Abstract

An approximate analysis is derived for the propagation of Bessel, Bessel–Gauss, and Gaussian beams with a finite aperture. This treatment is based on the fact that the circ function can be expanded into an approximate sum of complex Gaussian functions, so that these three beams are typically expressed as a combination of a set of infinite-aperture Bessel–Gauss beams. Correspondingly, the evaluation of the diffracted field distribution of the beams is reduced to the summation of Bessel–Gauss functions. From analytical results, the present approach provides a good description of the diffracted beams in the region far (greater than a factor of the Fresnel distance) from the aperture. A possible extension of this method to other apertured beams is also discussed.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (35)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription