, “Observation of diffusion broadening of Rayleigh scattered light,” Phys. Rev. Lett. 12, 150–153 (1964).
[CrossRef]

Appl. Phys. B: Photophys. Laser Chem. (1)

Y. Aizu, T. Asakura, “Principles and development of spatial filtering velocimetry,” Appl. Phys. B: Photophys. Laser Chem. 43, 209–224 (1987).
[CrossRef]

Instrum. Control Syst. (1)

G. Stavis, “Optical diffraction velocimeter,” Instrum. Control Syst. 39, 99–102 (1966).

J. Fluid Mech. (1)

M. Gaster, “A new technique for the measurement of low fluid velocities,” J. Fluid Mech. 20, 183–192 (1964).
[CrossRef]

J. Opt. Soc. Am. (1)

Nature (1)

M. D. Stern, “In vivo evaluation of micro-circulation by coherent light scattering,” Nature 254, 56–58 (1975).
[CrossRef] [PubMed]

Opt. Laser Technol. (2)

M. J. Rudd, “The laser anemometer—a review,” Opt. Laser Technol. 3, 200–207 (1971).
[CrossRef]

J. B. Abbiss, T. W. Chubb, E. R. Pike, “Laser Doppler anemometry,” Opt. Laser Technol. 6, 249–261 (1974).
[CrossRef]

Opt. Lett. (2)

Opt. Spectrosc. (USSR) (1)

V. V. Anismov, S. M. Kozel, G. R. Lokshin, “Space–time statistical properties of coherent radiation scattered by a moving diffuse reflector,” Opt. Spectrosc. (USSR) 27, 258–262 (1969).

Phys. Rev. Lett. (1)

H. Z. Cummins, N. Knable, Y. Yeh, “Observation of diffusion broadening of Rayleigh scattered light,” Phys. Rev. Lett. 12, 150–153 (1964).
[CrossRef]

Other (2)

Y. Imai, H. Fujii, “High-particle-density flowmetry by use of a SLD,” in Optics in Complex Systems, F. Lanzl, H.-J. Preuss, G. Weigelt, eds., Proc. SPIE1319, 532–533 (1990).
[CrossRef]

W. J. O. Boyle, A. W. Palmer, K. T. V. Grattan, “A fluid flow measuring system using low coherence optical fiber Doppler anemometry,” in Proceedings of the 7th Optical Fiber Sensors ConferenceS. Rashleigh, ed. (The Institute of Radio and Electronic Engineers, Sydney, 1990), pp. 357–360.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of a low-coherence interferometer for measuring distributed flow velocity: PD, photodetector; L, lens.

Fig. 2
Fig. 2

Visibility of a low-coherence interferometer as a function of path difference.

Fig. 3
Fig. 3

Configuration of the flow passage.

Fig. 4
Fig. 4

Typical Fourier spectra of interference output at three depth positions, d=56, 75, and 132 μm, at mean flow velocity U=58 mm/s.

Fig. 5
Fig. 5

Flow velocity distribution measured from spectral width. The mean flow velocity is set at the values of U shown. Solid curves are theoretical curves calculated from Eq. (8) with the mean velocity.

Fig. 6
Fig. 6

Fourier spectra for three Intralipid density levels, ρ=0.1%, 0.2%, and 0.4%, for depth position d=150 μm and mean velocity U=60 mm/s.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Er(t)=Ara(ν)exp(-i2πνt)dν,
Es(t-τ)=Asa(ν)exp[-i2πν(t-τ)]dν,
I(t;τ)=|Er(t)+Es(t-τ)|2,=I0+2ArAs(t)Re[Γ(τ)],
Γ(τ)=G(ν)exp(-i2πτν)dν,
lcλ2/Δλ,
S(f )=ArAs(t)exp(-i2πft)dt,
As(t)=nAn exp-(t-tn)22T2,
S(f )=2πArT exp(-2π2T2f2)nAn exp(-i2πftn).
Δt=1w0lcuρ,
S(f )=2πArTA exp(-2π2T2f2)×exp[-i2π(N-1)ftn] sin(πNΔtf )sin(πΔtf ).
u=-ax(x-b),
I(t; τ)=I0+12Ar2 cos(2πνct)+18 Ar2 cos(4πνct)+ArAs(t)[1+cos(2πνct)]Re[Γ(τ)].
Ie(t; τ)=12Ar2+ArAs(t)Re[Γ(τ)].

Metrics