Abstract

A resolution enhancement technique for optical microlithography based on coherent multiple imaging was investigated with use of Prolith/2 (a commercial lithographic simulation tool). It was shown that a Fabry–Perot etalon placed between the mask and the projection lens of an optical stepper could be interpreted as an appropriate transmission-phase pupil-plane filter. While previous calculations were able to evaluate simple patterns (such as an on-axis contact hole), this new approach also allows the simulation of complex mask patterns. Evaluation of the point-spread function of the optical systems by means of coherent multiple imaging showed that an optimized filter is capable of increasing the resolution by 28% and the depth of focus by 150%.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Erdélyi, Z. L. Horváth, G. Szabo, Zs. Bor, F. K. Tittel, J. R. Cavallaro, M. C. Smayling, “Generation of diffraction-free beams for application in optical microlithography,” J. Vac. Sci. Technol. B 15, 287–292 (1997).
    [CrossRef]
  2. Z. L. Horváth, M. Erdélyi, G. Szabo, Zs. Bor, F. K. Tittel, J. R. Cavallaro, “Generation of nearly nondiffracting Bessel beams with a Fabry–Perot interferometer,” J. Opt. Soc. Am. A 14, 3009–3013 (1997).
    [CrossRef]
  3. M. Erdélyi, A. Kroyen, K. Osvay, Z. Bor, W. L. Wilson, M. C. Smayling, F. K. Tittel, “Coherent multiple imaging by means of pupil plane filtering,” in Optical Microlitho graphy XII, L. van den Hove, ed., Proc. SPIE3679, 439 (1999).
  4. H. Fukuda, T. Terasawa, S. Okazaki, “Spatial filtering for depth of focus and resolution enhancement in optical lithography,” J. Vac. Sci. Technol. B 9, 3113–3116 (1991).
    [CrossRef]
  5. R. von Bünau, G. Owen, R. F. W. Pease, “Depth of focus enhancement in optical lithography,” J. Vac. Sci. Technol. B 10, 3047–3054 (1992).
    [CrossRef]
  6. T. Horiuchi, K. Harada, S. Matsuo, Y. Takeuchi, E. Tamechika, Y. Mimura, “Resolution enhancement by oblique illumination optical lithography using a transmittance-adjusted pupil filter,” Jpn. J. Appl. Phys. 34, 1698–1708 (1995).
    [CrossRef]
  7. M. Erdélyi, Zs. Bor, G. Szabo, F. K. Tittel, “Enhanced microlithography using coated objective and image duplication,” in Optical Microlithography XI, L. van den Hove, ed., Proc. SPIE3334, 579–589 (1998).
    [CrossRef]
  8. Chris A. Mack, Inside Prolith™; a Comprehensive Guide to Optical Lithography Simulation (FINLE Technologies, Inc., Austin, Tex., 1997).

1997 (2)

M. Erdélyi, Z. L. Horváth, G. Szabo, Zs. Bor, F. K. Tittel, J. R. Cavallaro, M. C. Smayling, “Generation of diffraction-free beams for application in optical microlithography,” J. Vac. Sci. Technol. B 15, 287–292 (1997).
[CrossRef]

Z. L. Horváth, M. Erdélyi, G. Szabo, Zs. Bor, F. K. Tittel, J. R. Cavallaro, “Generation of nearly nondiffracting Bessel beams with a Fabry–Perot interferometer,” J. Opt. Soc. Am. A 14, 3009–3013 (1997).
[CrossRef]

1995 (1)

T. Horiuchi, K. Harada, S. Matsuo, Y. Takeuchi, E. Tamechika, Y. Mimura, “Resolution enhancement by oblique illumination optical lithography using a transmittance-adjusted pupil filter,” Jpn. J. Appl. Phys. 34, 1698–1708 (1995).
[CrossRef]

1992 (1)

R. von Bünau, G. Owen, R. F. W. Pease, “Depth of focus enhancement in optical lithography,” J. Vac. Sci. Technol. B 10, 3047–3054 (1992).
[CrossRef]

1991 (1)

H. Fukuda, T. Terasawa, S. Okazaki, “Spatial filtering for depth of focus and resolution enhancement in optical lithography,” J. Vac. Sci. Technol. B 9, 3113–3116 (1991).
[CrossRef]

Bor, Z.

M. Erdélyi, A. Kroyen, K. Osvay, Z. Bor, W. L. Wilson, M. C. Smayling, F. K. Tittel, “Coherent multiple imaging by means of pupil plane filtering,” in Optical Microlitho graphy XII, L. van den Hove, ed., Proc. SPIE3679, 439 (1999).

Bor, Zs.

Z. L. Horváth, M. Erdélyi, G. Szabo, Zs. Bor, F. K. Tittel, J. R. Cavallaro, “Generation of nearly nondiffracting Bessel beams with a Fabry–Perot interferometer,” J. Opt. Soc. Am. A 14, 3009–3013 (1997).
[CrossRef]

M. Erdélyi, Z. L. Horváth, G. Szabo, Zs. Bor, F. K. Tittel, J. R. Cavallaro, M. C. Smayling, “Generation of diffraction-free beams for application in optical microlithography,” J. Vac. Sci. Technol. B 15, 287–292 (1997).
[CrossRef]

M. Erdélyi, Zs. Bor, G. Szabo, F. K. Tittel, “Enhanced microlithography using coated objective and image duplication,” in Optical Microlithography XI, L. van den Hove, ed., Proc. SPIE3334, 579–589 (1998).
[CrossRef]

Cavallaro, J. R.

Z. L. Horváth, M. Erdélyi, G. Szabo, Zs. Bor, F. K. Tittel, J. R. Cavallaro, “Generation of nearly nondiffracting Bessel beams with a Fabry–Perot interferometer,” J. Opt. Soc. Am. A 14, 3009–3013 (1997).
[CrossRef]

M. Erdélyi, Z. L. Horváth, G. Szabo, Zs. Bor, F. K. Tittel, J. R. Cavallaro, M. C. Smayling, “Generation of diffraction-free beams for application in optical microlithography,” J. Vac. Sci. Technol. B 15, 287–292 (1997).
[CrossRef]

Erdélyi, M.

M. Erdélyi, Z. L. Horváth, G. Szabo, Zs. Bor, F. K. Tittel, J. R. Cavallaro, M. C. Smayling, “Generation of diffraction-free beams for application in optical microlithography,” J. Vac. Sci. Technol. B 15, 287–292 (1997).
[CrossRef]

Z. L. Horváth, M. Erdélyi, G. Szabo, Zs. Bor, F. K. Tittel, J. R. Cavallaro, “Generation of nearly nondiffracting Bessel beams with a Fabry–Perot interferometer,” J. Opt. Soc. Am. A 14, 3009–3013 (1997).
[CrossRef]

M. Erdélyi, A. Kroyen, K. Osvay, Z. Bor, W. L. Wilson, M. C. Smayling, F. K. Tittel, “Coherent multiple imaging by means of pupil plane filtering,” in Optical Microlitho graphy XII, L. van den Hove, ed., Proc. SPIE3679, 439 (1999).

M. Erdélyi, Zs. Bor, G. Szabo, F. K. Tittel, “Enhanced microlithography using coated objective and image duplication,” in Optical Microlithography XI, L. van den Hove, ed., Proc. SPIE3334, 579–589 (1998).
[CrossRef]

Fukuda, H.

H. Fukuda, T. Terasawa, S. Okazaki, “Spatial filtering for depth of focus and resolution enhancement in optical lithography,” J. Vac. Sci. Technol. B 9, 3113–3116 (1991).
[CrossRef]

Harada, K.

T. Horiuchi, K. Harada, S. Matsuo, Y. Takeuchi, E. Tamechika, Y. Mimura, “Resolution enhancement by oblique illumination optical lithography using a transmittance-adjusted pupil filter,” Jpn. J. Appl. Phys. 34, 1698–1708 (1995).
[CrossRef]

Horiuchi, T.

T. Horiuchi, K. Harada, S. Matsuo, Y. Takeuchi, E. Tamechika, Y. Mimura, “Resolution enhancement by oblique illumination optical lithography using a transmittance-adjusted pupil filter,” Jpn. J. Appl. Phys. 34, 1698–1708 (1995).
[CrossRef]

Horváth, Z. L.

Z. L. Horváth, M. Erdélyi, G. Szabo, Zs. Bor, F. K. Tittel, J. R. Cavallaro, “Generation of nearly nondiffracting Bessel beams with a Fabry–Perot interferometer,” J. Opt. Soc. Am. A 14, 3009–3013 (1997).
[CrossRef]

M. Erdélyi, Z. L. Horváth, G. Szabo, Zs. Bor, F. K. Tittel, J. R. Cavallaro, M. C. Smayling, “Generation of diffraction-free beams for application in optical microlithography,” J. Vac. Sci. Technol. B 15, 287–292 (1997).
[CrossRef]

Kroyen, A.

M. Erdélyi, A. Kroyen, K. Osvay, Z. Bor, W. L. Wilson, M. C. Smayling, F. K. Tittel, “Coherent multiple imaging by means of pupil plane filtering,” in Optical Microlitho graphy XII, L. van den Hove, ed., Proc. SPIE3679, 439 (1999).

Mack, Chris A.

Chris A. Mack, Inside Prolith™; a Comprehensive Guide to Optical Lithography Simulation (FINLE Technologies, Inc., Austin, Tex., 1997).

Matsuo, S.

T. Horiuchi, K. Harada, S. Matsuo, Y. Takeuchi, E. Tamechika, Y. Mimura, “Resolution enhancement by oblique illumination optical lithography using a transmittance-adjusted pupil filter,” Jpn. J. Appl. Phys. 34, 1698–1708 (1995).
[CrossRef]

Mimura, Y.

T. Horiuchi, K. Harada, S. Matsuo, Y. Takeuchi, E. Tamechika, Y. Mimura, “Resolution enhancement by oblique illumination optical lithography using a transmittance-adjusted pupil filter,” Jpn. J. Appl. Phys. 34, 1698–1708 (1995).
[CrossRef]

Okazaki, S.

H. Fukuda, T. Terasawa, S. Okazaki, “Spatial filtering for depth of focus and resolution enhancement in optical lithography,” J. Vac. Sci. Technol. B 9, 3113–3116 (1991).
[CrossRef]

Osvay, K.

M. Erdélyi, A. Kroyen, K. Osvay, Z. Bor, W. L. Wilson, M. C. Smayling, F. K. Tittel, “Coherent multiple imaging by means of pupil plane filtering,” in Optical Microlitho graphy XII, L. van den Hove, ed., Proc. SPIE3679, 439 (1999).

Owen, G.

R. von Bünau, G. Owen, R. F. W. Pease, “Depth of focus enhancement in optical lithography,” J. Vac. Sci. Technol. B 10, 3047–3054 (1992).
[CrossRef]

Pease, R. F. W.

R. von Bünau, G. Owen, R. F. W. Pease, “Depth of focus enhancement in optical lithography,” J. Vac. Sci. Technol. B 10, 3047–3054 (1992).
[CrossRef]

Smayling, M. C.

M. Erdélyi, Z. L. Horváth, G. Szabo, Zs. Bor, F. K. Tittel, J. R. Cavallaro, M. C. Smayling, “Generation of diffraction-free beams for application in optical microlithography,” J. Vac. Sci. Technol. B 15, 287–292 (1997).
[CrossRef]

M. Erdélyi, A. Kroyen, K. Osvay, Z. Bor, W. L. Wilson, M. C. Smayling, F. K. Tittel, “Coherent multiple imaging by means of pupil plane filtering,” in Optical Microlitho graphy XII, L. van den Hove, ed., Proc. SPIE3679, 439 (1999).

Szabo, G.

Z. L. Horváth, M. Erdélyi, G. Szabo, Zs. Bor, F. K. Tittel, J. R. Cavallaro, “Generation of nearly nondiffracting Bessel beams with a Fabry–Perot interferometer,” J. Opt. Soc. Am. A 14, 3009–3013 (1997).
[CrossRef]

M. Erdélyi, Z. L. Horváth, G. Szabo, Zs. Bor, F. K. Tittel, J. R. Cavallaro, M. C. Smayling, “Generation of diffraction-free beams for application in optical microlithography,” J. Vac. Sci. Technol. B 15, 287–292 (1997).
[CrossRef]

M. Erdélyi, Zs. Bor, G. Szabo, F. K. Tittel, “Enhanced microlithography using coated objective and image duplication,” in Optical Microlithography XI, L. van den Hove, ed., Proc. SPIE3334, 579–589 (1998).
[CrossRef]

Takeuchi, Y.

T. Horiuchi, K. Harada, S. Matsuo, Y. Takeuchi, E. Tamechika, Y. Mimura, “Resolution enhancement by oblique illumination optical lithography using a transmittance-adjusted pupil filter,” Jpn. J. Appl. Phys. 34, 1698–1708 (1995).
[CrossRef]

Tamechika, E.

T. Horiuchi, K. Harada, S. Matsuo, Y. Takeuchi, E. Tamechika, Y. Mimura, “Resolution enhancement by oblique illumination optical lithography using a transmittance-adjusted pupil filter,” Jpn. J. Appl. Phys. 34, 1698–1708 (1995).
[CrossRef]

Terasawa, T.

H. Fukuda, T. Terasawa, S. Okazaki, “Spatial filtering for depth of focus and resolution enhancement in optical lithography,” J. Vac. Sci. Technol. B 9, 3113–3116 (1991).
[CrossRef]

Tittel, F. K.

M. Erdélyi, Z. L. Horváth, G. Szabo, Zs. Bor, F. K. Tittel, J. R. Cavallaro, M. C. Smayling, “Generation of diffraction-free beams for application in optical microlithography,” J. Vac. Sci. Technol. B 15, 287–292 (1997).
[CrossRef]

Z. L. Horváth, M. Erdélyi, G. Szabo, Zs. Bor, F. K. Tittel, J. R. Cavallaro, “Generation of nearly nondiffracting Bessel beams with a Fabry–Perot interferometer,” J. Opt. Soc. Am. A 14, 3009–3013 (1997).
[CrossRef]

M. Erdélyi, A. Kroyen, K. Osvay, Z. Bor, W. L. Wilson, M. C. Smayling, F. K. Tittel, “Coherent multiple imaging by means of pupil plane filtering,” in Optical Microlitho graphy XII, L. van den Hove, ed., Proc. SPIE3679, 439 (1999).

M. Erdélyi, Zs. Bor, G. Szabo, F. K. Tittel, “Enhanced microlithography using coated objective and image duplication,” in Optical Microlithography XI, L. van den Hove, ed., Proc. SPIE3334, 579–589 (1998).
[CrossRef]

von Bünau, R.

R. von Bünau, G. Owen, R. F. W. Pease, “Depth of focus enhancement in optical lithography,” J. Vac. Sci. Technol. B 10, 3047–3054 (1992).
[CrossRef]

Wilson, W. L.

M. Erdélyi, A. Kroyen, K. Osvay, Z. Bor, W. L. Wilson, M. C. Smayling, F. K. Tittel, “Coherent multiple imaging by means of pupil plane filtering,” in Optical Microlitho graphy XII, L. van den Hove, ed., Proc. SPIE3679, 439 (1999).

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. B (3)

M. Erdélyi, Z. L. Horváth, G. Szabo, Zs. Bor, F. K. Tittel, J. R. Cavallaro, M. C. Smayling, “Generation of diffraction-free beams for application in optical microlithography,” J. Vac. Sci. Technol. B 15, 287–292 (1997).
[CrossRef]

H. Fukuda, T. Terasawa, S. Okazaki, “Spatial filtering for depth of focus and resolution enhancement in optical lithography,” J. Vac. Sci. Technol. B 9, 3113–3116 (1991).
[CrossRef]

R. von Bünau, G. Owen, R. F. W. Pease, “Depth of focus enhancement in optical lithography,” J. Vac. Sci. Technol. B 10, 3047–3054 (1992).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Horiuchi, K. Harada, S. Matsuo, Y. Takeuchi, E. Tamechika, Y. Mimura, “Resolution enhancement by oblique illumination optical lithography using a transmittance-adjusted pupil filter,” Jpn. J. Appl. Phys. 34, 1698–1708 (1995).
[CrossRef]

Other (3)

M. Erdélyi, Zs. Bor, G. Szabo, F. K. Tittel, “Enhanced microlithography using coated objective and image duplication,” in Optical Microlithography XI, L. van den Hove, ed., Proc. SPIE3334, 579–589 (1998).
[CrossRef]

Chris A. Mack, Inside Prolith™; a Comprehensive Guide to Optical Lithography Simulation (FINLE Technologies, Inc., Austin, Tex., 1997).

M. Erdélyi, A. Kroyen, K. Osvay, Z. Bor, W. L. Wilson, M. C. Smayling, F. K. Tittel, “Coherent multiple imaging by means of pupil plane filtering,” in Optical Microlitho graphy XII, L. van den Hove, ed., Proc. SPIE3679, 439 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Normalized amplitude (solid curves) and phase distribution (dashed curves) of the four pupil-plane filters created for a phase-control test. The phase values show the relative phase differences between adjacent images.  

Fig. 2
Fig. 2

Three-dimensional point-spread functions of the system without filter and with filters a, b, c, and d, for different defocus conditions.

Fig. 3
Fig. 3

Axial intensity distributions. Prolith normalizes the intensity, so that the intensity is unity in the optimum focal plane (defocus=0). Owing to constructive interference between the images, the main intensity peak is shifted toward the lens for filters b and c. Filters a and d do not change the DOF.

Fig. 4
Fig. 4

FWHM of the central peaks as a function of defocus. With filters b, c and c, the resolution remains constant for a large defocus range. Filter d does not lead to an enhancement, while filter a decreases the resolution.

Fig. 5
Fig. 5

Normalized amplitude (solid curves) and phase distribution (dashed curves) of four pupil-plane filters created for an image-density-control test. Filter a contains two amplitude maxima, since the image density is smaller than 1. The phase was aligned so that the transmission remains at the edge of the aperture.

Fig. 6
Fig. 6

Normalized axial intensity distributions. In case of filter a the images occur separately. The images move closer together when filters b, c and d are used, and therefore oscillations disappear.

Tables (1)

Tables Icon

Table 1 Input Stepper Parameters

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E(x, y)=F-1{F{m(x, y)}P(fx, fy)}=F{m(x, y)}circ(r/ρ)×exp[2πi(fxx+fyy)]dfxdfy.
E(x, y, z)=F{m(x, y)}circ(r)ΔP(Δϕ, Δz, r)×exp[2πi(fxx+fyy)]dfxdfy,
ΔP(Δϕ, Δz, r)=expi4π(z-Δz)NA2×exp[2πir2(z-Δz)]exp(-iΔϕ).
ΔP(ϕ, d, r)=R exp[-iΦ(ϕ, d, r)]+R2 exp[-i2Φ(ϕ, d, r)]+R3 exp[-i3Φ(ϕ, d, r)]+,
Φ(ϕ, d, r)=ϕ-2π2NA2+r22dM2.
ΔP(ϕ, d, r)=-R exp[-iΦ(ϕ, d, r)]×1R exp[-iΦ(ϕ, d, r)]-1.

Metrics