Abstract

The Clausius-Mossotti refractive-index equation, derived as solution to Maxwell’s equation for wave propagation through dense media, is shown to explain the equality of transmittance and reflectance for cotton leaves in 1–1.6-µm-wavelength light. A procedure suggested by Feynman is used to derive the polarizability of water and of chlorophyll during light capture by leaves. Application of Clausius-Mossotti’s equation suggest that the presence of water and chlorophyll in chloroplasts could explain light refraction by leaves.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Gates, H. J. Keegan, J. C. Schleter, V. R. Weidner, “Spectral properties of plants,” Appl. Opt. 4, 11–20 (1965).
    [CrossRef]
  2. R. A. Moss, W. E. Loomis, “Absorption spectra of leaves, I: the visible spectrum,” Plant Physiol. 27, 370–391 (1952).
    [CrossRef] [PubMed]
  3. W. A. Allen, H. W. Gausman, A. J. Richardson, “Mean effective optical constants of cotton leaves,” J. Opt. Soc. Am. 60, 542–547 (1970).
    [CrossRef]
  4. C. J. Tucker, M. W. Garratt, “Leaf optical system modeled as a stochastic process,” Appl. Opt. 16, 635–642 (1977).
    [CrossRef] [PubMed]
  5. H. W. Gausman, W. A. Allen, D. E. Escobar, “Refractive index of plant cell walls,” Appl. Opt. 13, 109–111 (1974).
    [CrossRef] [PubMed]
  6. V. C. Vanderbilt, L. Grant, “Polarization photometer to measure bidirectional reflectance factor R (55°,0°; 55°,180°) of leaves,” Opt. Eng. 25, 566–571 (1985).
  7. R. Feynman, R. B. Leighton, M. Sands, The Feynman Lectures on Physics (Addison-Wesley, Reading, Mass., 1964), Vol. II, pp. 32-1–32-13.
  8. P. Nobel, Biophysical Plant Physiology and Ecology (W. H. Freeman, New York, 1983), pp. 225–226 and 180.

1985 (1)

V. C. Vanderbilt, L. Grant, “Polarization photometer to measure bidirectional reflectance factor R (55°,0°; 55°,180°) of leaves,” Opt. Eng. 25, 566–571 (1985).

1977 (1)

1974 (1)

1970 (1)

1965 (1)

1952 (1)

R. A. Moss, W. E. Loomis, “Absorption spectra of leaves, I: the visible spectrum,” Plant Physiol. 27, 370–391 (1952).
[CrossRef] [PubMed]

Allen, W. A.

Escobar, D. E.

Feynman, R.

R. Feynman, R. B. Leighton, M. Sands, The Feynman Lectures on Physics (Addison-Wesley, Reading, Mass., 1964), Vol. II, pp. 32-1–32-13.

Garratt, M. W.

Gates, D. M.

Gausman, H. W.

Grant, L.

V. C. Vanderbilt, L. Grant, “Polarization photometer to measure bidirectional reflectance factor R (55°,0°; 55°,180°) of leaves,” Opt. Eng. 25, 566–571 (1985).

Keegan, H. J.

Leighton, R. B.

R. Feynman, R. B. Leighton, M. Sands, The Feynman Lectures on Physics (Addison-Wesley, Reading, Mass., 1964), Vol. II, pp. 32-1–32-13.

Loomis, W. E.

R. A. Moss, W. E. Loomis, “Absorption spectra of leaves, I: the visible spectrum,” Plant Physiol. 27, 370–391 (1952).
[CrossRef] [PubMed]

Moss, R. A.

R. A. Moss, W. E. Loomis, “Absorption spectra of leaves, I: the visible spectrum,” Plant Physiol. 27, 370–391 (1952).
[CrossRef] [PubMed]

Nobel, P.

P. Nobel, Biophysical Plant Physiology and Ecology (W. H. Freeman, New York, 1983), pp. 225–226 and 180.

Richardson, A. J.

Sands, M.

R. Feynman, R. B. Leighton, M. Sands, The Feynman Lectures on Physics (Addison-Wesley, Reading, Mass., 1964), Vol. II, pp. 32-1–32-13.

Schleter, J. C.

Tucker, C. J.

Vanderbilt, V. C.

V. C. Vanderbilt, L. Grant, “Polarization photometer to measure bidirectional reflectance factor R (55°,0°; 55°,180°) of leaves,” Opt. Eng. 25, 566–571 (1985).

Weidner, V. R.

Appl. Opt. (3)

J. Opt. Soc. Am. (1)

Opt. Eng. (1)

V. C. Vanderbilt, L. Grant, “Polarization photometer to measure bidirectional reflectance factor R (55°,0°; 55°,180°) of leaves,” Opt. Eng. 25, 566–571 (1985).

Plant Physiol. (1)

R. A. Moss, W. E. Loomis, “Absorption spectra of leaves, I: the visible spectrum,” Plant Physiol. 27, 370–391 (1952).
[CrossRef] [PubMed]

Other (2)

R. Feynman, R. B. Leighton, M. Sands, The Feynman Lectures on Physics (Addison-Wesley, Reading, Mass., 1964), Vol. II, pp. 32-1–32-13.

P. Nobel, Biophysical Plant Physiology and Ecology (W. H. Freeman, New York, 1983), pp. 225–226 and 180.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (1)

Tables Icon

Table 1 Polarizability Calculations for Water and Chlorophyll in Cotton Leaves during Light Capturea

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P=0Nα(ω)E,
α(ω)=qe/m0(-ω2+iγω+ω02),
Elocal=E+P/30.
3(n2-1)/(n2+2)=jNjαj,

Metrics