Abstract

Light reflected specularly by the inner limiting membrane (ILM) provides information on the topography of the retinal surface. The ILM in the central part of the foveal pit acts as a concave mirror. Light reflected specularly by this mirror forms an image of the entrance pupil in front of the retina. In 15 normal subjects (ages 16–56 years) we have measured photometric and geometrical properties of this image to derive two characteristics of the ILM: its reflectance ρ at the foveola and its radius of curvature r in the central part of the fovea. ρ and r are found to decrease significantly with age (p=0.0073 and p=0.01, respectively). The equations of the regression lines are log10 ρ=-4.234-0.0118 age and radius r=1484-13.6 age, respectively (age in years, r in micrometers).

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography,” Arch. Ophthalmol. (Chicago) 95, 861–868 (1977).
    [CrossRef]
  2. D. van Norren, J. van der Kraats, “A continuously recording retinal densitometer,” Vision Res. 21, 897–905 (1981).
    [CrossRef] [PubMed]
  3. A. E. Elsner, S. A. Burns, R. H. Webb, “Mapping cone pigment optical density in humans,” J. Opt. Soc. Am. A 10, 52–58 (1993).
    [CrossRef] [PubMed]
  4. P. E. Kilbride, K. R. Alexander, M. Fishman, G. A. Fishman, “Human macular pigment assessed by imaging fundus reflectometry,” Vision Res. 29, 663–674 (1989).
    [CrossRef] [PubMed]
  5. F. C. Delori, G. Staurenghi, D. C. Goger, J. J. Weiter, “Macular pigment density measured by reflectometry and fluorophotometry,” in Opthalmic and Visual Optics and Noninvasive Assessment of the Visual System, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 240–243.
  6. F. C. Delori, “Noninvasive technique for oximetry of blood in retinal vessels,” Appl. Opt. 27, 1113–1125 (1988).
    [CrossRef] [PubMed]
  7. M. Millodot, “Reflection from the fundus of the eye and its relevance to retinoscopy,” Atti Fond. Giorgio Ronchi 27, 31–50 (1972).
  8. R. W. Knighton, S. G. Jacobson, M. I. Roman, “Specular reflection from the surface of the retina,” in Laser Surgery: Advanced Characterization, Therapeutics, and Systems, K. Atsumi, N. R. Goldblatt, S. N. Joffe, eds., Proc. SPIE1066, 10–17 (1989).
    [CrossRef]
  9. M. Shahidi, R. C. Zeimer, M. Mori, “Topography of the retinal thickness in normal subjects,” Ophthalmology 97, 1120–1124 (1990).
    [CrossRef] [PubMed]
  10. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
    [CrossRef]
  11. D. R. Williams, “Visual consequences of the foveal pit,” Invest. Ophthalmol. Visual Sci. 19, 653–667 (1980).
  12. S. L. Polyak, The Retina (U. Chicago Press, Chicago, Ill., 1941), p. 196.
  13. D. van Norren, L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res. 26, 313–320 (1986).
    [CrossRef] [PubMed]
  14. F. C. Delori, K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
    [CrossRef] [PubMed]
  15. J. van de Kraats, T. T. J. M. Berendschot, D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision Res. 36, 2229–2247 (1996).
    [CrossRef] [PubMed]
  16. R. A. Weale, “Polarized light and the human fundus oculi,” J. Physiol. (London) 186, 175–186 (1966).
  17. G. J. van Blokland, D. van Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26, 485–494 (1986).
    [CrossRef] [PubMed]
  18. J.-M. Gorrand, F. C. Delori, “A model for assessment of cone directionality,” J. Mod. Opt. 44, 473–491 (1997).
    [CrossRef]
  19. J. Krauskopf, “Some experiments with a photoelectric ophthalmoscope,” Excerpta Med. Int. Congr. Ser. 125, 171–181 (1965).
  20. J.-M. Gorrand, “Directional effects of the retina appearing in the aerial image,” J. Opt. 16, 279–287 (1985).
    [CrossRef]
  21. J.-M. Gorrand, F. C. Delori, “A reflectometric technique for assessing photoreceptor alignment,” Vision Res. 35, 999–1010 (1995).
    [CrossRef] [PubMed]
  22. S. A. Burns, S. Wu, F. C. Delori, A. E. Elsner, “Direct-measurement of human cone photoreceptor alignment,” J. Opt. Soc. Am. A 12, 2329–2338 (1995).
    [CrossRef]
  23. Y. Le Grand, Optique Physiologique (Masson, Paris, 1965), Vol. 1, pp. 24, 75.
  24. J. Pokorny, V. C. Smith, M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
    [CrossRef] [PubMed]
  25. C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
    [CrossRef] [PubMed]
  26. C. A. Curcio, K. A. Allen, “Topography of ganglion cells in human retina,” J. Comp. Neurol. 300, 5–25 (1990).
    [CrossRef] [PubMed]
  27. J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye—aging of the anterior segment,” Vision Res. 29, 1685–1692 (1989).
    [CrossRef]
  28. T. Grosvenor, “Reduction in axial length with age: an emmetropizing mechanism for the adult eye?” Am. J. Optom. Physiol. Opt. 64, 657–663 (1987).
    [CrossRef] [PubMed]
  29. A. Sorsby, J. B. Benjamin, M. Davey, M. Sheridan, J. M. Tanner, Emmetropia and Its Aberrations (Her Majesty’s Stationery Office, London, 1957).
  30. A. Sorsby, M. Sheridan, G. A. Leary, Refraction and Its Components in Twins (Her Majesty’s Stationery Office, London, 1962).
  31. D. A. Leighton, A. Tomlinson, “Changes in axial length and other dimensions of the eyeball with increasing age,” Acta Ophthalmol. 50, 815–826 (1972).
    [CrossRef]
  32. W. H. Swanson, G. E. Fish, “Age-related changes in the color-match-area effect,” Vision Res. 36, 2079–2085 (1996).
    [CrossRef] [PubMed]
  33. R. Barer, “Refractometry and interferometry of living cells,” J. Opt. Soc. Am. 47, 545–556 (1957).
    [CrossRef] [PubMed]
  34. J. W. Nordenson, “Über den Brechungsindex der Netzhaut,” Acta Ophthalmol. 12, 171–175 (1934).
  35. A. G. Bennett, A. R. Rudnicka, D. F. Edgar, “Improvements on Littmann’s method of determining the size of retinal features by fundus photography,” Graefes Arch. Clin. Exp. Ophthalmol. 232, 361–367 (1994).
    [CrossRef] [PubMed]
  36. J. F. Koretz, Center for Biophysics and Department of Biology, Rensselaer Polytechnic Institute, Troy, N.Y. 12180 (personal communication, 1997).

1997 (1)

J.-M. Gorrand, F. C. Delori, “A model for assessment of cone directionality,” J. Mod. Opt. 44, 473–491 (1997).
[CrossRef]

1996 (2)

J. van de Kraats, T. T. J. M. Berendschot, D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision Res. 36, 2229–2247 (1996).
[CrossRef] [PubMed]

W. H. Swanson, G. E. Fish, “Age-related changes in the color-match-area effect,” Vision Res. 36, 2079–2085 (1996).
[CrossRef] [PubMed]

1995 (3)

J.-M. Gorrand, F. C. Delori, “A reflectometric technique for assessing photoreceptor alignment,” Vision Res. 35, 999–1010 (1995).
[CrossRef] [PubMed]

S. A. Burns, S. Wu, F. C. Delori, A. E. Elsner, “Direct-measurement of human cone photoreceptor alignment,” J. Opt. Soc. Am. A 12, 2329–2338 (1995).
[CrossRef]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
[CrossRef]

1994 (1)

A. G. Bennett, A. R. Rudnicka, D. F. Edgar, “Improvements on Littmann’s method of determining the size of retinal features by fundus photography,” Graefes Arch. Clin. Exp. Ophthalmol. 232, 361–367 (1994).
[CrossRef] [PubMed]

1993 (1)

1990 (3)

M. Shahidi, R. C. Zeimer, M. Mori, “Topography of the retinal thickness in normal subjects,” Ophthalmology 97, 1120–1124 (1990).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

C. A. Curcio, K. A. Allen, “Topography of ganglion cells in human retina,” J. Comp. Neurol. 300, 5–25 (1990).
[CrossRef] [PubMed]

1989 (3)

J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye—aging of the anterior segment,” Vision Res. 29, 1685–1692 (1989).
[CrossRef]

F. C. Delori, K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
[CrossRef] [PubMed]

P. E. Kilbride, K. R. Alexander, M. Fishman, G. A. Fishman, “Human macular pigment assessed by imaging fundus reflectometry,” Vision Res. 29, 663–674 (1989).
[CrossRef] [PubMed]

1988 (1)

1987 (2)

T. Grosvenor, “Reduction in axial length with age: an emmetropizing mechanism for the adult eye?” Am. J. Optom. Physiol. Opt. 64, 657–663 (1987).
[CrossRef] [PubMed]

J. Pokorny, V. C. Smith, M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
[CrossRef] [PubMed]

1986 (2)

G. J. van Blokland, D. van Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26, 485–494 (1986).
[CrossRef] [PubMed]

D. van Norren, L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res. 26, 313–320 (1986).
[CrossRef] [PubMed]

1985 (1)

J.-M. Gorrand, “Directional effects of the retina appearing in the aerial image,” J. Opt. 16, 279–287 (1985).
[CrossRef]

1981 (1)

D. van Norren, J. van der Kraats, “A continuously recording retinal densitometer,” Vision Res. 21, 897–905 (1981).
[CrossRef] [PubMed]

1980 (1)

D. R. Williams, “Visual consequences of the foveal pit,” Invest. Ophthalmol. Visual Sci. 19, 653–667 (1980).

1977 (1)

F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography,” Arch. Ophthalmol. (Chicago) 95, 861–868 (1977).
[CrossRef]

1972 (2)

M. Millodot, “Reflection from the fundus of the eye and its relevance to retinoscopy,” Atti Fond. Giorgio Ronchi 27, 31–50 (1972).

D. A. Leighton, A. Tomlinson, “Changes in axial length and other dimensions of the eyeball with increasing age,” Acta Ophthalmol. 50, 815–826 (1972).
[CrossRef]

1966 (1)

R. A. Weale, “Polarized light and the human fundus oculi,” J. Physiol. (London) 186, 175–186 (1966).

1965 (1)

J. Krauskopf, “Some experiments with a photoelectric ophthalmoscope,” Excerpta Med. Int. Congr. Ser. 125, 171–181 (1965).

1957 (1)

1934 (1)

J. W. Nordenson, “Über den Brechungsindex der Netzhaut,” Acta Ophthalmol. 12, 171–175 (1934).

Alexander, K. R.

P. E. Kilbride, K. R. Alexander, M. Fishman, G. A. Fishman, “Human macular pigment assessed by imaging fundus reflectometry,” Vision Res. 29, 663–674 (1989).
[CrossRef] [PubMed]

Allen, K. A.

C. A. Curcio, K. A. Allen, “Topography of ganglion cells in human retina,” J. Comp. Neurol. 300, 5–25 (1990).
[CrossRef] [PubMed]

Barer, R.

Benjamin, J. B.

A. Sorsby, J. B. Benjamin, M. Davey, M. Sheridan, J. M. Tanner, Emmetropia and Its Aberrations (Her Majesty’s Stationery Office, London, 1957).

Bennett, A. G.

A. G. Bennett, A. R. Rudnicka, D. F. Edgar, “Improvements on Littmann’s method of determining the size of retinal features by fundus photography,” Graefes Arch. Clin. Exp. Ophthalmol. 232, 361–367 (1994).
[CrossRef] [PubMed]

Berendschot, T. T. J. M.

J. van de Kraats, T. T. J. M. Berendschot, D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision Res. 36, 2229–2247 (1996).
[CrossRef] [PubMed]

Burns, S. A.

Curcio, C. A.

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

C. A. Curcio, K. A. Allen, “Topography of ganglion cells in human retina,” J. Comp. Neurol. 300, 5–25 (1990).
[CrossRef] [PubMed]

Davey, M.

A. Sorsby, J. B. Benjamin, M. Davey, M. Sheridan, J. M. Tanner, Emmetropia and Its Aberrations (Her Majesty’s Stationery Office, London, 1957).

Delori, F. C.

J.-M. Gorrand, F. C. Delori, “A model for assessment of cone directionality,” J. Mod. Opt. 44, 473–491 (1997).
[CrossRef]

J.-M. Gorrand, F. C. Delori, “A reflectometric technique for assessing photoreceptor alignment,” Vision Res. 35, 999–1010 (1995).
[CrossRef] [PubMed]

S. A. Burns, S. Wu, F. C. Delori, A. E. Elsner, “Direct-measurement of human cone photoreceptor alignment,” J. Opt. Soc. Am. A 12, 2329–2338 (1995).
[CrossRef]

F. C. Delori, K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
[CrossRef] [PubMed]

F. C. Delori, “Noninvasive technique for oximetry of blood in retinal vessels,” Appl. Opt. 27, 1113–1125 (1988).
[CrossRef] [PubMed]

F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography,” Arch. Ophthalmol. (Chicago) 95, 861–868 (1977).
[CrossRef]

F. C. Delori, G. Staurenghi, D. C. Goger, J. J. Weiter, “Macular pigment density measured by reflectometry and fluorophotometry,” in Opthalmic and Visual Optics and Noninvasive Assessment of the Visual System, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 240–243.

Edgar, D. F.

A. G. Bennett, A. R. Rudnicka, D. F. Edgar, “Improvements on Littmann’s method of determining the size of retinal features by fundus photography,” Graefes Arch. Clin. Exp. Ophthalmol. 232, 361–367 (1994).
[CrossRef] [PubMed]

Elsner, A. E.

Fish, G. E.

W. H. Swanson, G. E. Fish, “Age-related changes in the color-match-area effect,” Vision Res. 36, 2079–2085 (1996).
[CrossRef] [PubMed]

Fishman, G. A.

P. E. Kilbride, K. R. Alexander, M. Fishman, G. A. Fishman, “Human macular pigment assessed by imaging fundus reflectometry,” Vision Res. 29, 663–674 (1989).
[CrossRef] [PubMed]

Fishman, M.

P. E. Kilbride, K. R. Alexander, M. Fishman, G. A. Fishman, “Human macular pigment assessed by imaging fundus reflectometry,” Vision Res. 29, 663–674 (1989).
[CrossRef] [PubMed]

Francisco, R.

F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography,” Arch. Ophthalmol. (Chicago) 95, 861–868 (1977).
[CrossRef]

Fujimoto, J. G.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
[CrossRef]

Goeckner, P. A.

J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye—aging of the anterior segment,” Vision Res. 29, 1685–1692 (1989).
[CrossRef]

Goger, D. C.

F. C. Delori, G. Staurenghi, D. C. Goger, J. J. Weiter, “Macular pigment density measured by reflectometry and fluorophotometry,” in Opthalmic and Visual Optics and Noninvasive Assessment of the Visual System, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 240–243.

Gorrand, J.-M.

J.-M. Gorrand, F. C. Delori, “A model for assessment of cone directionality,” J. Mod. Opt. 44, 473–491 (1997).
[CrossRef]

J.-M. Gorrand, F. C. Delori, “A reflectometric technique for assessing photoreceptor alignment,” Vision Res. 35, 999–1010 (1995).
[CrossRef] [PubMed]

J.-M. Gorrand, “Directional effects of the retina appearing in the aerial image,” J. Opt. 16, 279–287 (1985).
[CrossRef]

Gragoudas, E. S.

F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography,” Arch. Ophthalmol. (Chicago) 95, 861–868 (1977).
[CrossRef]

Grosvenor, T.

T. Grosvenor, “Reduction in axial length with age: an emmetropizing mechanism for the adult eye?” Am. J. Optom. Physiol. Opt. 64, 657–663 (1987).
[CrossRef] [PubMed]

Hee, M. R.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
[CrossRef]

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

Huang, D.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
[CrossRef]

Izatt, J. A.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
[CrossRef]

Jacobson, S. G.

R. W. Knighton, S. G. Jacobson, M. I. Roman, “Specular reflection from the surface of the retina,” in Laser Surgery: Advanced Characterization, Therapeutics, and Systems, K. Atsumi, N. R. Goldblatt, S. N. Joffe, eds., Proc. SPIE1066, 10–17 (1989).
[CrossRef]

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

Kaufman, P. L.

J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye—aging of the anterior segment,” Vision Res. 29, 1685–1692 (1989).
[CrossRef]

Kilbride, P. E.

P. E. Kilbride, K. R. Alexander, M. Fishman, G. A. Fishman, “Human macular pigment assessed by imaging fundus reflectometry,” Vision Res. 29, 663–674 (1989).
[CrossRef] [PubMed]

Knighton, R. W.

R. W. Knighton, S. G. Jacobson, M. I. Roman, “Specular reflection from the surface of the retina,” in Laser Surgery: Advanced Characterization, Therapeutics, and Systems, K. Atsumi, N. R. Goldblatt, S. N. Joffe, eds., Proc. SPIE1066, 10–17 (1989).
[CrossRef]

Koretz, J. F.

J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye—aging of the anterior segment,” Vision Res. 29, 1685–1692 (1989).
[CrossRef]

J. F. Koretz, Center for Biophysics and Department of Biology, Rensselaer Polytechnic Institute, Troy, N.Y. 12180 (personal communication, 1997).

Krauskopf, J.

J. Krauskopf, “Some experiments with a photoelectric ophthalmoscope,” Excerpta Med. Int. Congr. Ser. 125, 171–181 (1965).

Le Grand, Y.

Y. Le Grand, Optique Physiologique (Masson, Paris, 1965), Vol. 1, pp. 24, 75.

Leary, G. A.

A. Sorsby, M. Sheridan, G. A. Leary, Refraction and Its Components in Twins (Her Majesty’s Stationery Office, London, 1962).

Leighton, D. A.

D. A. Leighton, A. Tomlinson, “Changes in axial length and other dimensions of the eyeball with increasing age,” Acta Ophthalmol. 50, 815–826 (1972).
[CrossRef]

Lin, C. P.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
[CrossRef]

Lutze, M.

Millodot, M.

M. Millodot, “Reflection from the fundus of the eye and its relevance to retinoscopy,” Atti Fond. Giorgio Ronchi 27, 31–50 (1972).

Mori, M.

M. Shahidi, R. C. Zeimer, M. Mori, “Topography of the retinal thickness in normal subjects,” Ophthalmology 97, 1120–1124 (1990).
[CrossRef] [PubMed]

Neider, M. W.

J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye—aging of the anterior segment,” Vision Res. 29, 1685–1692 (1989).
[CrossRef]

Nordenson, J. W.

J. W. Nordenson, “Über den Brechungsindex der Netzhaut,” Acta Ophthalmol. 12, 171–175 (1934).

Pflibsen, K. P.

Pokorny, J.

Polyak, S. L.

S. L. Polyak, The Retina (U. Chicago Press, Chicago, Ill., 1941), p. 196.

Pruett, R. C.

F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography,” Arch. Ophthalmol. (Chicago) 95, 861–868 (1977).
[CrossRef]

Puliafito, C. A.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
[CrossRef]

Roman, M. I.

R. W. Knighton, S. G. Jacobson, M. I. Roman, “Specular reflection from the surface of the retina,” in Laser Surgery: Advanced Characterization, Therapeutics, and Systems, K. Atsumi, N. R. Goldblatt, S. N. Joffe, eds., Proc. SPIE1066, 10–17 (1989).
[CrossRef]

Rudnicka, A. R.

A. G. Bennett, A. R. Rudnicka, D. F. Edgar, “Improvements on Littmann’s method of determining the size of retinal features by fundus photography,” Graefes Arch. Clin. Exp. Ophthalmol. 232, 361–367 (1994).
[CrossRef] [PubMed]

Schuman, J. S.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
[CrossRef]

Shahidi, M.

M. Shahidi, R. C. Zeimer, M. Mori, “Topography of the retinal thickness in normal subjects,” Ophthalmology 97, 1120–1124 (1990).
[CrossRef] [PubMed]

Sheridan, M.

A. Sorsby, M. Sheridan, G. A. Leary, Refraction and Its Components in Twins (Her Majesty’s Stationery Office, London, 1962).

A. Sorsby, J. B. Benjamin, M. Davey, M. Sheridan, J. M. Tanner, Emmetropia and Its Aberrations (Her Majesty’s Stationery Office, London, 1957).

Sloan, K. R.

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

Smith, V. C.

Sorsby, A.

A. Sorsby, J. B. Benjamin, M. Davey, M. Sheridan, J. M. Tanner, Emmetropia and Its Aberrations (Her Majesty’s Stationery Office, London, 1957).

A. Sorsby, M. Sheridan, G. A. Leary, Refraction and Its Components in Twins (Her Majesty’s Stationery Office, London, 1962).

Staurenghi, G.

F. C. Delori, G. Staurenghi, D. C. Goger, J. J. Weiter, “Macular pigment density measured by reflectometry and fluorophotometry,” in Opthalmic and Visual Optics and Noninvasive Assessment of the Visual System, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 240–243.

Swanson, E. A.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
[CrossRef]

Swanson, W. H.

W. H. Swanson, G. E. Fish, “Age-related changes in the color-match-area effect,” Vision Res. 36, 2079–2085 (1996).
[CrossRef] [PubMed]

Tanner, J. M.

A. Sorsby, J. B. Benjamin, M. Davey, M. Sheridan, J. M. Tanner, Emmetropia and Its Aberrations (Her Majesty’s Stationery Office, London, 1957).

Tiemeijer, L. F.

D. van Norren, L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res. 26, 313–320 (1986).
[CrossRef] [PubMed]

Tomlinson, A.

D. A. Leighton, A. Tomlinson, “Changes in axial length and other dimensions of the eyeball with increasing age,” Acta Ophthalmol. 50, 815–826 (1972).
[CrossRef]

van Blokland, G. J.

G. J. van Blokland, D. van Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26, 485–494 (1986).
[CrossRef] [PubMed]

van de Kraats, J.

J. van de Kraats, T. T. J. M. Berendschot, D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision Res. 36, 2229–2247 (1996).
[CrossRef] [PubMed]

van der Kraats, J.

D. van Norren, J. van der Kraats, “A continuously recording retinal densitometer,” Vision Res. 21, 897–905 (1981).
[CrossRef] [PubMed]

van Norren, D.

J. van de Kraats, T. T. J. M. Berendschot, D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision Res. 36, 2229–2247 (1996).
[CrossRef] [PubMed]

G. J. van Blokland, D. van Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26, 485–494 (1986).
[CrossRef] [PubMed]

D. van Norren, L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res. 26, 313–320 (1986).
[CrossRef] [PubMed]

D. van Norren, J. van der Kraats, “A continuously recording retinal densitometer,” Vision Res. 21, 897–905 (1981).
[CrossRef] [PubMed]

Weale, R. A.

R. A. Weale, “Polarized light and the human fundus oculi,” J. Physiol. (London) 186, 175–186 (1966).

Webb, R. H.

Weiter, J. J.

F. C. Delori, G. Staurenghi, D. C. Goger, J. J. Weiter, “Macular pigment density measured by reflectometry and fluorophotometry,” in Opthalmic and Visual Optics and Noninvasive Assessment of the Visual System, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 240–243.

Williams, D. R.

D. R. Williams, “Visual consequences of the foveal pit,” Invest. Ophthalmol. Visual Sci. 19, 653–667 (1980).

Wu, S.

Zeimer, R. C.

M. Shahidi, R. C. Zeimer, M. Mori, “Topography of the retinal thickness in normal subjects,” Ophthalmology 97, 1120–1124 (1990).
[CrossRef] [PubMed]

Acta Ophthalmol. (2)

D. A. Leighton, A. Tomlinson, “Changes in axial length and other dimensions of the eyeball with increasing age,” Acta Ophthalmol. 50, 815–826 (1972).
[CrossRef]

J. W. Nordenson, “Über den Brechungsindex der Netzhaut,” Acta Ophthalmol. 12, 171–175 (1934).

Am. J. Optom. Physiol. Opt. (1)

T. Grosvenor, “Reduction in axial length with age: an emmetropizing mechanism for the adult eye?” Am. J. Optom. Physiol. Opt. 64, 657–663 (1987).
[CrossRef] [PubMed]

Appl. Opt. (3)

Arch. Ophthalmol. (Chicago) (2)

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
[CrossRef]

F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography,” Arch. Ophthalmol. (Chicago) 95, 861–868 (1977).
[CrossRef]

Atti Fond. Giorgio Ronchi (1)

M. Millodot, “Reflection from the fundus of the eye and its relevance to retinoscopy,” Atti Fond. Giorgio Ronchi 27, 31–50 (1972).

Excerpta Med. Int. Congr. Ser. (1)

J. Krauskopf, “Some experiments with a photoelectric ophthalmoscope,” Excerpta Med. Int. Congr. Ser. 125, 171–181 (1965).

Graefes Arch. Clin. Exp. Ophthalmol. (1)

A. G. Bennett, A. R. Rudnicka, D. F. Edgar, “Improvements on Littmann’s method of determining the size of retinal features by fundus photography,” Graefes Arch. Clin. Exp. Ophthalmol. 232, 361–367 (1994).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci. (1)

D. R. Williams, “Visual consequences of the foveal pit,” Invest. Ophthalmol. Visual Sci. 19, 653–667 (1980).

J. Comp. Neurol. (2)

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

C. A. Curcio, K. A. Allen, “Topography of ganglion cells in human retina,” J. Comp. Neurol. 300, 5–25 (1990).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

J.-M. Gorrand, F. C. Delori, “A model for assessment of cone directionality,” J. Mod. Opt. 44, 473–491 (1997).
[CrossRef]

J. Opt. (1)

J.-M. Gorrand, “Directional effects of the retina appearing in the aerial image,” J. Opt. 16, 279–287 (1985).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Physiol. (London) (1)

R. A. Weale, “Polarized light and the human fundus oculi,” J. Physiol. (London) 186, 175–186 (1966).

Ophthalmology (1)

M. Shahidi, R. C. Zeimer, M. Mori, “Topography of the retinal thickness in normal subjects,” Ophthalmology 97, 1120–1124 (1990).
[CrossRef] [PubMed]

Vision Res. (8)

D. van Norren, L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res. 26, 313–320 (1986).
[CrossRef] [PubMed]

J. van de Kraats, T. T. J. M. Berendschot, D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision Res. 36, 2229–2247 (1996).
[CrossRef] [PubMed]

G. J. van Blokland, D. van Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26, 485–494 (1986).
[CrossRef] [PubMed]

J.-M. Gorrand, F. C. Delori, “A reflectometric technique for assessing photoreceptor alignment,” Vision Res. 35, 999–1010 (1995).
[CrossRef] [PubMed]

P. E. Kilbride, K. R. Alexander, M. Fishman, G. A. Fishman, “Human macular pigment assessed by imaging fundus reflectometry,” Vision Res. 29, 663–674 (1989).
[CrossRef] [PubMed]

D. van Norren, J. van der Kraats, “A continuously recording retinal densitometer,” Vision Res. 21, 897–905 (1981).
[CrossRef] [PubMed]

J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye—aging of the anterior segment,” Vision Res. 29, 1685–1692 (1989).
[CrossRef]

W. H. Swanson, G. E. Fish, “Age-related changes in the color-match-area effect,” Vision Res. 36, 2079–2085 (1996).
[CrossRef] [PubMed]

Other (7)

J. F. Koretz, Center for Biophysics and Department of Biology, Rensselaer Polytechnic Institute, Troy, N.Y. 12180 (personal communication, 1997).

Y. Le Grand, Optique Physiologique (Masson, Paris, 1965), Vol. 1, pp. 24, 75.

A. Sorsby, J. B. Benjamin, M. Davey, M. Sheridan, J. M. Tanner, Emmetropia and Its Aberrations (Her Majesty’s Stationery Office, London, 1957).

A. Sorsby, M. Sheridan, G. A. Leary, Refraction and Its Components in Twins (Her Majesty’s Stationery Office, London, 1962).

F. C. Delori, G. Staurenghi, D. C. Goger, J. J. Weiter, “Macular pigment density measured by reflectometry and fluorophotometry,” in Opthalmic and Visual Optics and Noninvasive Assessment of the Visual System, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 240–243.

S. L. Polyak, The Retina (U. Chicago Press, Chicago, Ill., 1941), p. 196.

R. W. Knighton, S. G. Jacobson, M. I. Roman, “Specular reflection from the surface of the retina,” in Laser Surgery: Advanced Characterization, Therapeutics, and Systems, K. Atsumi, N. R. Goldblatt, S. N. Joffe, eds., Proc. SPIE1066, 10–17 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Entrance and exit pupils. The plane of the anatomical pupil (not shown) is imaged by the cornea into a plane 0. Light enters the eye through the entrance pupil P0 and illuminates the retinal area A. The exit pupil P0 selects the light that is collected outside the eye. Both the entrance pupil P0 and the exit pupil P0 are located in plane 0. The eye optics form their images (denoted P1 and P1, respectively) in plane 1. The optical axis of the eye intersects 0 at O0 and 1 at O1.

Fig. 2
Fig. 2

Specular reflectance. The beam coming from J1 illuminates the retinal area A around the center I of the foveola and is reflected specularly by the ILM. Only rays reflected from an area dA can be collected by the pupil P1. The area dA is calculated under the assumption that the ILM at the foveola is close to a spherical surface. This mirror forms the image J2 (in plane 2) that is conjugate with J1. C, center of curvature; r, radius of curvature; e, distance from 1 to the foveola; s, distance from 2 to the foveola.

Fig. 3
Fig. 3

Measurement of the reflectance. The annular pupil of the camera is replaced by a circular aperture P0 (1.40 mm in diameter) located at 2.65 mm from the center of the exit pupil P0. The entrance pupil P0 is imaged in front of the retina P2 by the ILM mirror. This image is in turn imaged on the film P3 by the optics of the eye and camera. Es, irradiance of image P3; Eb, irradiance of the background. Right-hand inset, flux density on the ILM.

Fig. 4
Fig. 4

Measurement of the radius of curvature. The annular pupil of the camera is replaced by two circular apertures P0 (1.40 mm in diameter) whose centers are horizontally separated by d0=5.30 mm. The entrance pupils are imaged in front of the retina by the ILM mirror and, in turn, on the film by the optics of the eye and the camera. The distance between their images on the film is d3. Right-hand inset, flux density on the ILM.

Fig. 5
Fig. 5

Fundus photographs of a 25-year-old subject that show the specular reflectance from the foveola in (a) the single-disk configuration and (b) the double-disk configuration. The dark area to the right of the fovea is an artifact resulting from the altered illumination optics in the camera.

Fig. 6
Fig. 6

Reflectance of the ILM at the foveola (530 nm) as a function of age (15 subjects). Each point is the average of five measurements. The bars represent ±1 SD of the mean. The solid curve is the logarithmic regression through all data.

Fig. 7
Fig. 7

Radius of curvature of the ILM at the foveola as a function of age (15 subjects). Each point is the average of five measurements. The bars represent ±1 SD of the mean. The solid line is the linear regression through the data, excluding the 54-year-old subject with high r value (see text).

Fig. 8
Fig. 8

Fraction of radiant flux coming from the ILM as a function of the field diameter.

Fig. 9
Fig. 9

Ratio e/m01. The eye optics forms the image I that is conjugate with I. F, posterior focal point; H, anterior principal point; H, posterior principal point; P0, entrance pupil (center O0); P1, pupil conjugate with P0 (center O1).

Fig. 10
Fig. 10

Magnification of the camera. The focus Fc of the condenser coincides with O0 in plane 0. The ray J2O1 emerges from the eye at O0, intersects the condenser at M, and is refracted parallel to the axis. The condenser forms the image BcJc (conjugate with B2J2).

Equations (42)

Equations on this page are rendered with MathJax. Learn more.

E=L0τn2m01e2A0,
Φb=REτπm01e2AA0=RL0τ2n2πm01e4AA0A0,
-1s=-2r+1e;s=re2e-r.
m12=s/e=r/(2e-r).
dA=[s/(e-s)]2A1.
dA=r2(e-r)2m012A0.
Φs=ρL0τ2n2r24m01e2m01e-r2A0A0.
E=L0(A0/q2).
Φref=RrefEπArefA0q2=RrefL0πA0ArefA0q4,
Eref=τcΦrefmr2Aref=Rref L0τcπA0A0mr2q4,
m23=fcnm01e2e-r2(e-r),
m03=fc2nm012re(e-r).
Es=τcΦsm032A0=ρL0τ2τcfc2A0,
ρ=RrefEsEref1τ2fc2πmr2q4A0.
Eb=τcΦb/m232A,
Eb=RL0τ2πτcfc2m01e2A0A0.
R=RrefEbEref1τ2fc2mr2q4em012.
e/m01=(24.20-0.325K)-1.82,
γ=1+πρRem0121A0.
d3=m03d0=fc2nm012re(e-r)d0,
r=2nfcd3d0em0121+2nfcd3d01m01em01-1.
log10 ρ=-4.234-0.0118age(ageinyears).
r=1484-13.6age
(rinmicrometers,ageinyears).
ξ=(ξ0+ξ0)m01r2(e-r),
δ=d0m01r2(e-r).
δ=d3em011nfc,
β=12arctan12d0m01e1+2m01δd0.
ρ=[(nr-nv)/(nr+nv)]2,
F=Φs/(Φs+Φb).
F=11+(4RA)/(πρr2).
e=O1I¯=O1H¯+HI¯.
m01=1nHO1¯HO0¯,
em01=nHO0¯HO1¯(O1H¯+HI¯)=HI¯HO0¯ nHO1¯-nHI¯.
nHI¯-1HI¯=nf,nHO1¯-1HO0¯=nf,
em01=HI¯HO0¯1HO0¯-1HI¯=HI¯1-HO0¯HI¯.
e/m01=HI¯=l-1.82(eandlinmillimeters).
e/m01=(24.20-0.325K)-1.82
(einmillimeters,Kindiopters).
θ=nm01θ.
m23=fcθ/O1B2¯θ.
m23=fcnm01e2e-r2(e-r).

Metrics