E. N. Glytsis, M. E. Harrigan, K. Hirayama, T. K. Gaylord, “Collimating cylindrical diffractive lenses: rigorous electromagnetic analysis and scalar approximation,” Appl. Opt. 37, 34–43 (1998).

[CrossRef]

E. N. Glytsis, M. E. Harrigan, T. K. Gaylord, K. Hirayama, “Effects of fabrication errors on the performance of cylindrical diffractive lenses: rigorous boundary element method and scalar approximation,” Appl. Opt. 37, 6591–6602 (1998).

[CrossRef]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).

[CrossRef]

K. Hirayama, E. N. Glytsis, T. K. Gaylord, “Rigorous electromagnetic analysis of diffraction by finite-number-of-periods gratings,” J. Opt. Soc. Am. A 14, 907–917 (1997).

[CrossRef]

M. S. Mirotznik, D. W. Prather, J. N. Mait, “A hybrid finite element–boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1321 (1996).

[CrossRef]

K. Hirayama, E. N. Glytsis, T. K. Gaylord, D. W. Wilson, “Rigorous electromagnetic analysis of diffractive cylindrical lenses,” J. Opt. Soc. Am. A 13, 2219–2231 (1996).

[CrossRef]

F. Montiel, M. Nevière, “Electromagnetic theory of Bragg–Fresnel linear zone plates,” J. Opt. Soc. Am. A 12, 2672–2678 (1995).

[CrossRef]

A. Wang, A. Prata, “Lenslet analysis by rigorous vector diffraction theory,” J. Opt. Soc. Am. A 12, 1161–1169 (1995).

[CrossRef]

J. R. Leger, M. G. Moharam, T. K. Gaylord, eds., feature diffractive optics applications, Appl. Opt. 34, 2399–2559 (1995).

[CrossRef]
[PubMed]

M. Rossi, R. E. Kunz, H. P. Herzig, “Refractive and diffractive properties of planar micro-optical elements,” Appl. Opt. 34, 5996–6007 (1995).

[CrossRef]
[PubMed]

H. M. Ozaktas, H. Urey, A. W. Lohmann, “Scaling of diffractive and refractive lenses for optical computing and interconnections,” Appl. Opt. 33, 3782–3789 (1994).

[CrossRef]
[PubMed]

K. S. Urquhart, P. Marchand, Y. Fainman, S. H. Lee, “Diffractive optics applied to free-space optical interconnects,” Appl. Opt. 33, 3670–3682 (1994).

[CrossRef]
[PubMed]

B. Lichtenberg, N. C. Gallagher, “Numerical modeling of diffractive devices using the finite element method,” Opt. Eng. (Bellingham) 33, 3518–3526 (1994).

[CrossRef]

N. P. Zhuck, A. G. Yarovoy, “Two-dimensional scattering from an inhomogeneous dielectric cylinder embedded in a stratified medium: case of TM polarization,” IEEE Trans. Antennas Propag. 42, 16–21 (1994).

[CrossRef]

T. Kojima, J. Ido, “Boundary-element method analysis of light-beam scattering and the sum and differential signal output by DRAW-type optical disk models,” Electron. Commun. Jpn., Part 2: Electron. 74, 11–20 (1991).

[CrossRef]

X. Xu, A. W. Glisson, “Scattering of TM excitation by coupled and partially buried cylinders at the interface between two media,” IEEE Trans. Antennas Propag. AP-35, 529–538 (1987).

P. G. Cottis, J. D. Kanellopoulos, “Scattering from dielectric cylinders embedded in a two-layer lossy medium,” Int. J. Electron. 61, 477–486 (1986).

[CrossRef]

C. M. Butler, X. Xu, A. W. Glisson, “Current induced on a conducting cylinder located near the planar interface between two semi-infinite half-spaces,” IEEE Trans. Antennas Propag. AP-33, 616–624 (1985).

[CrossRef]

G. S. Smith, “Directive properties of antennas for transmission into a material half-space,” IEEE Trans. Antennas Propag. AP-32, 232–246 (1984).

[CrossRef]

C. M. Butler, “Current induced on a conducting strip which resides on the planar interface between two semi-infinite half-spaces,” IEEE Trans. Antennas Propag. AP-32, 226–231 (1984).

[CrossRef]

E. Nishimura, N. Morita, N. Kumagi, “Scattering of guided modes caused by an arbitrarily shaped broken end in a dielectric slab waveguide,” IEEE Trans. Microwave Theory Tech. MTT-31, 923–930 (1983).

[CrossRef]

C. M. Butler, X. Xu, A. W. Glisson, “Current induced on a conducting cylinder located near the planar interface between two semi-infinite half-spaces,” IEEE Trans. Antennas Propag. AP-33, 616–624 (1985).

[CrossRef]

C. M. Butler, “Current induced on a conducting strip which resides on the planar interface between two semi-infinite half-spaces,” IEEE Trans. Antennas Propag. AP-32, 226–231 (1984).

[CrossRef]

P. G. Cottis, J. D. Kanellopoulos, “Scattering from dielectric cylinders embedded in a two-layer lossy medium,” Int. J. Electron. 61, 477–486 (1986).

[CrossRef]

L. B. Felsen, N. Marcuvitz, Radiation and Scattering of Waves (Prentice-Hall, Englewood Cliffs, N.J., 1973), pp. 506–538.

B. Lichtenberg, N. C. Gallagher, “Numerical modeling of diffractive devices using the finite element method,” Opt. Eng. (Bellingham) 33, 3518–3526 (1994).

[CrossRef]

E. N. Glytsis, M. E. Harrigan, T. K. Gaylord, K. Hirayama, “Effects of fabrication errors on the performance of cylindrical diffractive lenses: rigorous boundary element method and scalar approximation,” Appl. Opt. 37, 6591–6602 (1998).

[CrossRef]

E. N. Glytsis, M. E. Harrigan, K. Hirayama, T. K. Gaylord, “Collimating cylindrical diffractive lenses: rigorous electromagnetic analysis and scalar approximation,” Appl. Opt. 37, 34–43 (1998).

[CrossRef]

K. Hirayama, E. N. Glytsis, T. K. Gaylord, “Rigorous electromagnetic analysis of diffraction by finite-number-of-periods gratings,” J. Opt. Soc. Am. A 14, 907–917 (1997).

[CrossRef]

K. Hirayama, E. N. Glytsis, T. K. Gaylord, D. W. Wilson, “Rigorous electromagnetic analysis of diffractive cylindrical lenses,” J. Opt. Soc. Am. A 13, 2219–2231 (1996).

[CrossRef]

X. Xu, A. W. Glisson, “Scattering of TM excitation by coupled and partially buried cylinders at the interface between two media,” IEEE Trans. Antennas Propag. AP-35, 529–538 (1987).

C. M. Butler, X. Xu, A. W. Glisson, “Current induced on a conducting cylinder located near the planar interface between two semi-infinite half-spaces,” IEEE Trans. Antennas Propag. AP-33, 616–624 (1985).

[CrossRef]

E. N. Glytsis, M. E. Harrigan, K. Hirayama, T. K. Gaylord, “Collimating cylindrical diffractive lenses: rigorous electromagnetic analysis and scalar approximation,” Appl. Opt. 37, 34–43 (1998).

[CrossRef]

E. N. Glytsis, M. E. Harrigan, T. K. Gaylord, K. Hirayama, “Effects of fabrication errors on the performance of cylindrical diffractive lenses: rigorous boundary element method and scalar approximation,” Appl. Opt. 37, 6591–6602 (1998).

[CrossRef]

K. Hirayama, E. N. Glytsis, T. K. Gaylord, “Rigorous electromagnetic analysis of diffraction by finite-number-of-periods gratings,” J. Opt. Soc. Am. A 14, 907–917 (1997).

[CrossRef]

K. Hirayama, E. N. Glytsis, T. K. Gaylord, D. W. Wilson, “Rigorous electromagnetic analysis of diffractive cylindrical lenses,” J. Opt. Soc. Am. A 13, 2219–2231 (1996).

[CrossRef]

E. N. Glytsis, M. E. Harrigan, T. K. Gaylord, K. Hirayama, “Effects of fabrication errors on the performance of cylindrical diffractive lenses: rigorous boundary element method and scalar approximation,” Appl. Opt. 37, 6591–6602 (1998).

[CrossRef]

E. N. Glytsis, M. E. Harrigan, K. Hirayama, T. K. Gaylord, “Collimating cylindrical diffractive lenses: rigorous electromagnetic analysis and scalar approximation,” Appl. Opt. 37, 34–43 (1998).

[CrossRef]

E. N. Glytsis, M. E. Harrigan, K. Hirayama, T. K. Gaylord, “Collimating cylindrical diffractive lenses: rigorous electromagnetic analysis and scalar approximation,” Appl. Opt. 37, 34–43 (1998).

[CrossRef]

E. N. Glytsis, M. E. Harrigan, T. K. Gaylord, K. Hirayama, “Effects of fabrication errors on the performance of cylindrical diffractive lenses: rigorous boundary element method and scalar approximation,” Appl. Opt. 37, 6591–6602 (1998).

[CrossRef]

K. Hirayama, E. N. Glytsis, T. K. Gaylord, “Rigorous electromagnetic analysis of diffraction by finite-number-of-periods gratings,” J. Opt. Soc. Am. A 14, 907–917 (1997).

[CrossRef]

K. Hirayama, E. N. Glytsis, T. K. Gaylord, D. W. Wilson, “Rigorous electromagnetic analysis of diffractive cylindrical lenses,” J. Opt. Soc. Am. A 13, 2219–2231 (1996).

[CrossRef]

T. Kojima, J. Ido, “Boundary-element method analysis of light-beam scattering and the sum and differential signal output by DRAW-type optical disk models,” Electron. Commun. Jpn., Part 2: Electron. 74, 11–20 (1991).

[CrossRef]

P. G. Cottis, J. D. Kanellopoulos, “Scattering from dielectric cylinders embedded in a two-layer lossy medium,” Int. J. Electron. 61, 477–486 (1986).

[CrossRef]

R. Kingslake, Optical System Design (Academic, Orlando, Fla., 1983), p. 124.

T. Kojima, J. Ido, “Boundary-element method analysis of light-beam scattering and the sum and differential signal output by DRAW-type optical disk models,” Electron. Commun. Jpn., Part 2: Electron. 74, 11–20 (1991).

[CrossRef]

M. Koshiba, Optical Waveguide Theory by the Finite Element Method (KTK, Publishers, Tokyo, 1992), pp. 43–47.

E. Nishimura, N. Morita, N. Kumagi, “Scattering of guided modes caused by an arbitrarily shaped broken end in a dielectric slab waveguide,” IEEE Trans. Microwave Theory Tech. MTT-31, 923–930 (1983).

[CrossRef]

B. Lichtenberg, N. C. Gallagher, “Numerical modeling of diffractive devices using the finite element method,” Opt. Eng. (Bellingham) 33, 3518–3526 (1994).

[CrossRef]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).

[CrossRef]

M. S. Mirotznik, D. W. Prather, J. N. Mait, “A hybrid finite element–boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1321 (1996).

[CrossRef]

L. B. Felsen, N. Marcuvitz, Radiation and Scattering of Waves (Prentice-Hall, Englewood Cliffs, N.J., 1973), pp. 506–538.

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).

[CrossRef]

M. S. Mirotznik, D. W. Prather, J. N. Mait, “A hybrid finite element–boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1321 (1996).

[CrossRef]

E. Nishimura, N. Morita, N. Kumagi, “Scattering of guided modes caused by an arbitrarily shaped broken end in a dielectric slab waveguide,” IEEE Trans. Microwave Theory Tech. MTT-31, 923–930 (1983).

[CrossRef]

H. Nishihara, T. Suhara, “Micro Fresnel lenses,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1987), Vol. XXIV, pp. 1–40.

E. Nishimura, N. Morita, N. Kumagi, “Scattering of guided modes caused by an arbitrarily shaped broken end in a dielectric slab waveguide,” IEEE Trans. Microwave Theory Tech. MTT-31, 923–930 (1983).

[CrossRef]

J. Popelek, F. Urban, “The vector analysis of the real diffractive optical elements,” in Nonconventional Optical Imaging Elements, J. Nowak, M. Zajac, eds., Proc. SPIE2169, 89–99 (1994).

[CrossRef]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).

[CrossRef]

M. S. Mirotznik, D. W. Prather, J. N. Mait, “A hybrid finite element–boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1321 (1996).

[CrossRef]

G. S. Smith, “Directive properties of antennas for transmission into a material half-space,” IEEE Trans. Antennas Propag. AP-32, 232–246 (1984).

[CrossRef]

H. Nishihara, T. Suhara, “Micro Fresnel lenses,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1987), Vol. XXIV, pp. 1–40.

J. Popelek, F. Urban, “The vector analysis of the real diffractive optical elements,” in Nonconventional Optical Imaging Elements, J. Nowak, M. Zajac, eds., Proc. SPIE2169, 89–99 (1994).

[CrossRef]

X. Xu, A. W. Glisson, “Scattering of TM excitation by coupled and partially buried cylinders at the interface between two media,” IEEE Trans. Antennas Propag. AP-35, 529–538 (1987).

C. M. Butler, X. Xu, A. W. Glisson, “Current induced on a conducting cylinder located near the planar interface between two semi-infinite half-spaces,” IEEE Trans. Antennas Propag. AP-33, 616–624 (1985).

[CrossRef]

N. P. Zhuck, A. G. Yarovoy, “Two-dimensional scattering from an inhomogeneous dielectric cylinder embedded in a stratified medium: case of TM polarization,” IEEE Trans. Antennas Propag. 42, 16–21 (1994).

[CrossRef]

N. P. Zhuck, A. G. Yarovoy, “Two-dimensional scattering from an inhomogeneous dielectric cylinder embedded in a stratified medium: case of TM polarization,” IEEE Trans. Antennas Propag. 42, 16–21 (1994).

[CrossRef]

J. R. Leger, M. G. Moharam, T. K. Gaylord, eds., feature diffractive optics applications, Appl. Opt. 34, 2399–2559 (1995).

[CrossRef]
[PubMed]

H. M. Ozaktas, H. Urey, A. W. Lohmann, “Scaling of diffractive and refractive lenses for optical computing and interconnections,” Appl. Opt. 33, 3782–3789 (1994).

[CrossRef]
[PubMed]

K. S. Urquhart, P. Marchand, Y. Fainman, S. H. Lee, “Diffractive optics applied to free-space optical interconnects,” Appl. Opt. 33, 3670–3682 (1994).

[CrossRef]
[PubMed]

E. N. Glytsis, M. E. Harrigan, K. Hirayama, T. K. Gaylord, “Collimating cylindrical diffractive lenses: rigorous electromagnetic analysis and scalar approximation,” Appl. Opt. 37, 34–43 (1998).

[CrossRef]

E. N. Glytsis, M. E. Harrigan, T. K. Gaylord, K. Hirayama, “Effects of fabrication errors on the performance of cylindrical diffractive lenses: rigorous boundary element method and scalar approximation,” Appl. Opt. 37, 6591–6602 (1998).

[CrossRef]

D. A. Buralli, G. M. Morris, J. R. Rogers, “Optical performance of holographic kinoforms,” Appl. Opt. 28, 976–983 (1989).

[CrossRef]
[PubMed]

M. Rossi, R. E. Kunz, H. P. Herzig, “Refractive and diffractive properties of planar micro-optical elements,” Appl. Opt. 34, 5996–6007 (1995).

[CrossRef]
[PubMed]

T. Kojima, J. Ido, “Boundary-element method analysis of light-beam scattering and the sum and differential signal output by DRAW-type optical disk models,” Electron. Commun. Jpn., Part 2: Electron. 74, 11–20 (1991).

[CrossRef]

X. Xu, A. W. Glisson, “Scattering of TM excitation by coupled and partially buried cylinders at the interface between two media,” IEEE Trans. Antennas Propag. AP-35, 529–538 (1987).

N. P. Zhuck, A. G. Yarovoy, “Two-dimensional scattering from an inhomogeneous dielectric cylinder embedded in a stratified medium: case of TM polarization,” IEEE Trans. Antennas Propag. 42, 16–21 (1994).

[CrossRef]

G. S. Smith, “Directive properties of antennas for transmission into a material half-space,” IEEE Trans. Antennas Propag. AP-32, 232–246 (1984).

[CrossRef]

C. M. Butler, “Current induced on a conducting strip which resides on the planar interface between two semi-infinite half-spaces,” IEEE Trans. Antennas Propag. AP-32, 226–231 (1984).

[CrossRef]

C. M. Butler, X. Xu, A. W. Glisson, “Current induced on a conducting cylinder located near the planar interface between two semi-infinite half-spaces,” IEEE Trans. Antennas Propag. AP-33, 616–624 (1985).

[CrossRef]

E. Nishimura, N. Morita, N. Kumagi, “Scattering of guided modes caused by an arbitrarily shaped broken end in a dielectric slab waveguide,” IEEE Trans. Microwave Theory Tech. MTT-31, 923–930 (1983).

[CrossRef]

P. G. Cottis, J. D. Kanellopoulos, “Scattering from dielectric cylinders embedded in a two-layer lossy medium,” Int. J. Electron. 61, 477–486 (1986).

[CrossRef]

M. S. Mirotznik, D. W. Prather, J. N. Mait, “A hybrid finite element–boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1321 (1996).

[CrossRef]

K. Hirayama, E. N. Glytsis, T. K. Gaylord, D. W. Wilson, “Rigorous electromagnetic analysis of diffractive cylindrical lenses,” J. Opt. Soc. Am. A 13, 2219–2231 (1996).

[CrossRef]

E. Noponen, J. Turunen, A. Vasara, “Electromagnetic theory and design of diffractive-lens arrays,” J. Opt. Soc. Am. A 10, 434–443 (1993).

[CrossRef]

F. Montiel, M. Nevière, “Electromagnetic theory of Bragg–Fresnel linear zone plates,” J. Opt. Soc. Am. A 12, 2672–2678 (1995).

[CrossRef]

A. Wang, A. Prata, “Lenslet analysis by rigorous vector diffraction theory,” J. Opt. Soc. Am. A 12, 1161–1169 (1995).

[CrossRef]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).

[CrossRef]

K. Hirayama, E. N. Glytsis, T. K. Gaylord, “Rigorous electromagnetic analysis of diffraction by finite-number-of-periods gratings,” J. Opt. Soc. Am. A 14, 907–917 (1997).

[CrossRef]

B. Lichtenberg, N. C. Gallagher, “Numerical modeling of diffractive devices using the finite element method,” Opt. Eng. (Bellingham) 33, 3518–3526 (1994).

[CrossRef]

H. Nishihara, T. Suhara, “Micro Fresnel lenses,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1987), Vol. XXIV, pp. 1–40.

J. Popelek, F. Urban, “The vector analysis of the real diffractive optical elements,” in Nonconventional Optical Imaging Elements, J. Nowak, M. Zajac, eds., Proc. SPIE2169, 89–99 (1994).

[CrossRef]

L. B. Felsen, N. Marcuvitz, Radiation and Scattering of Waves (Prentice-Hall, Englewood Cliffs, N.J., 1973), pp. 506–538.

M. Koshiba, Optical Waveguide Theory by the Finite Element Method (KTK, Publishers, Tokyo, 1992), pp. 43–47.

R. Kingslake, Optical System Design (Academic, Orlando, Fla., 1983), p. 124.