Abstract

A neural model of motion perception simulates psychophysical data concerning first-order and second-order motion stimuli, including the reversal of perceived motion direction with distance from the stimulus (Γ display), and data about directional judgments as a function of relative spatial phase or spatial and temporal frequency. Many other second-order motion percepts that have been ascribed to a second non-Fourier processing stream can also be explained in the model by interactions between ON and OFF cells within a single, neurobiologically interpreted magnocellular processing stream. Yet other percepts may be traced to interactions between form and motion processing streams, rather than to processing within multiple motion processing streams. The model hereby explains why monkeys with lesions of the parvocellular layers, but not of the magnocellular layers, of the lateral geniculate nucleus (LGN) are capable of detecting the correct direction of second-order motion, why most cells in area MT are sensitive to both first-order and second-order motion, and why after 2-amino-4-phosphonobutyrate injection selectively blocks retinal ON bipolar cells, cortical cells are sensitive only to the motion of a moving bright bar’s trailing edge. Magnocellular LGN cells show relatively transient responses, whereas parvocellular LGN cells show relatively sustained responses. Correspondingly, the model bases its directional estimates on the outputs of model ON and OFF transient cells that are organized in opponent circuits wherein antagonistic rebounds occur in response to stimulus offset. Center–surround interactions convert these ON and OFF outputs into responses of lightening and darkening cells that are sensitive both to direct inputs and to rebound responses in their receptive field centers and surrounds. The total pattern of activity increments and decrements is used by subsequent processing stages (spatially short-range filters, competitive interactions, spatially long-range filters, and directional grouping cells) to determine the perceived direction of motion.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. J. Braddick, “A short-range process in apparent motion,” Vision Res. 14, 519–527 (1974).
    [CrossRef] [PubMed]
  2. J. S. Lappin, H. H. Bell, “The detection of coherence in moving random-dot patterns,” Vision Res. 16, 161–168 (1976).
    [CrossRef] [PubMed]
  3. C. L. Baker, O. J. Braddick, “The basis of area and dot number effects in random dot motion perception,” Vision Res. 22, 1253–1259 (1982).
    [CrossRef] [PubMed]
  4. J. J. Chang, B. Julesz, “Displacement limits, directional anisotropy and direction versus form discrimination in random-dot kinematograms,” Vision Res. 23, 639–646 (1983).
    [CrossRef]
  5. J. J. Chang, B. Julesz, “Displacement limits for spatial frequency filtered random-dot kinematograms in apparent motion,” Vision Res. 23, 1379–1385 (1983).
    [CrossRef]
  6. A. J. van Doorn, J. J. Koenderink, “Spatiotemporal integration in the detection of coherent motion,” Vision Res. 24, 47–53 (1984).
    [CrossRef] [PubMed]
  7. K. Nakayama, G. H. Silverman, “Temporal and spatial characteristics of the upper displacement limit for motion in random dots,” Vision Res. 24, 293–299 (1984).
    [CrossRef] [PubMed]
  8. W. F. Bischof, V. Di Lollo, “Perception of directional sampled motion in relation to displacement and spatial frequency: evidence for a unitary motion system,” Vision Res. 30, 1341–1362 (1990).
    [CrossRef] [PubMed]
  9. P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vis. 4, 103–129 (1989).
    [CrossRef]
  10. S. Grossberg, M. E. Rudd, “A neural architecture for visual motion perception: group and element apparent motion,” Neural Networks 2, 421–450 (1989).
    [CrossRef]
  11. G. Sperling, “Three stages and two systems of visual processing,” Spatial Vis. 4, 183–207 (1989).
    [CrossRef]
  12. C. Chubb, G. Sperling, “Two motion perception mechanisms revealed through distance-driven reversal of apparent motion,” Proc. Natl. Acad. Sci. USA 86, 2985–2989 (1989).
    [CrossRef] [PubMed]
  13. S. M. Anstis, B. J. Rogers, “Illusory reversal of visual depth and movement during changes in contrast,” Vision Res. 15, 957–961 (1975).
    [CrossRef] [PubMed]
  14. Z.-L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2772 (1995).
    [CrossRef] [PubMed]
  15. A. Baloch, S. Grossberg, “A neural model of high-level motion processing: line motion and formotion dynamics,” Vision Res. 37, 3037–3059 (1997).
    [CrossRef]
  16. G. Francis, S. Grossberg, “Cortical dynamics of form and motion integration: persistence, apparent motion and illusory contours,” Vision Res. 36, 149–173 (1996).
    [CrossRef] [PubMed]
  17. S. Grossberg, “Why do parallel cortical systems exist for the perception static form and moving form?” Percept. Psychophys. 49, 117–141 (1991).
    [CrossRef] [PubMed]
  18. A. Gellatly, A. Blurton, “What are the mechanisms of rivalrous first-order and second-order motions?” Perception 25, Supplement, 8–9 (1996).
  19. C. Enroth-Cugell, J. G. Robson, “The contrast sensitivity of retinal ganglion cells of the cat.” J. Physiol. (London) 187, 517–552 (1966).
  20. D. J. Tolhurst, “Separate channels for the analysis of shape and the movement of a moving visual stimulus,” J. Physiol. (London) 231, 385–402 (1973).
  21. B. G. Clelland, M. W. Dubin, W. R. Levick, “Sustained and transient neurons in the cat’s retina and lateral geniculate nucleus,” J. Physiol. (London) 217, 473–496 (1971).
  22. P. H. Schiller, J. Malpeli, “Properties of tectal projections of monkey retinal ganglion cells,” J. Neurophysiol. 40, 428–445 (1977).
    [PubMed]
  23. M. Livingstone, D. Hubel, “Segregation of form, color, movement, and depth: anatomy, physiology, and perception,” Science 240, 740–749 (1988).
    [CrossRef] [PubMed]
  24. T. D. Albright, “Direction and orientation selectivity of neurons in visual area MT of the macaque,” J. Neurophysiol. 52, 1106–1131 (1984).
    [PubMed]
  25. J. H. R. Maunsell, D. C. van Essen, “Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation,” J. Neurophysiol. 49, 1127–1147 (1983).
    [PubMed]
  26. W. T. Newsome, E. B. Paré, “A selective impairment of motion processing following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
    [PubMed]
  27. W. T. Newsome, R. H. Wurtz, M. R. Dursteler, A. Mikami, “Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey,” J. Neurosci. 5, 825–840 (1985).
    [PubMed]
  28. G. A. Orban, B. Gulyas, “Image segregation by motion: cortical mechanisms and implementation in neural networks,” in R. Eckmiller, C. Von der Marlsburg, eds., Neurocomputers (Springer-Verlag, Heidelberg), pp. 149–159.
  29. D. C. van Essen, “Visual areas of the mammalian cerebral cortex,” Annu. Rev. Neurosci. 2, 227–263 (1979).
    [CrossRef] [PubMed]
  30. D. C. van Essen, J. H. R. Maunsell, J. L. Bixby, “The middle temporal visual area in the macaque: myeloarchitecture connections, functional properties and topographic organization,” J. Comp. Neurol. 199, 293–326 (1981).
    [CrossRef] [PubMed]
  31. S. M. Zeki, “Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey,” J. Physiol. (London) 236, 549–573 (1974).
  32. J. H. R. Maunsell, T. A. Nealey, D. D. DePriest, “Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey,” J. Neurosci. 10, 3323–3334 (1990).
    [PubMed]
  33. T. D. Albright, “Form–cue invariant motion processing in primate visual cortex,” Science 255, 1141–1143 (1992).
    [CrossRef] [PubMed]
  34. P. H. Schiller, N. K. Logothetis, E. R. Charles, “Functions of the color-opponent and broad-band channels of the visual system,” Science 343, 68–70 (1990).
  35. V. P. Ferrera, T. A. Nealey, J. H. R. Maunsell, “Mixed parvocellular and magnocellular geniculate signals in visual area V4,” Nature (London) 358, 756–758 (1992).
    [CrossRef]
  36. J. H. R. Maunsell, T. A. Nealey, V. P. Ferrera, “Magnocellular and parvocellular contributions to neuronal responses in monkey visual cortex,” Invest. Ophthalmol. Visual Sci. Suppl. 33, 901 (1992).
  37. M. M. Slaughter, R. F. Miller, “2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research,” Science 211, 182–184 (1981).
    [CrossRef] [PubMed]
  38. P. H. Schiller, “The On and Off channels of the visual system,” Trends Neurosci. 15, 86–92 (1992).
    [CrossRef] [PubMed]
  39. C. L. Fennema, W. B. Thompson, “Velocity determination in scenes containing several moving objects,” Comput. Graph. Image Process. 9, 301–315 (1979).
    [CrossRef]
  40. B. Hadani, G. Ishai, M. Gur, “Visual stability and space perception in monocular vision: mathematical model,” J. Opt. Soc. Am. 70, 60–65 (1980).
    [CrossRef] [PubMed]
  41. B. K. P. Horn, B. G. Schunck, “Determining optical flow,” (MIT, Cambridge, Mass., 1980).
  42. J. O. Limb, J. A. Murphy, “Estimating the velocity of moving objects in television signals,” Comput. Vision Image Process. 4, 311–327 (1975).
    [CrossRef]
  43. D. Marr, Vision (Freeman, San Francisco, Calif., 1982).
  44. D. Marr, S. Ullman, “Directional sensitivity and its use in early visual processing,” Proc. R. Soc. London, Ser. B 211, 151–180 (1981).
    [CrossRef]
  45. E. H. Adelson, J. R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
    [CrossRef] [PubMed]
  46. W. Reichardt, “Autocorrelation, a principle for the evaluation of sensory information by the central nervous system,” in W. A. Rosenblith, ed., Sensory Communication (Wiley, New York, 1961), pp. 303–317.
  47. J. P. H. van Santen, G. Sperling, “Temporal covariance model of human motion perception,” J. Opt. Soc. Am. A 1, 451–473 (1984).
    [CrossRef] [PubMed]
  48. J. P. H. van Santen, G. Sperling, “Elaborated Reichardt detectors,” J. Opt. Soc. Am. A 2, 300–321 (1985).
    [CrossRef] [PubMed]
  49. A. B. Watson, A. J. Ahumada, “Model of human visual-motion sensing,” J. Opt. Soc. Am. A 2, 322–342 (1985).
    [CrossRef] [PubMed]
  50. S. Grossberg, E. Mingolla, “Neural dynamics of motion perception: direction fields, apertures, and resonant grouping,” Percept. Psychophys. 53, 243–278 (1993).
    [CrossRef] [PubMed]
  51. S. Grossberg, M. E. Rudd, “Cortical dynamics of visual motion perception: short- and long-range motion,” Psychol. Rev. 99, 78–121 (1992).
    [CrossRef] [PubMed]
  52. S. H. Bartley, Vision, a Study of Its Basis (Van Nostrand Reinhold, New York, 1941).
  53. H. R. de Silva, “An experimental investigation of the determinants of apparent visual movement,” Am. J. Psychol. 37, 469–501 (1926).
    [CrossRef]
  54. D. Giaschi, S. Anstis, “The less you see it, the faster it moves: shortening the ‘on-time’ speeds up the apparent motion,” Vision Res. 29, 335–347 (1989).
    [CrossRef]
  55. P. A. Kolers, Aspects of Motion Perception (Pergamon, Elmsford, N.Y., 1972).
  56. A. Korté, “Kinematoskopische Untersuchungen,” Z. Psychol.194–296 (1915).
  57. A. Pantle, L. Picciano, “A multistable movement display: evidence for two separate motion systems in human vision,” Science 193, 500–502 (1976).
    [CrossRef] [PubMed]
  58. J. Ternus, “Experimentelle Untersuchungen über phänomenale Identität,” in W. D. Ellis, ed. and trans., A Sourcebook of Gestalt Psychology (Humanities Press, New York, 1950) (original work published 1926).
  59. G. Francis, S. Grossberg, “Cortical dynamics of boundary segmentation and reset: persistence, afterimages, and residual traces,” Perception 25, 543–567 (1996).
    [CrossRef] [PubMed]
  60. P. Cavanagh, M. Arguin, M. von Grünau, “Interattribute apparent motion,” Vision Res. 29, 1197–1204 (1989).
    [CrossRef] [PubMed]
  61. G. Mather, “Temporal properties of apparent motion in subjective figures,” Perception 17, 729–736 (1988).
    [CrossRef] [PubMed]
  62. W. Neuhaus, “Experimentelle untersuchung der Scheinbewegung,” Archiv gesamte Psychol. 75, 315–458 (1930).
  63. V. Ramachandran, “Apparent motion of subjective surfaces,” Perception 14, 127–134 (1985).
    [CrossRef] [PubMed]
  64. M. von Grünau, “The involvement of illusory contours in stroboscopic motion,” Percept. Psychophys. 25, 205–208 (1979).
    [CrossRef] [PubMed]
  65. C. A. M. Nogueira, E. Mingolla, S. Grossberg, “Computation of first order and second order motion by a model of magnocellular dynamics,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 1029 (1993).
  66. J. Chey, S. Grossberg, E. Mingolla, “Neural dynamics of motion processing and speed discrimination,” Vision Res. 38, 2769–2786 (1998).
    [CrossRef] [PubMed]
  67. J. Chey, S. Grossberg, E. Mingolla, “Neural dynamics of motion grouping: from aperture ambiguity to object speed and direction,” J. Opt. Soc. Am. A 14, 2570–2594 (1997).
    [CrossRef]
  68. D. Ferster, “Spatially opponent excitation and inhibition in simple cells of the cat visual cortex,” J. Neurosci. 8, 1172–1180 (1988).
    [PubMed]
  69. A. Gove, S. Grossberg, E. Mingolla, “Brightness perception, illusory contours, and corticogeniculate feedback,” Visual Neurosci. 12, 1027–1052 (1995).
    [CrossRef]
  70. Z. Liu, J. P. Gaska, L. D. Jacobson, D. A. Pollen, “Interneuronal interactions between members of quadrature phase and anti-phase pairs in the cat’s visual cortex,” Vision Res. 32, 1193–1198 (1992).
    [CrossRef] [PubMed]
  71. S. Grossberg, “A neural theory of punishment and avoidance, II: quantitative theory,” Math. Biosci. 15, 253–285 (1972).
    [CrossRef]
  72. G. A. Carpenter, S. Grossberg, “Adaptation and transmitter gating in vertebrate photo-receptors,” J. Theor. Neurobiol.1, 1–42 (1981). Reprinted in S. Grossberg, ed., The Adaptive Brain, Vol. I. (Elsevier/North-Holland, Amsterdam, 1981).
  73. G. Francis, S. Grossberg, E. Mingolla, “Cortical dynamics of feature binding and reset: control of visual persistence,” Vision Res. 34, 1089–1104 (1994).
    [CrossRef] [PubMed]
  74. P. Gaudiano, “Simulations of X and Y retinal ganglion cell behavior with a nonlinear push–pull model of spatiotemporal retinal processing,” Vision Res. 34, 1767–1784 (1994).
    [CrossRef] [PubMed]
  75. S. Grossberg, “Adaptive pattern classification and universal recoding: II. Feedback, expectation, olfaction, illusions,” Biol. Cybern. 23, 187–202 (1976).
    [PubMed]
  76. H. Ögmen, S. Gagné, “Neural network architecture for motion perception and elementary motion detection in the fly visual system,” Neural Networks 3, 487–506 (1990).
    [CrossRef]
  77. C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2007 (1988).
    [CrossRef] [PubMed]
  78. L. R. Harris, A. T. Smith, “Motion defined exclusively by second-order characteristics does not evoke optokinetic nystagmus,” Visual Neurosci. 9, 565–570 (1992).
    [CrossRef]
  79. G. S. Masson, C. Busettini, F. A. Miles, “Vergence eye movements in response to binocular disparity without depth perception,” Nature (London) 389, 283–286 (1997).
    [CrossRef]
  80. R. C. Emerson, G. L. Gerstein, “Simple striate neurons in the cat: II. Mechanisms underlying directional asymmetry and directional selectivity,” J. Neurophysiol. 40, 136–155 (1977).
    [PubMed]
  81. L. Ganz, “Visual cortical mechanisms responsible for direction selectivity,” Vision Res. 24, 3–11 (1984).
    [CrossRef] [PubMed]
  82. A. W. Goodwin, G. H. Henry, P. O. Bishop, “Direction selectivity of simple striate cells: properties and mechanisms,” J. Neurophysiol. 38, 1500–1523 (1975).
    [PubMed]
  83. P. Heggelund, “Direction assymetry by moving stimuli and static receptive field plots for simple cells in cat striate cortex,” Vision Res. 24, 13–16 (1984).
    [CrossRef]
  84. H. B. Barlow, W. R. Levick, “The mechanism of directionally selective units in rabbit’s retina,” J. Physiol. (London) 178, 477–504 (1965).
  85. M. Ariel, N. W. Daw, “Pharmacological analysis of directionally sensitive rabbit retinal ganglion cells,” J. Physiol. (London) 324, 161–185 (1982).
  86. D. H. Hubel, T. N. Wiesel, “Receptive fields of single cells in the cat’s striate cortex,” J. Physiol. (London) 148, 574–591 (1959).
  87. D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).
  88. S. W. Kuffler, “Discharge patterns and functional organization of mammalian retina,” J. Neurophysiol. 16, 37–68 (1953).
    [PubMed]
  89. P. H. Schiller, “Central connections in the retinal ON- and OFF-pathways,” Nature (London) 297, 580–583 (1982).
    [CrossRef]
  90. S. Grossberg, “How does a brain build cognitive code?” Psychol. Rev. 87, 1–51 (1980).
    [CrossRef] [PubMed]
  91. S. Grossberg, “The quantized geometry of visual space: the coherent computation of depth, form and lightness,” Behav. Brain Sci. 6, 625–657 (1983).
    [CrossRef]
  92. T. D. Albright, R. Desimone, C. G. Gross, “Columnar organization of directionally sensitive cells in visual area MT of the macaque,” J. Neurophysiol. 51, 16–31 (1984).
    [PubMed]
  93. W. T. Newsome, M. S. Gizzi, J. A. Movshan, “Spatial and temporal properties of neurons in macaque MT,” Invest. Ophthalmol. Visual Sci. Suppl. 24, 106 (1983).
  94. D. C. Bradley, N. Qian, R. A. Anderson, “Integration of motion and stereopsis in middle temporal cortical area of macaques,” Nature (London) 373, 609–611 (1995).
    [CrossRef]
  95. J. H. R. Maunsell, D. C. van Essen, “Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity,” J. Neurophysiol. 49, 1148–1167 (1983).
    [PubMed]
  96. J. A. Gengerelli, “Apparent movement in relation to homonymous and heteronymous stimulation of the cerebral hemispheres,” J. Exp. Psychol. 38, 592–599 (1948).
    [CrossRef] [PubMed]
  97. I. M. Spigel, “Problems in the study of visually perceived movement: an introduction,” in R. H. Haber, ed., Contemporary Theory and Research in Visual Perception (Holt, Rinehart & Winston, New York, 1968), 103–121.
  98. T. Ledgeway, A. T. Smith, “Evidence for separate motion-detecting mechanisms for first- and second-order motion in human vision,” Vision Res. 34, 2727–2740 (1994).
    [CrossRef] [PubMed]
  99. G. Mather, S. West, “Evidence of second-order motion detectors,” Vision Res. 33, 1109–1112 (1993).
    [CrossRef] [PubMed]
  100. A. Derrington, “Analysis of the motion of contrast-modulated patterns,” Invest. Ophthalmol. Visual Sci. Suppl. 35, 1406 (1994).
  101. A. M. Derrington, D. R. Badcock, “Separate detectors for simple and complex cells,” Vision Res. 25, 1869–1878 (1985).
    [CrossRef]
  102. A. M. Derrington, D. R. Badcock, G. B. Henning, “Discriminating the detection of second-order motion at short stimulus durations,” Vision Res. 37, 1785–1794 (1993).
    [CrossRef]
  103. I. E. Holliday, S. J. Anderson, “Different processes underlie the detection of second-order motion at low and high temporal frequencies,” Proc. R. Soc. London, Ser. B 257, 165–173 (1994).
    [CrossRef]
  104. A. T. Smith, T. Ledgeway, “Sensitivity of second-order motion as a function of drift temporal frequency and viewing eccentricity,” Invest. Ophthalmol. Visual Sci. Suppl. 38, 401 (1997).
  105. A. T. Smith, T. Ledgeway, “Separate detection of moving luminance and contrast modulations: fact or artifact?” Vision Res. 37, 45–62 (1997).
    [CrossRef] [PubMed]
  106. A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite direction,” Vision Res. 20, 341–347 (1980).
    [CrossRef]
  107. T. Ledgeway, A. T. Smith, “Effects of adaptation to second-order motion on perceived speed,” Invest. Ophthalmol. Visual Sci. 36, 53 (1995).
  108. K. Turano, “Evidence for a common motion mechanism of luminance- and contrast-modulated patterns: selective adaptation,” Perception 20, 455–466 (1991).
    [CrossRef]
  109. K. Turano, A. Pantle, “On the mechanism that encodes the movement of contrast variations: velocity discrimination,” Vision Res. 29, 207–221 (1989).
    [CrossRef] [PubMed]
  110. E. Taub, J. D. Victor, M. M. Conte, “Nonlinear preprocessing in short-range motion,” Vision Res. 37, 1459–1477 (1997).
    [CrossRef] [PubMed]
  111. A. Johnston, C. W. G. Clifford, “A unified account of three apparent motion illusions,” Vision Res. 8, 1109–1123 (1995).
    [CrossRef]
  112. Z.-L. Lu, G. Sperling, “Attention-generated apparent motion,” Science 377, 237–239 (1995).
  113. L. Bowns, “Evidence for a feature tracking explanation of why type II plaids move in the vector sum direction at short durations,” Vision Res. 36, 3685–3694 (1996).
    [CrossRef] [PubMed]
  114. E. Castet, J. Lorenceau, M. Shiffrar, C. Bonnet, “Perceived speed of moving lines depends on orientation, length, speed, and luminance,” Vision Res. 33, 1921–1936 (1993).
    [CrossRef] [PubMed]
  115. H. Wallach, On Perception (Quadrangle, New York, 1976).
  116. O. Hikosaka, S. Miyauchi, S. Shimojo, “Focal visual attention produces illusory temporal order and motion sensation,” Vision Res. 33, 1219–1240 (1993).
    [CrossRef] [PubMed]
  117. O. Hikosaka, S. Miyauchi, S. Shimojo, “Voluntary and stimulus-induced attention detected as motion sensation,” Perception 22, 517–526 (1993).
    [CrossRef] [PubMed]
  118. J. Faubert, M. von Grünau, “The extent of split attention and attribute priming in motion induction,” Prog. Aerosp. Sci. 21, 105b (1992).
  119. J. Faubert, M. von Grünau, “The influence of two spatially distinct primers and attribute priming on motion induction,” Vision Res. 35, 3119–3130 (1995).
    [CrossRef] [PubMed]
  120. M. von Grünau, J. Faubert, “Intraattribute and interattribute motion induction,” Perception 23, 913–928 (1994).
    [CrossRef] [PubMed]
  121. P. Tse, P. Cavanagh, K. Nakayama, “The role of parsing in high-level motion processing,” in T. Watanabe, ed., High Level Motion Processing (MIT Press, Cambridge, Mass., 1998), pp. 249–266.

1998 (1)

J. Chey, S. Grossberg, E. Mingolla, “Neural dynamics of motion processing and speed discrimination,” Vision Res. 38, 2769–2786 (1998).
[CrossRef] [PubMed]

1997 (6)

J. Chey, S. Grossberg, E. Mingolla, “Neural dynamics of motion grouping: from aperture ambiguity to object speed and direction,” J. Opt. Soc. Am. A 14, 2570–2594 (1997).
[CrossRef]

E. Taub, J. D. Victor, M. M. Conte, “Nonlinear preprocessing in short-range motion,” Vision Res. 37, 1459–1477 (1997).
[CrossRef] [PubMed]

A. Baloch, S. Grossberg, “A neural model of high-level motion processing: line motion and formotion dynamics,” Vision Res. 37, 3037–3059 (1997).
[CrossRef]

G. S. Masson, C. Busettini, F. A. Miles, “Vergence eye movements in response to binocular disparity without depth perception,” Nature (London) 389, 283–286 (1997).
[CrossRef]

A. T. Smith, T. Ledgeway, “Sensitivity of second-order motion as a function of drift temporal frequency and viewing eccentricity,” Invest. Ophthalmol. Visual Sci. Suppl. 38, 401 (1997).

A. T. Smith, T. Ledgeway, “Separate detection of moving luminance and contrast modulations: fact or artifact?” Vision Res. 37, 45–62 (1997).
[CrossRef] [PubMed]

1996 (4)

L. Bowns, “Evidence for a feature tracking explanation of why type II plaids move in the vector sum direction at short durations,” Vision Res. 36, 3685–3694 (1996).
[CrossRef] [PubMed]

G. Francis, S. Grossberg, “Cortical dynamics of form and motion integration: persistence, apparent motion and illusory contours,” Vision Res. 36, 149–173 (1996).
[CrossRef] [PubMed]

A. Gellatly, A. Blurton, “What are the mechanisms of rivalrous first-order and second-order motions?” Perception 25, Supplement, 8–9 (1996).

G. Francis, S. Grossberg, “Cortical dynamics of boundary segmentation and reset: persistence, afterimages, and residual traces,” Perception 25, 543–567 (1996).
[CrossRef] [PubMed]

1995 (7)

A. Johnston, C. W. G. Clifford, “A unified account of three apparent motion illusions,” Vision Res. 8, 1109–1123 (1995).
[CrossRef]

Z.-L. Lu, G. Sperling, “Attention-generated apparent motion,” Science 377, 237–239 (1995).

J. Faubert, M. von Grünau, “The influence of two spatially distinct primers and attribute priming on motion induction,” Vision Res. 35, 3119–3130 (1995).
[CrossRef] [PubMed]

A. Gove, S. Grossberg, E. Mingolla, “Brightness perception, illusory contours, and corticogeniculate feedback,” Visual Neurosci. 12, 1027–1052 (1995).
[CrossRef]

Z.-L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2772 (1995).
[CrossRef] [PubMed]

T. Ledgeway, A. T. Smith, “Effects of adaptation to second-order motion on perceived speed,” Invest. Ophthalmol. Visual Sci. 36, 53 (1995).

D. C. Bradley, N. Qian, R. A. Anderson, “Integration of motion and stereopsis in middle temporal cortical area of macaques,” Nature (London) 373, 609–611 (1995).
[CrossRef]

1994 (6)

T. Ledgeway, A. T. Smith, “Evidence for separate motion-detecting mechanisms for first- and second-order motion in human vision,” Vision Res. 34, 2727–2740 (1994).
[CrossRef] [PubMed]

A. Derrington, “Analysis of the motion of contrast-modulated patterns,” Invest. Ophthalmol. Visual Sci. Suppl. 35, 1406 (1994).

I. E. Holliday, S. J. Anderson, “Different processes underlie the detection of second-order motion at low and high temporal frequencies,” Proc. R. Soc. London, Ser. B 257, 165–173 (1994).
[CrossRef]

G. Francis, S. Grossberg, E. Mingolla, “Cortical dynamics of feature binding and reset: control of visual persistence,” Vision Res. 34, 1089–1104 (1994).
[CrossRef] [PubMed]

P. Gaudiano, “Simulations of X and Y retinal ganglion cell behavior with a nonlinear push–pull model of spatiotemporal retinal processing,” Vision Res. 34, 1767–1784 (1994).
[CrossRef] [PubMed]

M. von Grünau, J. Faubert, “Intraattribute and interattribute motion induction,” Perception 23, 913–928 (1994).
[CrossRef] [PubMed]

1993 (7)

S. Grossberg, E. Mingolla, “Neural dynamics of motion perception: direction fields, apertures, and resonant grouping,” Percept. Psychophys. 53, 243–278 (1993).
[CrossRef] [PubMed]

C. A. M. Nogueira, E. Mingolla, S. Grossberg, “Computation of first order and second order motion by a model of magnocellular dynamics,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 1029 (1993).

A. M. Derrington, D. R. Badcock, G. B. Henning, “Discriminating the detection of second-order motion at short stimulus durations,” Vision Res. 37, 1785–1794 (1993).
[CrossRef]

G. Mather, S. West, “Evidence of second-order motion detectors,” Vision Res. 33, 1109–1112 (1993).
[CrossRef] [PubMed]

E. Castet, J. Lorenceau, M. Shiffrar, C. Bonnet, “Perceived speed of moving lines depends on orientation, length, speed, and luminance,” Vision Res. 33, 1921–1936 (1993).
[CrossRef] [PubMed]

O. Hikosaka, S. Miyauchi, S. Shimojo, “Focal visual attention produces illusory temporal order and motion sensation,” Vision Res. 33, 1219–1240 (1993).
[CrossRef] [PubMed]

O. Hikosaka, S. Miyauchi, S. Shimojo, “Voluntary and stimulus-induced attention detected as motion sensation,” Perception 22, 517–526 (1993).
[CrossRef] [PubMed]

1992 (8)

J. Faubert, M. von Grünau, “The extent of split attention and attribute priming in motion induction,” Prog. Aerosp. Sci. 21, 105b (1992).

L. R. Harris, A. T. Smith, “Motion defined exclusively by second-order characteristics does not evoke optokinetic nystagmus,” Visual Neurosci. 9, 565–570 (1992).
[CrossRef]

T. D. Albright, “Form–cue invariant motion processing in primate visual cortex,” Science 255, 1141–1143 (1992).
[CrossRef] [PubMed]

V. P. Ferrera, T. A. Nealey, J. H. R. Maunsell, “Mixed parvocellular and magnocellular geniculate signals in visual area V4,” Nature (London) 358, 756–758 (1992).
[CrossRef]

J. H. R. Maunsell, T. A. Nealey, V. P. Ferrera, “Magnocellular and parvocellular contributions to neuronal responses in monkey visual cortex,” Invest. Ophthalmol. Visual Sci. Suppl. 33, 901 (1992).

P. H. Schiller, “The On and Off channels of the visual system,” Trends Neurosci. 15, 86–92 (1992).
[CrossRef] [PubMed]

S. Grossberg, M. E. Rudd, “Cortical dynamics of visual motion perception: short- and long-range motion,” Psychol. Rev. 99, 78–121 (1992).
[CrossRef] [PubMed]

Z. Liu, J. P. Gaska, L. D. Jacobson, D. A. Pollen, “Interneuronal interactions between members of quadrature phase and anti-phase pairs in the cat’s visual cortex,” Vision Res. 32, 1193–1198 (1992).
[CrossRef] [PubMed]

1991 (2)

S. Grossberg, “Why do parallel cortical systems exist for the perception static form and moving form?” Percept. Psychophys. 49, 117–141 (1991).
[CrossRef] [PubMed]

K. Turano, “Evidence for a common motion mechanism of luminance- and contrast-modulated patterns: selective adaptation,” Perception 20, 455–466 (1991).
[CrossRef]

1990 (4)

W. F. Bischof, V. Di Lollo, “Perception of directional sampled motion in relation to displacement and spatial frequency: evidence for a unitary motion system,” Vision Res. 30, 1341–1362 (1990).
[CrossRef] [PubMed]

P. H. Schiller, N. K. Logothetis, E. R. Charles, “Functions of the color-opponent and broad-band channels of the visual system,” Science 343, 68–70 (1990).

J. H. R. Maunsell, T. A. Nealey, D. D. DePriest, “Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey,” J. Neurosci. 10, 3323–3334 (1990).
[PubMed]

H. Ögmen, S. Gagné, “Neural network architecture for motion perception and elementary motion detection in the fly visual system,” Neural Networks 3, 487–506 (1990).
[CrossRef]

1989 (7)

D. Giaschi, S. Anstis, “The less you see it, the faster it moves: shortening the ‘on-time’ speeds up the apparent motion,” Vision Res. 29, 335–347 (1989).
[CrossRef]

P. Cavanagh, M. Arguin, M. von Grünau, “Interattribute apparent motion,” Vision Res. 29, 1197–1204 (1989).
[CrossRef] [PubMed]

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vis. 4, 103–129 (1989).
[CrossRef]

S. Grossberg, M. E. Rudd, “A neural architecture for visual motion perception: group and element apparent motion,” Neural Networks 2, 421–450 (1989).
[CrossRef]

G. Sperling, “Three stages and two systems of visual processing,” Spatial Vis. 4, 183–207 (1989).
[CrossRef]

C. Chubb, G. Sperling, “Two motion perception mechanisms revealed through distance-driven reversal of apparent motion,” Proc. Natl. Acad. Sci. USA 86, 2985–2989 (1989).
[CrossRef] [PubMed]

K. Turano, A. Pantle, “On the mechanism that encodes the movement of contrast variations: velocity discrimination,” Vision Res. 29, 207–221 (1989).
[CrossRef] [PubMed]

1988 (5)

M. Livingstone, D. Hubel, “Segregation of form, color, movement, and depth: anatomy, physiology, and perception,” Science 240, 740–749 (1988).
[CrossRef] [PubMed]

W. T. Newsome, E. B. Paré, “A selective impairment of motion processing following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
[PubMed]

G. Mather, “Temporal properties of apparent motion in subjective figures,” Perception 17, 729–736 (1988).
[CrossRef] [PubMed]

D. Ferster, “Spatially opponent excitation and inhibition in simple cells of the cat visual cortex,” J. Neurosci. 8, 1172–1180 (1988).
[PubMed]

C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2007 (1988).
[CrossRef] [PubMed]

1985 (6)

E. H. Adelson, J. R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
[CrossRef] [PubMed]

J. P. H. van Santen, G. Sperling, “Elaborated Reichardt detectors,” J. Opt. Soc. Am. A 2, 300–321 (1985).
[CrossRef] [PubMed]

A. B. Watson, A. J. Ahumada, “Model of human visual-motion sensing,” J. Opt. Soc. Am. A 2, 322–342 (1985).
[CrossRef] [PubMed]

V. Ramachandran, “Apparent motion of subjective surfaces,” Perception 14, 127–134 (1985).
[CrossRef] [PubMed]

W. T. Newsome, R. H. Wurtz, M. R. Dursteler, A. Mikami, “Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey,” J. Neurosci. 5, 825–840 (1985).
[PubMed]

A. M. Derrington, D. R. Badcock, “Separate detectors for simple and complex cells,” Vision Res. 25, 1869–1878 (1985).
[CrossRef]

1984 (7)

T. D. Albright, R. Desimone, C. G. Gross, “Columnar organization of directionally sensitive cells in visual area MT of the macaque,” J. Neurophysiol. 51, 16–31 (1984).
[PubMed]

L. Ganz, “Visual cortical mechanisms responsible for direction selectivity,” Vision Res. 24, 3–11 (1984).
[CrossRef] [PubMed]

P. Heggelund, “Direction assymetry by moving stimuli and static receptive field plots for simple cells in cat striate cortex,” Vision Res. 24, 13–16 (1984).
[CrossRef]

T. D. Albright, “Direction and orientation selectivity of neurons in visual area MT of the macaque,” J. Neurophysiol. 52, 1106–1131 (1984).
[PubMed]

A. J. van Doorn, J. J. Koenderink, “Spatiotemporal integration in the detection of coherent motion,” Vision Res. 24, 47–53 (1984).
[CrossRef] [PubMed]

K. Nakayama, G. H. Silverman, “Temporal and spatial characteristics of the upper displacement limit for motion in random dots,” Vision Res. 24, 293–299 (1984).
[CrossRef] [PubMed]

J. P. H. van Santen, G. Sperling, “Temporal covariance model of human motion perception,” J. Opt. Soc. Am. A 1, 451–473 (1984).
[CrossRef] [PubMed]

1983 (6)

J. J. Chang, B. Julesz, “Displacement limits, directional anisotropy and direction versus form discrimination in random-dot kinematograms,” Vision Res. 23, 639–646 (1983).
[CrossRef]

J. J. Chang, B. Julesz, “Displacement limits for spatial frequency filtered random-dot kinematograms in apparent motion,” Vision Res. 23, 1379–1385 (1983).
[CrossRef]

J. H. R. Maunsell, D. C. van Essen, “Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation,” J. Neurophysiol. 49, 1127–1147 (1983).
[PubMed]

W. T. Newsome, M. S. Gizzi, J. A. Movshan, “Spatial and temporal properties of neurons in macaque MT,” Invest. Ophthalmol. Visual Sci. Suppl. 24, 106 (1983).

S. Grossberg, “The quantized geometry of visual space: the coherent computation of depth, form and lightness,” Behav. Brain Sci. 6, 625–657 (1983).
[CrossRef]

J. H. R. Maunsell, D. C. van Essen, “Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity,” J. Neurophysiol. 49, 1148–1167 (1983).
[PubMed]

1982 (3)

P. H. Schiller, “Central connections in the retinal ON- and OFF-pathways,” Nature (London) 297, 580–583 (1982).
[CrossRef]

M. Ariel, N. W. Daw, “Pharmacological analysis of directionally sensitive rabbit retinal ganglion cells,” J. Physiol. (London) 324, 161–185 (1982).

C. L. Baker, O. J. Braddick, “The basis of area and dot number effects in random dot motion perception,” Vision Res. 22, 1253–1259 (1982).
[CrossRef] [PubMed]

1981 (3)

D. C. van Essen, J. H. R. Maunsell, J. L. Bixby, “The middle temporal visual area in the macaque: myeloarchitecture connections, functional properties and topographic organization,” J. Comp. Neurol. 199, 293–326 (1981).
[CrossRef] [PubMed]

M. M. Slaughter, R. F. Miller, “2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research,” Science 211, 182–184 (1981).
[CrossRef] [PubMed]

D. Marr, S. Ullman, “Directional sensitivity and its use in early visual processing,” Proc. R. Soc. London, Ser. B 211, 151–180 (1981).
[CrossRef]

1980 (3)

B. Hadani, G. Ishai, M. Gur, “Visual stability and space perception in monocular vision: mathematical model,” J. Opt. Soc. Am. 70, 60–65 (1980).
[CrossRef] [PubMed]

S. Grossberg, “How does a brain build cognitive code?” Psychol. Rev. 87, 1–51 (1980).
[CrossRef] [PubMed]

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite direction,” Vision Res. 20, 341–347 (1980).
[CrossRef]

1979 (3)

C. L. Fennema, W. B. Thompson, “Velocity determination in scenes containing several moving objects,” Comput. Graph. Image Process. 9, 301–315 (1979).
[CrossRef]

D. C. van Essen, “Visual areas of the mammalian cerebral cortex,” Annu. Rev. Neurosci. 2, 227–263 (1979).
[CrossRef] [PubMed]

M. von Grünau, “The involvement of illusory contours in stroboscopic motion,” Percept. Psychophys. 25, 205–208 (1979).
[CrossRef] [PubMed]

1977 (2)

P. H. Schiller, J. Malpeli, “Properties of tectal projections of monkey retinal ganglion cells,” J. Neurophysiol. 40, 428–445 (1977).
[PubMed]

R. C. Emerson, G. L. Gerstein, “Simple striate neurons in the cat: II. Mechanisms underlying directional asymmetry and directional selectivity,” J. Neurophysiol. 40, 136–155 (1977).
[PubMed]

1976 (3)

J. S. Lappin, H. H. Bell, “The detection of coherence in moving random-dot patterns,” Vision Res. 16, 161–168 (1976).
[CrossRef] [PubMed]

A. Pantle, L. Picciano, “A multistable movement display: evidence for two separate motion systems in human vision,” Science 193, 500–502 (1976).
[CrossRef] [PubMed]

S. Grossberg, “Adaptive pattern classification and universal recoding: II. Feedback, expectation, olfaction, illusions,” Biol. Cybern. 23, 187–202 (1976).
[PubMed]

1975 (3)

J. O. Limb, J. A. Murphy, “Estimating the velocity of moving objects in television signals,” Comput. Vision Image Process. 4, 311–327 (1975).
[CrossRef]

S. M. Anstis, B. J. Rogers, “Illusory reversal of visual depth and movement during changes in contrast,” Vision Res. 15, 957–961 (1975).
[CrossRef] [PubMed]

A. W. Goodwin, G. H. Henry, P. O. Bishop, “Direction selectivity of simple striate cells: properties and mechanisms,” J. Neurophysiol. 38, 1500–1523 (1975).
[PubMed]

1974 (2)

O. J. Braddick, “A short-range process in apparent motion,” Vision Res. 14, 519–527 (1974).
[CrossRef] [PubMed]

S. M. Zeki, “Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey,” J. Physiol. (London) 236, 549–573 (1974).

1973 (1)

D. J. Tolhurst, “Separate channels for the analysis of shape and the movement of a moving visual stimulus,” J. Physiol. (London) 231, 385–402 (1973).

1972 (1)

S. Grossberg, “A neural theory of punishment and avoidance, II: quantitative theory,” Math. Biosci. 15, 253–285 (1972).
[CrossRef]

1971 (1)

B. G. Clelland, M. W. Dubin, W. R. Levick, “Sustained and transient neurons in the cat’s retina and lateral geniculate nucleus,” J. Physiol. (London) 217, 473–496 (1971).

1966 (1)

C. Enroth-Cugell, J. G. Robson, “The contrast sensitivity of retinal ganglion cells of the cat.” J. Physiol. (London) 187, 517–552 (1966).

1965 (1)

H. B. Barlow, W. R. Levick, “The mechanism of directionally selective units in rabbit’s retina,” J. Physiol. (London) 178, 477–504 (1965).

1962 (1)

D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).

1959 (1)

D. H. Hubel, T. N. Wiesel, “Receptive fields of single cells in the cat’s striate cortex,” J. Physiol. (London) 148, 574–591 (1959).

1953 (1)

S. W. Kuffler, “Discharge patterns and functional organization of mammalian retina,” J. Neurophysiol. 16, 37–68 (1953).
[PubMed]

1948 (1)

J. A. Gengerelli, “Apparent movement in relation to homonymous and heteronymous stimulation of the cerebral hemispheres,” J. Exp. Psychol. 38, 592–599 (1948).
[CrossRef] [PubMed]

1930 (1)

W. Neuhaus, “Experimentelle untersuchung der Scheinbewegung,” Archiv gesamte Psychol. 75, 315–458 (1930).

1926 (1)

H. R. de Silva, “An experimental investigation of the determinants of apparent visual movement,” Am. J. Psychol. 37, 469–501 (1926).
[CrossRef]

1915 (1)

A. Korté, “Kinematoskopische Untersuchungen,” Z. Psychol.194–296 (1915).

Adelson, E. H.

Ahumada, A. J.

Albright, T. D.

T. D. Albright, “Form–cue invariant motion processing in primate visual cortex,” Science 255, 1141–1143 (1992).
[CrossRef] [PubMed]

T. D. Albright, R. Desimone, C. G. Gross, “Columnar organization of directionally sensitive cells in visual area MT of the macaque,” J. Neurophysiol. 51, 16–31 (1984).
[PubMed]

T. D. Albright, “Direction and orientation selectivity of neurons in visual area MT of the macaque,” J. Neurophysiol. 52, 1106–1131 (1984).
[PubMed]

Anderson, R. A.

D. C. Bradley, N. Qian, R. A. Anderson, “Integration of motion and stereopsis in middle temporal cortical area of macaques,” Nature (London) 373, 609–611 (1995).
[CrossRef]

Anderson, S. J.

I. E. Holliday, S. J. Anderson, “Different processes underlie the detection of second-order motion at low and high temporal frequencies,” Proc. R. Soc. London, Ser. B 257, 165–173 (1994).
[CrossRef]

Anstis, S.

D. Giaschi, S. Anstis, “The less you see it, the faster it moves: shortening the ‘on-time’ speeds up the apparent motion,” Vision Res. 29, 335–347 (1989).
[CrossRef]

Anstis, S. M.

S. M. Anstis, B. J. Rogers, “Illusory reversal of visual depth and movement during changes in contrast,” Vision Res. 15, 957–961 (1975).
[CrossRef] [PubMed]

Arguin, M.

P. Cavanagh, M. Arguin, M. von Grünau, “Interattribute apparent motion,” Vision Res. 29, 1197–1204 (1989).
[CrossRef] [PubMed]

Ariel, M.

M. Ariel, N. W. Daw, “Pharmacological analysis of directionally sensitive rabbit retinal ganglion cells,” J. Physiol. (London) 324, 161–185 (1982).

Badcock, D. R.

A. M. Derrington, D. R. Badcock, G. B. Henning, “Discriminating the detection of second-order motion at short stimulus durations,” Vision Res. 37, 1785–1794 (1993).
[CrossRef]

A. M. Derrington, D. R. Badcock, “Separate detectors for simple and complex cells,” Vision Res. 25, 1869–1878 (1985).
[CrossRef]

Baker, C. L.

C. L. Baker, O. J. Braddick, “The basis of area and dot number effects in random dot motion perception,” Vision Res. 22, 1253–1259 (1982).
[CrossRef] [PubMed]

Baloch, A.

A. Baloch, S. Grossberg, “A neural model of high-level motion processing: line motion and formotion dynamics,” Vision Res. 37, 3037–3059 (1997).
[CrossRef]

Barlow, H. B.

H. B. Barlow, W. R. Levick, “The mechanism of directionally selective units in rabbit’s retina,” J. Physiol. (London) 178, 477–504 (1965).

Bartley, S. H.

S. H. Bartley, Vision, a Study of Its Basis (Van Nostrand Reinhold, New York, 1941).

Bell, H. H.

J. S. Lappin, H. H. Bell, “The detection of coherence in moving random-dot patterns,” Vision Res. 16, 161–168 (1976).
[CrossRef] [PubMed]

Bergen, J. R.

Bischof, W. F.

W. F. Bischof, V. Di Lollo, “Perception of directional sampled motion in relation to displacement and spatial frequency: evidence for a unitary motion system,” Vision Res. 30, 1341–1362 (1990).
[CrossRef] [PubMed]

Bishop, P. O.

A. W. Goodwin, G. H. Henry, P. O. Bishop, “Direction selectivity of simple striate cells: properties and mechanisms,” J. Neurophysiol. 38, 1500–1523 (1975).
[PubMed]

Bixby, J. L.

D. C. van Essen, J. H. R. Maunsell, J. L. Bixby, “The middle temporal visual area in the macaque: myeloarchitecture connections, functional properties and topographic organization,” J. Comp. Neurol. 199, 293–326 (1981).
[CrossRef] [PubMed]

Blurton, A.

A. Gellatly, A. Blurton, “What are the mechanisms of rivalrous first-order and second-order motions?” Perception 25, Supplement, 8–9 (1996).

Bonnet, C.

E. Castet, J. Lorenceau, M. Shiffrar, C. Bonnet, “Perceived speed of moving lines depends on orientation, length, speed, and luminance,” Vision Res. 33, 1921–1936 (1993).
[CrossRef] [PubMed]

Bowns, L.

L. Bowns, “Evidence for a feature tracking explanation of why type II plaids move in the vector sum direction at short durations,” Vision Res. 36, 3685–3694 (1996).
[CrossRef] [PubMed]

Braddick, O. J.

C. L. Baker, O. J. Braddick, “The basis of area and dot number effects in random dot motion perception,” Vision Res. 22, 1253–1259 (1982).
[CrossRef] [PubMed]

O. J. Braddick, “A short-range process in apparent motion,” Vision Res. 14, 519–527 (1974).
[CrossRef] [PubMed]

Bradley, D. C.

D. C. Bradley, N. Qian, R. A. Anderson, “Integration of motion and stereopsis in middle temporal cortical area of macaques,” Nature (London) 373, 609–611 (1995).
[CrossRef]

Busettini, C.

G. S. Masson, C. Busettini, F. A. Miles, “Vergence eye movements in response to binocular disparity without depth perception,” Nature (London) 389, 283–286 (1997).
[CrossRef]

Carpenter, G. A.

G. A. Carpenter, S. Grossberg, “Adaptation and transmitter gating in vertebrate photo-receptors,” J. Theor. Neurobiol.1, 1–42 (1981). Reprinted in S. Grossberg, ed., The Adaptive Brain, Vol. I. (Elsevier/North-Holland, Amsterdam, 1981).

Castet, E.

E. Castet, J. Lorenceau, M. Shiffrar, C. Bonnet, “Perceived speed of moving lines depends on orientation, length, speed, and luminance,” Vision Res. 33, 1921–1936 (1993).
[CrossRef] [PubMed]

Cavanagh, P.

P. Cavanagh, M. Arguin, M. von Grünau, “Interattribute apparent motion,” Vision Res. 29, 1197–1204 (1989).
[CrossRef] [PubMed]

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vis. 4, 103–129 (1989).
[CrossRef]

P. Tse, P. Cavanagh, K. Nakayama, “The role of parsing in high-level motion processing,” in T. Watanabe, ed., High Level Motion Processing (MIT Press, Cambridge, Mass., 1998), pp. 249–266.

Chang, J. J.

J. J. Chang, B. Julesz, “Displacement limits for spatial frequency filtered random-dot kinematograms in apparent motion,” Vision Res. 23, 1379–1385 (1983).
[CrossRef]

J. J. Chang, B. Julesz, “Displacement limits, directional anisotropy and direction versus form discrimination in random-dot kinematograms,” Vision Res. 23, 639–646 (1983).
[CrossRef]

Charles, E. R.

P. H. Schiller, N. K. Logothetis, E. R. Charles, “Functions of the color-opponent and broad-band channels of the visual system,” Science 343, 68–70 (1990).

Chey, J.

J. Chey, S. Grossberg, E. Mingolla, “Neural dynamics of motion processing and speed discrimination,” Vision Res. 38, 2769–2786 (1998).
[CrossRef] [PubMed]

J. Chey, S. Grossberg, E. Mingolla, “Neural dynamics of motion grouping: from aperture ambiguity to object speed and direction,” J. Opt. Soc. Am. A 14, 2570–2594 (1997).
[CrossRef]

Chubb, C.

C. Chubb, G. Sperling, “Two motion perception mechanisms revealed through distance-driven reversal of apparent motion,” Proc. Natl. Acad. Sci. USA 86, 2985–2989 (1989).
[CrossRef] [PubMed]

C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2007 (1988).
[CrossRef] [PubMed]

Clelland, B. G.

B. G. Clelland, M. W. Dubin, W. R. Levick, “Sustained and transient neurons in the cat’s retina and lateral geniculate nucleus,” J. Physiol. (London) 217, 473–496 (1971).

Clifford, C. W. G.

A. Johnston, C. W. G. Clifford, “A unified account of three apparent motion illusions,” Vision Res. 8, 1109–1123 (1995).
[CrossRef]

Conte, M. M.

E. Taub, J. D. Victor, M. M. Conte, “Nonlinear preprocessing in short-range motion,” Vision Res. 37, 1459–1477 (1997).
[CrossRef] [PubMed]

Daw, N. W.

M. Ariel, N. W. Daw, “Pharmacological analysis of directionally sensitive rabbit retinal ganglion cells,” J. Physiol. (London) 324, 161–185 (1982).

de Silva, H. R.

H. R. de Silva, “An experimental investigation of the determinants of apparent visual movement,” Am. J. Psychol. 37, 469–501 (1926).
[CrossRef]

DePriest, D. D.

J. H. R. Maunsell, T. A. Nealey, D. D. DePriest, “Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey,” J. Neurosci. 10, 3323–3334 (1990).
[PubMed]

Derrington, A.

A. Derrington, “Analysis of the motion of contrast-modulated patterns,” Invest. Ophthalmol. Visual Sci. Suppl. 35, 1406 (1994).

Derrington, A. M.

A. M. Derrington, D. R. Badcock, G. B. Henning, “Discriminating the detection of second-order motion at short stimulus durations,” Vision Res. 37, 1785–1794 (1993).
[CrossRef]

A. M. Derrington, D. R. Badcock, “Separate detectors for simple and complex cells,” Vision Res. 25, 1869–1878 (1985).
[CrossRef]

Desimone, R.

T. D. Albright, R. Desimone, C. G. Gross, “Columnar organization of directionally sensitive cells in visual area MT of the macaque,” J. Neurophysiol. 51, 16–31 (1984).
[PubMed]

Di Lollo, V.

W. F. Bischof, V. Di Lollo, “Perception of directional sampled motion in relation to displacement and spatial frequency: evidence for a unitary motion system,” Vision Res. 30, 1341–1362 (1990).
[CrossRef] [PubMed]

Dubin, M. W.

B. G. Clelland, M. W. Dubin, W. R. Levick, “Sustained and transient neurons in the cat’s retina and lateral geniculate nucleus,” J. Physiol. (London) 217, 473–496 (1971).

Dursteler, M. R.

W. T. Newsome, R. H. Wurtz, M. R. Dursteler, A. Mikami, “Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey,” J. Neurosci. 5, 825–840 (1985).
[PubMed]

Emerson, R. C.

R. C. Emerson, G. L. Gerstein, “Simple striate neurons in the cat: II. Mechanisms underlying directional asymmetry and directional selectivity,” J. Neurophysiol. 40, 136–155 (1977).
[PubMed]

Enroth-Cugell, C.

C. Enroth-Cugell, J. G. Robson, “The contrast sensitivity of retinal ganglion cells of the cat.” J. Physiol. (London) 187, 517–552 (1966).

Faubert, J.

J. Faubert, M. von Grünau, “The influence of two spatially distinct primers and attribute priming on motion induction,” Vision Res. 35, 3119–3130 (1995).
[CrossRef] [PubMed]

M. von Grünau, J. Faubert, “Intraattribute and interattribute motion induction,” Perception 23, 913–928 (1994).
[CrossRef] [PubMed]

J. Faubert, M. von Grünau, “The extent of split attention and attribute priming in motion induction,” Prog. Aerosp. Sci. 21, 105b (1992).

Fennema, C. L.

C. L. Fennema, W. B. Thompson, “Velocity determination in scenes containing several moving objects,” Comput. Graph. Image Process. 9, 301–315 (1979).
[CrossRef]

Ferrera, V. P.

J. H. R. Maunsell, T. A. Nealey, V. P. Ferrera, “Magnocellular and parvocellular contributions to neuronal responses in monkey visual cortex,” Invest. Ophthalmol. Visual Sci. Suppl. 33, 901 (1992).

V. P. Ferrera, T. A. Nealey, J. H. R. Maunsell, “Mixed parvocellular and magnocellular geniculate signals in visual area V4,” Nature (London) 358, 756–758 (1992).
[CrossRef]

Ferster, D.

D. Ferster, “Spatially opponent excitation and inhibition in simple cells of the cat visual cortex,” J. Neurosci. 8, 1172–1180 (1988).
[PubMed]

Francis, G.

G. Francis, S. Grossberg, “Cortical dynamics of form and motion integration: persistence, apparent motion and illusory contours,” Vision Res. 36, 149–173 (1996).
[CrossRef] [PubMed]

G. Francis, S. Grossberg, “Cortical dynamics of boundary segmentation and reset: persistence, afterimages, and residual traces,” Perception 25, 543–567 (1996).
[CrossRef] [PubMed]

G. Francis, S. Grossberg, E. Mingolla, “Cortical dynamics of feature binding and reset: control of visual persistence,” Vision Res. 34, 1089–1104 (1994).
[CrossRef] [PubMed]

Gagné, S.

H. Ögmen, S. Gagné, “Neural network architecture for motion perception and elementary motion detection in the fly visual system,” Neural Networks 3, 487–506 (1990).
[CrossRef]

Ganz, L.

L. Ganz, “Visual cortical mechanisms responsible for direction selectivity,” Vision Res. 24, 3–11 (1984).
[CrossRef] [PubMed]

Gaska, J. P.

Z. Liu, J. P. Gaska, L. D. Jacobson, D. A. Pollen, “Interneuronal interactions between members of quadrature phase and anti-phase pairs in the cat’s visual cortex,” Vision Res. 32, 1193–1198 (1992).
[CrossRef] [PubMed]

Gaudiano, P.

P. Gaudiano, “Simulations of X and Y retinal ganglion cell behavior with a nonlinear push–pull model of spatiotemporal retinal processing,” Vision Res. 34, 1767–1784 (1994).
[CrossRef] [PubMed]

Gellatly, A.

A. Gellatly, A. Blurton, “What are the mechanisms of rivalrous first-order and second-order motions?” Perception 25, Supplement, 8–9 (1996).

Gengerelli, J. A.

J. A. Gengerelli, “Apparent movement in relation to homonymous and heteronymous stimulation of the cerebral hemispheres,” J. Exp. Psychol. 38, 592–599 (1948).
[CrossRef] [PubMed]

Gerstein, G. L.

R. C. Emerson, G. L. Gerstein, “Simple striate neurons in the cat: II. Mechanisms underlying directional asymmetry and directional selectivity,” J. Neurophysiol. 40, 136–155 (1977).
[PubMed]

Giaschi, D.

D. Giaschi, S. Anstis, “The less you see it, the faster it moves: shortening the ‘on-time’ speeds up the apparent motion,” Vision Res. 29, 335–347 (1989).
[CrossRef]

Gizzi, M. S.

W. T. Newsome, M. S. Gizzi, J. A. Movshan, “Spatial and temporal properties of neurons in macaque MT,” Invest. Ophthalmol. Visual Sci. Suppl. 24, 106 (1983).

Goodwin, A. W.

A. W. Goodwin, G. H. Henry, P. O. Bishop, “Direction selectivity of simple striate cells: properties and mechanisms,” J. Neurophysiol. 38, 1500–1523 (1975).
[PubMed]

Gove, A.

A. Gove, S. Grossberg, E. Mingolla, “Brightness perception, illusory contours, and corticogeniculate feedback,” Visual Neurosci. 12, 1027–1052 (1995).
[CrossRef]

Gross, C. G.

T. D. Albright, R. Desimone, C. G. Gross, “Columnar organization of directionally sensitive cells in visual area MT of the macaque,” J. Neurophysiol. 51, 16–31 (1984).
[PubMed]

Grossberg, S.

J. Chey, S. Grossberg, E. Mingolla, “Neural dynamics of motion processing and speed discrimination,” Vision Res. 38, 2769–2786 (1998).
[CrossRef] [PubMed]

A. Baloch, S. Grossberg, “A neural model of high-level motion processing: line motion and formotion dynamics,” Vision Res. 37, 3037–3059 (1997).
[CrossRef]

J. Chey, S. Grossberg, E. Mingolla, “Neural dynamics of motion grouping: from aperture ambiguity to object speed and direction,” J. Opt. Soc. Am. A 14, 2570–2594 (1997).
[CrossRef]

G. Francis, S. Grossberg, “Cortical dynamics of form and motion integration: persistence, apparent motion and illusory contours,” Vision Res. 36, 149–173 (1996).
[CrossRef] [PubMed]

G. Francis, S. Grossberg, “Cortical dynamics of boundary segmentation and reset: persistence, afterimages, and residual traces,” Perception 25, 543–567 (1996).
[CrossRef] [PubMed]

A. Gove, S. Grossberg, E. Mingolla, “Brightness perception, illusory contours, and corticogeniculate feedback,” Visual Neurosci. 12, 1027–1052 (1995).
[CrossRef]

G. Francis, S. Grossberg, E. Mingolla, “Cortical dynamics of feature binding and reset: control of visual persistence,” Vision Res. 34, 1089–1104 (1994).
[CrossRef] [PubMed]

S. Grossberg, E. Mingolla, “Neural dynamics of motion perception: direction fields, apertures, and resonant grouping,” Percept. Psychophys. 53, 243–278 (1993).
[CrossRef] [PubMed]

C. A. M. Nogueira, E. Mingolla, S. Grossberg, “Computation of first order and second order motion by a model of magnocellular dynamics,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 1029 (1993).

S. Grossberg, M. E. Rudd, “Cortical dynamics of visual motion perception: short- and long-range motion,” Psychol. Rev. 99, 78–121 (1992).
[CrossRef] [PubMed]

S. Grossberg, “Why do parallel cortical systems exist for the perception static form and moving form?” Percept. Psychophys. 49, 117–141 (1991).
[CrossRef] [PubMed]

S. Grossberg, M. E. Rudd, “A neural architecture for visual motion perception: group and element apparent motion,” Neural Networks 2, 421–450 (1989).
[CrossRef]

S. Grossberg, “The quantized geometry of visual space: the coherent computation of depth, form and lightness,” Behav. Brain Sci. 6, 625–657 (1983).
[CrossRef]

S. Grossberg, “How does a brain build cognitive code?” Psychol. Rev. 87, 1–51 (1980).
[CrossRef] [PubMed]

S. Grossberg, “Adaptive pattern classification and universal recoding: II. Feedback, expectation, olfaction, illusions,” Biol. Cybern. 23, 187–202 (1976).
[PubMed]

S. Grossberg, “A neural theory of punishment and avoidance, II: quantitative theory,” Math. Biosci. 15, 253–285 (1972).
[CrossRef]

G. A. Carpenter, S. Grossberg, “Adaptation and transmitter gating in vertebrate photo-receptors,” J. Theor. Neurobiol.1, 1–42 (1981). Reprinted in S. Grossberg, ed., The Adaptive Brain, Vol. I. (Elsevier/North-Holland, Amsterdam, 1981).

Gulyas, B.

G. A. Orban, B. Gulyas, “Image segregation by motion: cortical mechanisms and implementation in neural networks,” in R. Eckmiller, C. Von der Marlsburg, eds., Neurocomputers (Springer-Verlag, Heidelberg), pp. 149–159.

Gur, M.

Hadani, B.

Harris, L. R.

L. R. Harris, A. T. Smith, “Motion defined exclusively by second-order characteristics does not evoke optokinetic nystagmus,” Visual Neurosci. 9, 565–570 (1992).
[CrossRef]

Heggelund, P.

P. Heggelund, “Direction assymetry by moving stimuli and static receptive field plots for simple cells in cat striate cortex,” Vision Res. 24, 13–16 (1984).
[CrossRef]

Henning, G. B.

A. M. Derrington, D. R. Badcock, G. B. Henning, “Discriminating the detection of second-order motion at short stimulus durations,” Vision Res. 37, 1785–1794 (1993).
[CrossRef]

Henry, G. H.

A. W. Goodwin, G. H. Henry, P. O. Bishop, “Direction selectivity of simple striate cells: properties and mechanisms,” J. Neurophysiol. 38, 1500–1523 (1975).
[PubMed]

Hikosaka, O.

O. Hikosaka, S. Miyauchi, S. Shimojo, “Focal visual attention produces illusory temporal order and motion sensation,” Vision Res. 33, 1219–1240 (1993).
[CrossRef] [PubMed]

O. Hikosaka, S. Miyauchi, S. Shimojo, “Voluntary and stimulus-induced attention detected as motion sensation,” Perception 22, 517–526 (1993).
[CrossRef] [PubMed]

Holliday, I. E.

I. E. Holliday, S. J. Anderson, “Different processes underlie the detection of second-order motion at low and high temporal frequencies,” Proc. R. Soc. London, Ser. B 257, 165–173 (1994).
[CrossRef]

Horn, B. K. P.

B. K. P. Horn, B. G. Schunck, “Determining optical flow,” (MIT, Cambridge, Mass., 1980).

Hubel, D.

M. Livingstone, D. Hubel, “Segregation of form, color, movement, and depth: anatomy, physiology, and perception,” Science 240, 740–749 (1988).
[CrossRef] [PubMed]

Hubel, D. H.

D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).

D. H. Hubel, T. N. Wiesel, “Receptive fields of single cells in the cat’s striate cortex,” J. Physiol. (London) 148, 574–591 (1959).

Ishai, G.

Jacobson, L. D.

Z. Liu, J. P. Gaska, L. D. Jacobson, D. A. Pollen, “Interneuronal interactions between members of quadrature phase and anti-phase pairs in the cat’s visual cortex,” Vision Res. 32, 1193–1198 (1992).
[CrossRef] [PubMed]

Johnston, A.

A. Johnston, C. W. G. Clifford, “A unified account of three apparent motion illusions,” Vision Res. 8, 1109–1123 (1995).
[CrossRef]

Julesz, B.

J. J. Chang, B. Julesz, “Displacement limits for spatial frequency filtered random-dot kinematograms in apparent motion,” Vision Res. 23, 1379–1385 (1983).
[CrossRef]

J. J. Chang, B. Julesz, “Displacement limits, directional anisotropy and direction versus form discrimination in random-dot kinematograms,” Vision Res. 23, 639–646 (1983).
[CrossRef]

Koenderink, J. J.

A. J. van Doorn, J. J. Koenderink, “Spatiotemporal integration in the detection of coherent motion,” Vision Res. 24, 47–53 (1984).
[CrossRef] [PubMed]

Kolers, P. A.

P. A. Kolers, Aspects of Motion Perception (Pergamon, Elmsford, N.Y., 1972).

Korté, A.

A. Korté, “Kinematoskopische Untersuchungen,” Z. Psychol.194–296 (1915).

Kuffler, S. W.

S. W. Kuffler, “Discharge patterns and functional organization of mammalian retina,” J. Neurophysiol. 16, 37–68 (1953).
[PubMed]

Lappin, J. S.

J. S. Lappin, H. H. Bell, “The detection of coherence in moving random-dot patterns,” Vision Res. 16, 161–168 (1976).
[CrossRef] [PubMed]

Ledgeway, T.

A. T. Smith, T. Ledgeway, “Sensitivity of second-order motion as a function of drift temporal frequency and viewing eccentricity,” Invest. Ophthalmol. Visual Sci. Suppl. 38, 401 (1997).

A. T. Smith, T. Ledgeway, “Separate detection of moving luminance and contrast modulations: fact or artifact?” Vision Res. 37, 45–62 (1997).
[CrossRef] [PubMed]

T. Ledgeway, A. T. Smith, “Effects of adaptation to second-order motion on perceived speed,” Invest. Ophthalmol. Visual Sci. 36, 53 (1995).

T. Ledgeway, A. T. Smith, “Evidence for separate motion-detecting mechanisms for first- and second-order motion in human vision,” Vision Res. 34, 2727–2740 (1994).
[CrossRef] [PubMed]

Levick, W. R.

B. G. Clelland, M. W. Dubin, W. R. Levick, “Sustained and transient neurons in the cat’s retina and lateral geniculate nucleus,” J. Physiol. (London) 217, 473–496 (1971).

H. B. Barlow, W. R. Levick, “The mechanism of directionally selective units in rabbit’s retina,” J. Physiol. (London) 178, 477–504 (1965).

Limb, J. O.

J. O. Limb, J. A. Murphy, “Estimating the velocity of moving objects in television signals,” Comput. Vision Image Process. 4, 311–327 (1975).
[CrossRef]

Liu, Z.

Z. Liu, J. P. Gaska, L. D. Jacobson, D. A. Pollen, “Interneuronal interactions between members of quadrature phase and anti-phase pairs in the cat’s visual cortex,” Vision Res. 32, 1193–1198 (1992).
[CrossRef] [PubMed]

Livingstone, M.

M. Livingstone, D. Hubel, “Segregation of form, color, movement, and depth: anatomy, physiology, and perception,” Science 240, 740–749 (1988).
[CrossRef] [PubMed]

Logothetis, N. K.

P. H. Schiller, N. K. Logothetis, E. R. Charles, “Functions of the color-opponent and broad-band channels of the visual system,” Science 343, 68–70 (1990).

Lorenceau, J.

E. Castet, J. Lorenceau, M. Shiffrar, C. Bonnet, “Perceived speed of moving lines depends on orientation, length, speed, and luminance,” Vision Res. 33, 1921–1936 (1993).
[CrossRef] [PubMed]

Lu, Z.-L.

Z.-L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2772 (1995).
[CrossRef] [PubMed]

Z.-L. Lu, G. Sperling, “Attention-generated apparent motion,” Science 377, 237–239 (1995).

Malpeli, J.

P. H. Schiller, J. Malpeli, “Properties of tectal projections of monkey retinal ganglion cells,” J. Neurophysiol. 40, 428–445 (1977).
[PubMed]

Marr, D.

D. Marr, S. Ullman, “Directional sensitivity and its use in early visual processing,” Proc. R. Soc. London, Ser. B 211, 151–180 (1981).
[CrossRef]

D. Marr, Vision (Freeman, San Francisco, Calif., 1982).

Masson, G. S.

G. S. Masson, C. Busettini, F. A. Miles, “Vergence eye movements in response to binocular disparity without depth perception,” Nature (London) 389, 283–286 (1997).
[CrossRef]

Mather, G.

G. Mather, S. West, “Evidence of second-order motion detectors,” Vision Res. 33, 1109–1112 (1993).
[CrossRef] [PubMed]

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vis. 4, 103–129 (1989).
[CrossRef]

G. Mather, “Temporal properties of apparent motion in subjective figures,” Perception 17, 729–736 (1988).
[CrossRef] [PubMed]

Maunsell, J. H. R.

V. P. Ferrera, T. A. Nealey, J. H. R. Maunsell, “Mixed parvocellular and magnocellular geniculate signals in visual area V4,” Nature (London) 358, 756–758 (1992).
[CrossRef]

J. H. R. Maunsell, T. A. Nealey, V. P. Ferrera, “Magnocellular and parvocellular contributions to neuronal responses in monkey visual cortex,” Invest. Ophthalmol. Visual Sci. Suppl. 33, 901 (1992).

J. H. R. Maunsell, T. A. Nealey, D. D. DePriest, “Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey,” J. Neurosci. 10, 3323–3334 (1990).
[PubMed]

J. H. R. Maunsell, D. C. van Essen, “Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity,” J. Neurophysiol. 49, 1148–1167 (1983).
[PubMed]

J. H. R. Maunsell, D. C. van Essen, “Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation,” J. Neurophysiol. 49, 1127–1147 (1983).
[PubMed]

D. C. van Essen, J. H. R. Maunsell, J. L. Bixby, “The middle temporal visual area in the macaque: myeloarchitecture connections, functional properties and topographic organization,” J. Comp. Neurol. 199, 293–326 (1981).
[CrossRef] [PubMed]

Mikami, A.

W. T. Newsome, R. H. Wurtz, M. R. Dursteler, A. Mikami, “Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey,” J. Neurosci. 5, 825–840 (1985).
[PubMed]

Miles, F. A.

G. S. Masson, C. Busettini, F. A. Miles, “Vergence eye movements in response to binocular disparity without depth perception,” Nature (London) 389, 283–286 (1997).
[CrossRef]

Miller, R. F.

M. M. Slaughter, R. F. Miller, “2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research,” Science 211, 182–184 (1981).
[CrossRef] [PubMed]

Mingolla, E.

J. Chey, S. Grossberg, E. Mingolla, “Neural dynamics of motion processing and speed discrimination,” Vision Res. 38, 2769–2786 (1998).
[CrossRef] [PubMed]

J. Chey, S. Grossberg, E. Mingolla, “Neural dynamics of motion grouping: from aperture ambiguity to object speed and direction,” J. Opt. Soc. Am. A 14, 2570–2594 (1997).
[CrossRef]

A. Gove, S. Grossberg, E. Mingolla, “Brightness perception, illusory contours, and corticogeniculate feedback,” Visual Neurosci. 12, 1027–1052 (1995).
[CrossRef]

G. Francis, S. Grossberg, E. Mingolla, “Cortical dynamics of feature binding and reset: control of visual persistence,” Vision Res. 34, 1089–1104 (1994).
[CrossRef] [PubMed]

S. Grossberg, E. Mingolla, “Neural dynamics of motion perception: direction fields, apertures, and resonant grouping,” Percept. Psychophys. 53, 243–278 (1993).
[CrossRef] [PubMed]

C. A. M. Nogueira, E. Mingolla, S. Grossberg, “Computation of first order and second order motion by a model of magnocellular dynamics,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 1029 (1993).

Miyauchi, S.

O. Hikosaka, S. Miyauchi, S. Shimojo, “Voluntary and stimulus-induced attention detected as motion sensation,” Perception 22, 517–526 (1993).
[CrossRef] [PubMed]

O. Hikosaka, S. Miyauchi, S. Shimojo, “Focal visual attention produces illusory temporal order and motion sensation,” Vision Res. 33, 1219–1240 (1993).
[CrossRef] [PubMed]

Movshan, J. A.

W. T. Newsome, M. S. Gizzi, J. A. Movshan, “Spatial and temporal properties of neurons in macaque MT,” Invest. Ophthalmol. Visual Sci. Suppl. 24, 106 (1983).

Murphy, B. J.

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite direction,” Vision Res. 20, 341–347 (1980).
[CrossRef]

Murphy, J. A.

J. O. Limb, J. A. Murphy, “Estimating the velocity of moving objects in television signals,” Comput. Vision Image Process. 4, 311–327 (1975).
[CrossRef]

Nachmias, J.

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite direction,” Vision Res. 20, 341–347 (1980).
[CrossRef]

Nakayama, K.

K. Nakayama, G. H. Silverman, “Temporal and spatial characteristics of the upper displacement limit for motion in random dots,” Vision Res. 24, 293–299 (1984).
[CrossRef] [PubMed]

P. Tse, P. Cavanagh, K. Nakayama, “The role of parsing in high-level motion processing,” in T. Watanabe, ed., High Level Motion Processing (MIT Press, Cambridge, Mass., 1998), pp. 249–266.

Nealey, T. A.

V. P. Ferrera, T. A. Nealey, J. H. R. Maunsell, “Mixed parvocellular and magnocellular geniculate signals in visual area V4,” Nature (London) 358, 756–758 (1992).
[CrossRef]

J. H. R. Maunsell, T. A. Nealey, V. P. Ferrera, “Magnocellular and parvocellular contributions to neuronal responses in monkey visual cortex,” Invest. Ophthalmol. Visual Sci. Suppl. 33, 901 (1992).

J. H. R. Maunsell, T. A. Nealey, D. D. DePriest, “Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey,” J. Neurosci. 10, 3323–3334 (1990).
[PubMed]

Neuhaus, W.

W. Neuhaus, “Experimentelle untersuchung der Scheinbewegung,” Archiv gesamte Psychol. 75, 315–458 (1930).

Newsome, W. T.

W. T. Newsome, E. B. Paré, “A selective impairment of motion processing following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
[PubMed]

W. T. Newsome, R. H. Wurtz, M. R. Dursteler, A. Mikami, “Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey,” J. Neurosci. 5, 825–840 (1985).
[PubMed]

W. T. Newsome, M. S. Gizzi, J. A. Movshan, “Spatial and temporal properties of neurons in macaque MT,” Invest. Ophthalmol. Visual Sci. Suppl. 24, 106 (1983).

Nogueira, C. A. M.

C. A. M. Nogueira, E. Mingolla, S. Grossberg, “Computation of first order and second order motion by a model of magnocellular dynamics,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 1029 (1993).

Ögmen, H.

H. Ögmen, S. Gagné, “Neural network architecture for motion perception and elementary motion detection in the fly visual system,” Neural Networks 3, 487–506 (1990).
[CrossRef]

Orban, G. A.

G. A. Orban, B. Gulyas, “Image segregation by motion: cortical mechanisms and implementation in neural networks,” in R. Eckmiller, C. Von der Marlsburg, eds., Neurocomputers (Springer-Verlag, Heidelberg), pp. 149–159.

Pantle, A.

K. Turano, A. Pantle, “On the mechanism that encodes the movement of contrast variations: velocity discrimination,” Vision Res. 29, 207–221 (1989).
[CrossRef] [PubMed]

A. Pantle, L. Picciano, “A multistable movement display: evidence for two separate motion systems in human vision,” Science 193, 500–502 (1976).
[CrossRef] [PubMed]

Paré, E. B.

W. T. Newsome, E. B. Paré, “A selective impairment of motion processing following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
[PubMed]

Picciano, L.

A. Pantle, L. Picciano, “A multistable movement display: evidence for two separate motion systems in human vision,” Science 193, 500–502 (1976).
[CrossRef] [PubMed]

Pollen, D. A.

Z. Liu, J. P. Gaska, L. D. Jacobson, D. A. Pollen, “Interneuronal interactions between members of quadrature phase and anti-phase pairs in the cat’s visual cortex,” Vision Res. 32, 1193–1198 (1992).
[CrossRef] [PubMed]

Qian, N.

D. C. Bradley, N. Qian, R. A. Anderson, “Integration of motion and stereopsis in middle temporal cortical area of macaques,” Nature (London) 373, 609–611 (1995).
[CrossRef]

Ramachandran, V.

V. Ramachandran, “Apparent motion of subjective surfaces,” Perception 14, 127–134 (1985).
[CrossRef] [PubMed]

Reichardt, W.

W. Reichardt, “Autocorrelation, a principle for the evaluation of sensory information by the central nervous system,” in W. A. Rosenblith, ed., Sensory Communication (Wiley, New York, 1961), pp. 303–317.

Robson, J. G.

C. Enroth-Cugell, J. G. Robson, “The contrast sensitivity of retinal ganglion cells of the cat.” J. Physiol. (London) 187, 517–552 (1966).

Rogers, B. J.

S. M. Anstis, B. J. Rogers, “Illusory reversal of visual depth and movement during changes in contrast,” Vision Res. 15, 957–961 (1975).
[CrossRef] [PubMed]

Rudd, M. E.

S. Grossberg, M. E. Rudd, “Cortical dynamics of visual motion perception: short- and long-range motion,” Psychol. Rev. 99, 78–121 (1992).
[CrossRef] [PubMed]

S. Grossberg, M. E. Rudd, “A neural architecture for visual motion perception: group and element apparent motion,” Neural Networks 2, 421–450 (1989).
[CrossRef]

Schiller, P. H.

P. H. Schiller, “The On and Off channels of the visual system,” Trends Neurosci. 15, 86–92 (1992).
[CrossRef] [PubMed]

P. H. Schiller, N. K. Logothetis, E. R. Charles, “Functions of the color-opponent and broad-band channels of the visual system,” Science 343, 68–70 (1990).

P. H. Schiller, “Central connections in the retinal ON- and OFF-pathways,” Nature (London) 297, 580–583 (1982).
[CrossRef]

P. H. Schiller, J. Malpeli, “Properties of tectal projections of monkey retinal ganglion cells,” J. Neurophysiol. 40, 428–445 (1977).
[PubMed]

Schunck, B. G.

B. K. P. Horn, B. G. Schunck, “Determining optical flow,” (MIT, Cambridge, Mass., 1980).

Shiffrar, M.

E. Castet, J. Lorenceau, M. Shiffrar, C. Bonnet, “Perceived speed of moving lines depends on orientation, length, speed, and luminance,” Vision Res. 33, 1921–1936 (1993).
[CrossRef] [PubMed]

Shimojo, S.

O. Hikosaka, S. Miyauchi, S. Shimojo, “Focal visual attention produces illusory temporal order and motion sensation,” Vision Res. 33, 1219–1240 (1993).
[CrossRef] [PubMed]

O. Hikosaka, S. Miyauchi, S. Shimojo, “Voluntary and stimulus-induced attention detected as motion sensation,” Perception 22, 517–526 (1993).
[CrossRef] [PubMed]

Silverman, G. H.

K. Nakayama, G. H. Silverman, “Temporal and spatial characteristics of the upper displacement limit for motion in random dots,” Vision Res. 24, 293–299 (1984).
[CrossRef] [PubMed]

Slaughter, M. M.

M. M. Slaughter, R. F. Miller, “2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research,” Science 211, 182–184 (1981).
[CrossRef] [PubMed]

Smith, A. T.

A. T. Smith, T. Ledgeway, “Sensitivity of second-order motion as a function of drift temporal frequency and viewing eccentricity,” Invest. Ophthalmol. Visual Sci. Suppl. 38, 401 (1997).

A. T. Smith, T. Ledgeway, “Separate detection of moving luminance and contrast modulations: fact or artifact?” Vision Res. 37, 45–62 (1997).
[CrossRef] [PubMed]

T. Ledgeway, A. T. Smith, “Effects of adaptation to second-order motion on perceived speed,” Invest. Ophthalmol. Visual Sci. 36, 53 (1995).

T. Ledgeway, A. T. Smith, “Evidence for separate motion-detecting mechanisms for first- and second-order motion in human vision,” Vision Res. 34, 2727–2740 (1994).
[CrossRef] [PubMed]

L. R. Harris, A. T. Smith, “Motion defined exclusively by second-order characteristics does not evoke optokinetic nystagmus,” Visual Neurosci. 9, 565–570 (1992).
[CrossRef]

Sperling, G.

Z.-L. Lu, G. Sperling, “Attention-generated apparent motion,” Science 377, 237–239 (1995).

Z.-L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2772 (1995).
[CrossRef] [PubMed]

C. Chubb, G. Sperling, “Two motion perception mechanisms revealed through distance-driven reversal of apparent motion,” Proc. Natl. Acad. Sci. USA 86, 2985–2989 (1989).
[CrossRef] [PubMed]

G. Sperling, “Three stages and two systems of visual processing,” Spatial Vis. 4, 183–207 (1989).
[CrossRef]

C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2007 (1988).
[CrossRef] [PubMed]

J. P. H. van Santen, G. Sperling, “Elaborated Reichardt detectors,” J. Opt. Soc. Am. A 2, 300–321 (1985).
[CrossRef] [PubMed]

J. P. H. van Santen, G. Sperling, “Temporal covariance model of human motion perception,” J. Opt. Soc. Am. A 1, 451–473 (1984).
[CrossRef] [PubMed]

Spigel, I. M.

I. M. Spigel, “Problems in the study of visually perceived movement: an introduction,” in R. H. Haber, ed., Contemporary Theory and Research in Visual Perception (Holt, Rinehart & Winston, New York, 1968), 103–121.

Taub, E.

E. Taub, J. D. Victor, M. M. Conte, “Nonlinear preprocessing in short-range motion,” Vision Res. 37, 1459–1477 (1997).
[CrossRef] [PubMed]

Ternus, J.

J. Ternus, “Experimentelle Untersuchungen über phänomenale Identität,” in W. D. Ellis, ed. and trans., A Sourcebook of Gestalt Psychology (Humanities Press, New York, 1950) (original work published 1926).

Thompson, P. G.

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite direction,” Vision Res. 20, 341–347 (1980).
[CrossRef]

Thompson, W. B.

C. L. Fennema, W. B. Thompson, “Velocity determination in scenes containing several moving objects,” Comput. Graph. Image Process. 9, 301–315 (1979).
[CrossRef]

Tolhurst, D. J.

D. J. Tolhurst, “Separate channels for the analysis of shape and the movement of a moving visual stimulus,” J. Physiol. (London) 231, 385–402 (1973).

Tse, P.

P. Tse, P. Cavanagh, K. Nakayama, “The role of parsing in high-level motion processing,” in T. Watanabe, ed., High Level Motion Processing (MIT Press, Cambridge, Mass., 1998), pp. 249–266.

Turano, K.

K. Turano, “Evidence for a common motion mechanism of luminance- and contrast-modulated patterns: selective adaptation,” Perception 20, 455–466 (1991).
[CrossRef]

K. Turano, A. Pantle, “On the mechanism that encodes the movement of contrast variations: velocity discrimination,” Vision Res. 29, 207–221 (1989).
[CrossRef] [PubMed]

Ullman, S.

D. Marr, S. Ullman, “Directional sensitivity and its use in early visual processing,” Proc. R. Soc. London, Ser. B 211, 151–180 (1981).
[CrossRef]

van Doorn, A. J.

A. J. van Doorn, J. J. Koenderink, “Spatiotemporal integration in the detection of coherent motion,” Vision Res. 24, 47–53 (1984).
[CrossRef] [PubMed]

van Essen, D. C.

J. H. R. Maunsell, D. C. van Essen, “Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation,” J. Neurophysiol. 49, 1127–1147 (1983).
[PubMed]

J. H. R. Maunsell, D. C. van Essen, “Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity,” J. Neurophysiol. 49, 1148–1167 (1983).
[PubMed]

D. C. van Essen, J. H. R. Maunsell, J. L. Bixby, “The middle temporal visual area in the macaque: myeloarchitecture connections, functional properties and topographic organization,” J. Comp. Neurol. 199, 293–326 (1981).
[CrossRef] [PubMed]

D. C. van Essen, “Visual areas of the mammalian cerebral cortex,” Annu. Rev. Neurosci. 2, 227–263 (1979).
[CrossRef] [PubMed]

van Santen, J. P. H.

Victor, J. D.

E. Taub, J. D. Victor, M. M. Conte, “Nonlinear preprocessing in short-range motion,” Vision Res. 37, 1459–1477 (1997).
[CrossRef] [PubMed]

von Grünau, M.

J. Faubert, M. von Grünau, “The influence of two spatially distinct primers and attribute priming on motion induction,” Vision Res. 35, 3119–3130 (1995).
[CrossRef] [PubMed]

M. von Grünau, J. Faubert, “Intraattribute and interattribute motion induction,” Perception 23, 913–928 (1994).
[CrossRef] [PubMed]

J. Faubert, M. von Grünau, “The extent of split attention and attribute priming in motion induction,” Prog. Aerosp. Sci. 21, 105b (1992).

P. Cavanagh, M. Arguin, M. von Grünau, “Interattribute apparent motion,” Vision Res. 29, 1197–1204 (1989).
[CrossRef] [PubMed]

M. von Grünau, “The involvement of illusory contours in stroboscopic motion,” Percept. Psychophys. 25, 205–208 (1979).
[CrossRef] [PubMed]

Wallach, H.

H. Wallach, On Perception (Quadrangle, New York, 1976).

Watson, A. B.

A. B. Watson, A. J. Ahumada, “Model of human visual-motion sensing,” J. Opt. Soc. Am. A 2, 322–342 (1985).
[CrossRef] [PubMed]

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite direction,” Vision Res. 20, 341–347 (1980).
[CrossRef]

West, S.

G. Mather, S. West, “Evidence of second-order motion detectors,” Vision Res. 33, 1109–1112 (1993).
[CrossRef] [PubMed]

Wiesel, T. N.

D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).

D. H. Hubel, T. N. Wiesel, “Receptive fields of single cells in the cat’s striate cortex,” J. Physiol. (London) 148, 574–591 (1959).

Wurtz, R. H.

W. T. Newsome, R. H. Wurtz, M. R. Dursteler, A. Mikami, “Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey,” J. Neurosci. 5, 825–840 (1985).
[PubMed]

Zeki, S. M.

S. M. Zeki, “Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey,” J. Physiol. (London) 236, 549–573 (1974).

Am. J. Psychol. (1)

H. R. de Silva, “An experimental investigation of the determinants of apparent visual movement,” Am. J. Psychol. 37, 469–501 (1926).
[CrossRef]

Annu. Rev. Neurosci. (1)

D. C. van Essen, “Visual areas of the mammalian cerebral cortex,” Annu. Rev. Neurosci. 2, 227–263 (1979).
[CrossRef] [PubMed]

Archiv gesamte Psychol. (1)

W. Neuhaus, “Experimentelle untersuchung der Scheinbewegung,” Archiv gesamte Psychol. 75, 315–458 (1930).

Behav. Brain Sci. (1)

S. Grossberg, “The quantized geometry of visual space: the coherent computation of depth, form and lightness,” Behav. Brain Sci. 6, 625–657 (1983).
[CrossRef]

Biol. Cybern. (1)

S. Grossberg, “Adaptive pattern classification and universal recoding: II. Feedback, expectation, olfaction, illusions,” Biol. Cybern. 23, 187–202 (1976).
[PubMed]

Comput. Graph. Image Process. (1)

C. L. Fennema, W. B. Thompson, “Velocity determination in scenes containing several moving objects,” Comput. Graph. Image Process. 9, 301–315 (1979).
[CrossRef]

Comput. Vision Image Process. (1)

J. O. Limb, J. A. Murphy, “Estimating the velocity of moving objects in television signals,” Comput. Vision Image Process. 4, 311–327 (1975).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (1)

T. Ledgeway, A. T. Smith, “Effects of adaptation to second-order motion on perceived speed,” Invest. Ophthalmol. Visual Sci. 36, 53 (1995).

Invest. Ophthalmol. Visual Sci. Suppl. (5)

A. Derrington, “Analysis of the motion of contrast-modulated patterns,” Invest. Ophthalmol. Visual Sci. Suppl. 35, 1406 (1994).

A. T. Smith, T. Ledgeway, “Sensitivity of second-order motion as a function of drift temporal frequency and viewing eccentricity,” Invest. Ophthalmol. Visual Sci. Suppl. 38, 401 (1997).

W. T. Newsome, M. S. Gizzi, J. A. Movshan, “Spatial and temporal properties of neurons in macaque MT,” Invest. Ophthalmol. Visual Sci. Suppl. 24, 106 (1983).

C. A. M. Nogueira, E. Mingolla, S. Grossberg, “Computation of first order and second order motion by a model of magnocellular dynamics,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 1029 (1993).

J. H. R. Maunsell, T. A. Nealey, V. P. Ferrera, “Magnocellular and parvocellular contributions to neuronal responses in monkey visual cortex,” Invest. Ophthalmol. Visual Sci. Suppl. 33, 901 (1992).

J. Comp. Neurol. (1)

D. C. van Essen, J. H. R. Maunsell, J. L. Bixby, “The middle temporal visual area in the macaque: myeloarchitecture connections, functional properties and topographic organization,” J. Comp. Neurol. 199, 293–326 (1981).
[CrossRef] [PubMed]

J. Exp. Psychol. (1)

J. A. Gengerelli, “Apparent movement in relation to homonymous and heteronymous stimulation of the cerebral hemispheres,” J. Exp. Psychol. 38, 592–599 (1948).
[CrossRef] [PubMed]

J. Neurophysiol. (8)

J. H. R. Maunsell, D. C. van Essen, “Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity,” J. Neurophysiol. 49, 1148–1167 (1983).
[PubMed]

R. C. Emerson, G. L. Gerstein, “Simple striate neurons in the cat: II. Mechanisms underlying directional asymmetry and directional selectivity,” J. Neurophysiol. 40, 136–155 (1977).
[PubMed]

A. W. Goodwin, G. H. Henry, P. O. Bishop, “Direction selectivity of simple striate cells: properties and mechanisms,” J. Neurophysiol. 38, 1500–1523 (1975).
[PubMed]

T. D. Albright, R. Desimone, C. G. Gross, “Columnar organization of directionally sensitive cells in visual area MT of the macaque,” J. Neurophysiol. 51, 16–31 (1984).
[PubMed]

S. W. Kuffler, “Discharge patterns and functional organization of mammalian retina,” J. Neurophysiol. 16, 37–68 (1953).
[PubMed]

P. H. Schiller, J. Malpeli, “Properties of tectal projections of monkey retinal ganglion cells,” J. Neurophysiol. 40, 428–445 (1977).
[PubMed]

T. D. Albright, “Direction and orientation selectivity of neurons in visual area MT of the macaque,” J. Neurophysiol. 52, 1106–1131 (1984).
[PubMed]

J. H. R. Maunsell, D. C. van Essen, “Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation,” J. Neurophysiol. 49, 1127–1147 (1983).
[PubMed]

J. Neurosci. (4)

W. T. Newsome, E. B. Paré, “A selective impairment of motion processing following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
[PubMed]

W. T. Newsome, R. H. Wurtz, M. R. Dursteler, A. Mikami, “Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey,” J. Neurosci. 5, 825–840 (1985).
[PubMed]

J. H. R. Maunsell, T. A. Nealey, D. D. DePriest, “Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey,” J. Neurosci. 10, 3323–3334 (1990).
[PubMed]

D. Ferster, “Spatially opponent excitation and inhibition in simple cells of the cat visual cortex,” J. Neurosci. 8, 1172–1180 (1988).
[PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (6)

J. Physiol. (London) (8)

H. B. Barlow, W. R. Levick, “The mechanism of directionally selective units in rabbit’s retina,” J. Physiol. (London) 178, 477–504 (1965).

M. Ariel, N. W. Daw, “Pharmacological analysis of directionally sensitive rabbit retinal ganglion cells,” J. Physiol. (London) 324, 161–185 (1982).

D. H. Hubel, T. N. Wiesel, “Receptive fields of single cells in the cat’s striate cortex,” J. Physiol. (London) 148, 574–591 (1959).

D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).

S. M. Zeki, “Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey,” J. Physiol. (London) 236, 549–573 (1974).

C. Enroth-Cugell, J. G. Robson, “The contrast sensitivity of retinal ganglion cells of the cat.” J. Physiol. (London) 187, 517–552 (1966).

D. J. Tolhurst, “Separate channels for the analysis of shape and the movement of a moving visual stimulus,” J. Physiol. (London) 231, 385–402 (1973).

B. G. Clelland, M. W. Dubin, W. R. Levick, “Sustained and transient neurons in the cat’s retina and lateral geniculate nucleus,” J. Physiol. (London) 217, 473–496 (1971).

Math. Biosci. (1)

S. Grossberg, “A neural theory of punishment and avoidance, II: quantitative theory,” Math. Biosci. 15, 253–285 (1972).
[CrossRef]

Nature (London) (4)

V. P. Ferrera, T. A. Nealey, J. H. R. Maunsell, “Mixed parvocellular and magnocellular geniculate signals in visual area V4,” Nature (London) 358, 756–758 (1992).
[CrossRef]

P. H. Schiller, “Central connections in the retinal ON- and OFF-pathways,” Nature (London) 297, 580–583 (1982).
[CrossRef]

G. S. Masson, C. Busettini, F. A. Miles, “Vergence eye movements in response to binocular disparity without depth perception,” Nature (London) 389, 283–286 (1997).
[CrossRef]

D. C. Bradley, N. Qian, R. A. Anderson, “Integration of motion and stereopsis in middle temporal cortical area of macaques,” Nature (London) 373, 609–611 (1995).
[CrossRef]

Neural Networks (2)

H. Ögmen, S. Gagné, “Neural network architecture for motion perception and elementary motion detection in the fly visual system,” Neural Networks 3, 487–506 (1990).
[CrossRef]

S. Grossberg, M. E. Rudd, “A neural architecture for visual motion perception: group and element apparent motion,” Neural Networks 2, 421–450 (1989).
[CrossRef]

Percept. Psychophys. (3)

S. Grossberg, “Why do parallel cortical systems exist for the perception static form and moving form?” Percept. Psychophys. 49, 117–141 (1991).
[CrossRef] [PubMed]

M. von Grünau, “The involvement of illusory contours in stroboscopic motion,” Percept. Psychophys. 25, 205–208 (1979).
[CrossRef] [PubMed]

S. Grossberg, E. Mingolla, “Neural dynamics of motion perception: direction fields, apertures, and resonant grouping,” Percept. Psychophys. 53, 243–278 (1993).
[CrossRef] [PubMed]

Perception (7)

G. Mather, “Temporal properties of apparent motion in subjective figures,” Perception 17, 729–736 (1988).
[CrossRef] [PubMed]

V. Ramachandran, “Apparent motion of subjective surfaces,” Perception 14, 127–134 (1985).
[CrossRef] [PubMed]

G. Francis, S. Grossberg, “Cortical dynamics of boundary segmentation and reset: persistence, afterimages, and residual traces,” Perception 25, 543–567 (1996).
[CrossRef] [PubMed]

A. Gellatly, A. Blurton, “What are the mechanisms of rivalrous first-order and second-order motions?” Perception 25, Supplement, 8–9 (1996).

K. Turano, “Evidence for a common motion mechanism of luminance- and contrast-modulated patterns: selective adaptation,” Perception 20, 455–466 (1991).
[CrossRef]

O. Hikosaka, S. Miyauchi, S. Shimojo, “Voluntary and stimulus-induced attention detected as motion sensation,” Perception 22, 517–526 (1993).
[CrossRef] [PubMed]

M. von Grünau, J. Faubert, “Intraattribute and interattribute motion induction,” Perception 23, 913–928 (1994).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

C. Chubb, G. Sperling, “Two motion perception mechanisms revealed through distance-driven reversal of apparent motion,” Proc. Natl. Acad. Sci. USA 86, 2985–2989 (1989).
[CrossRef] [PubMed]

Proc. R. Soc. London, Ser. B (2)

D. Marr, S. Ullman, “Directional sensitivity and its use in early visual processing,” Proc. R. Soc. London, Ser. B 211, 151–180 (1981).
[CrossRef]

I. E. Holliday, S. J. Anderson, “Different processes underlie the detection of second-order motion at low and high temporal frequencies,” Proc. R. Soc. London, Ser. B 257, 165–173 (1994).
[CrossRef]

Prog. Aerosp. Sci. (1)

J. Faubert, M. von Grünau, “The extent of split attention and attribute priming in motion induction,” Prog. Aerosp. Sci. 21, 105b (1992).

Psychol. Rev. (2)

S. Grossberg, “How does a brain build cognitive code?” Psychol. Rev. 87, 1–51 (1980).
[CrossRef] [PubMed]

S. Grossberg, M. E. Rudd, “Cortical dynamics of visual motion perception: short- and long-range motion,” Psychol. Rev. 99, 78–121 (1992).
[CrossRef] [PubMed]

Science (6)

A. Pantle, L. Picciano, “A multistable movement display: evidence for two separate motion systems in human vision,” Science 193, 500–502 (1976).
[CrossRef] [PubMed]

M. M. Slaughter, R. F. Miller, “2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research,” Science 211, 182–184 (1981).
[CrossRef] [PubMed]

T. D. Albright, “Form–cue invariant motion processing in primate visual cortex,” Science 255, 1141–1143 (1992).
[CrossRef] [PubMed]

P. H. Schiller, N. K. Logothetis, E. R. Charles, “Functions of the color-opponent and broad-band channels of the visual system,” Science 343, 68–70 (1990).

M. Livingstone, D. Hubel, “Segregation of form, color, movement, and depth: anatomy, physiology, and perception,” Science 240, 740–749 (1988).
[CrossRef] [PubMed]

Z.-L. Lu, G. Sperling, “Attention-generated apparent motion,” Science 377, 237–239 (1995).

Spatial Vis. (2)

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vis. 4, 103–129 (1989).
[CrossRef]

G. Sperling, “Three stages and two systems of visual processing,” Spatial Vis. 4, 183–207 (1989).
[CrossRef]

Trends Neurosci. (1)

P. H. Schiller, “The On and Off channels of the visual system,” Trends Neurosci. 15, 86–92 (1992).
[CrossRef] [PubMed]

Vision Res. (33)

S. M. Anstis, B. J. Rogers, “Illusory reversal of visual depth and movement during changes in contrast,” Vision Res. 15, 957–961 (1975).
[CrossRef] [PubMed]

Z.-L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2772 (1995).
[CrossRef] [PubMed]

A. Baloch, S. Grossberg, “A neural model of high-level motion processing: line motion and formotion dynamics,” Vision Res. 37, 3037–3059 (1997).
[CrossRef]

G. Francis, S. Grossberg, “Cortical dynamics of form and motion integration: persistence, apparent motion and illusory contours,” Vision Res. 36, 149–173 (1996).
[CrossRef] [PubMed]

O. J. Braddick, “A short-range process in apparent motion,” Vision Res. 14, 519–527 (1974).
[CrossRef] [PubMed]

J. S. Lappin, H. H. Bell, “The detection of coherence in moving random-dot patterns,” Vision Res. 16, 161–168 (1976).
[CrossRef] [PubMed]

C. L. Baker, O. J. Braddick, “The basis of area and dot number effects in random dot motion perception,” Vision Res. 22, 1253–1259 (1982).
[CrossRef] [PubMed]

J. J. Chang, B. Julesz, “Displacement limits, directional anisotropy and direction versus form discrimination in random-dot kinematograms,” Vision Res. 23, 639–646 (1983).
[CrossRef]

J. J. Chang, B. Julesz, “Displacement limits for spatial frequency filtered random-dot kinematograms in apparent motion,” Vision Res. 23, 1379–1385 (1983).
[CrossRef]

A. J. van Doorn, J. J. Koenderink, “Spatiotemporal integration in the detection of coherent motion,” Vision Res. 24, 47–53 (1984).
[CrossRef] [PubMed]

K. Nakayama, G. H. Silverman, “Temporal and spatial characteristics of the upper displacement limit for motion in random dots,” Vision Res. 24, 293–299 (1984).
[CrossRef] [PubMed]

W. F. Bischof, V. Di Lollo, “Perception of directional sampled motion in relation to displacement and spatial frequency: evidence for a unitary motion system,” Vision Res. 30, 1341–1362 (1990).
[CrossRef] [PubMed]

D. Giaschi, S. Anstis, “The less you see it, the faster it moves: shortening the ‘on-time’ speeds up the apparent motion,” Vision Res. 29, 335–347 (1989).
[CrossRef]

P. Cavanagh, M. Arguin, M. von Grünau, “Interattribute apparent motion,” Vision Res. 29, 1197–1204 (1989).
[CrossRef] [PubMed]

J. Chey, S. Grossberg, E. Mingolla, “Neural dynamics of motion processing and speed discrimination,” Vision Res. 38, 2769–2786 (1998).
[CrossRef] [PubMed]

G. Francis, S. Grossberg, E. Mingolla, “Cortical dynamics of feature binding and reset: control of visual persistence,” Vision Res. 34, 1089–1104 (1994).
[CrossRef] [PubMed]

P. Gaudiano, “Simulations of X and Y retinal ganglion cell behavior with a nonlinear push–pull model of spatiotemporal retinal processing,” Vision Res. 34, 1767–1784 (1994).
[CrossRef] [PubMed]

Z. Liu, J. P. Gaska, L. D. Jacobson, D. A. Pollen, “Interneuronal interactions between members of quadrature phase and anti-phase pairs in the cat’s visual cortex,” Vision Res. 32, 1193–1198 (1992).
[CrossRef] [PubMed]

L. Bowns, “Evidence for a feature tracking explanation of why type II plaids move in the vector sum direction at short durations,” Vision Res. 36, 3685–3694 (1996).
[CrossRef] [PubMed]

E. Castet, J. Lorenceau, M. Shiffrar, C. Bonnet, “Perceived speed of moving lines depends on orientation, length, speed, and luminance,” Vision Res. 33, 1921–1936 (1993).
[CrossRef] [PubMed]

J. Faubert, M. von Grünau, “The influence of two spatially distinct primers and attribute priming on motion induction,” Vision Res. 35, 3119–3130 (1995).
[CrossRef] [PubMed]

O. Hikosaka, S. Miyauchi, S. Shimojo, “Focal visual attention produces illusory temporal order and motion sensation,” Vision Res. 33, 1219–1240 (1993).
[CrossRef] [PubMed]

P. Heggelund, “Direction assymetry by moving stimuli and static receptive field plots for simple cells in cat striate cortex,” Vision Res. 24, 13–16 (1984).
[CrossRef]

L. Ganz, “Visual cortical mechanisms responsible for direction selectivity,” Vision Res. 24, 3–11 (1984).
[CrossRef] [PubMed]

K. Turano, A. Pantle, “On the mechanism that encodes the movement of contrast variations: velocity discrimination,” Vision Res. 29, 207–221 (1989).
[CrossRef] [PubMed]

E. Taub, J. D. Victor, M. M. Conte, “Nonlinear preprocessing in short-range motion,” Vision Res. 37, 1459–1477 (1997).
[CrossRef] [PubMed]

A. Johnston, C. W. G. Clifford, “A unified account of three apparent motion illusions,” Vision Res. 8, 1109–1123 (1995).
[CrossRef]

A. T. Smith, T. Ledgeway, “Separate detection of moving luminance and contrast modulations: fact or artifact?” Vision Res. 37, 45–62 (1997).
[CrossRef] [PubMed]

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite direction,” Vision Res. 20, 341–347 (1980).
[CrossRef]

A. M. Derrington, D. R. Badcock, “Separate detectors for simple and complex cells,” Vision Res. 25, 1869–1878 (1985).
[CrossRef]

A. M. Derrington, D. R. Badcock, G. B. Henning, “Discriminating the detection of second-order motion at short stimulus durations,” Vision Res. 37, 1785–1794 (1993).
[CrossRef]

T. Ledgeway, A. T. Smith, “Evidence for separate motion-detecting mechanisms for first- and second-order motion in human vision,” Vision Res. 34, 2727–2740 (1994).
[CrossRef] [PubMed]

G. Mather, S. West, “Evidence of second-order motion detectors,” Vision Res. 33, 1109–1112 (1993).
[CrossRef] [PubMed]

Visual Neurosci. (2)

L. R. Harris, A. T. Smith, “Motion defined exclusively by second-order characteristics does not evoke optokinetic nystagmus,” Visual Neurosci. 9, 565–570 (1992).
[CrossRef]

A. Gove, S. Grossberg, E. Mingolla, “Brightness perception, illusory contours, and corticogeniculate feedback,” Visual Neurosci. 12, 1027–1052 (1995).
[CrossRef]

Z. Psychol. (1)

A. Korté, “Kinematoskopische Untersuchungen,” Z. Psychol.194–296 (1915).

Other (11)

J. Ternus, “Experimentelle Untersuchungen über phänomenale Identität,” in W. D. Ellis, ed. and trans., A Sourcebook of Gestalt Psychology (Humanities Press, New York, 1950) (original work published 1926).

P. A. Kolers, Aspects of Motion Perception (Pergamon, Elmsford, N.Y., 1972).

W. Reichardt, “Autocorrelation, a principle for the evaluation of sensory information by the central nervous system,” in W. A. Rosenblith, ed., Sensory Communication (Wiley, New York, 1961), pp. 303–317.

S. H. Bartley, Vision, a Study of Its Basis (Van Nostrand Reinhold, New York, 1941).

B. K. P. Horn, B. G. Schunck, “Determining optical flow,” (MIT, Cambridge, Mass., 1980).

D. Marr, Vision (Freeman, San Francisco, Calif., 1982).

G. A. Carpenter, S. Grossberg, “Adaptation and transmitter gating in vertebrate photo-receptors,” J. Theor. Neurobiol.1, 1–42 (1981). Reprinted in S. Grossberg, ed., The Adaptive Brain, Vol. I. (Elsevier/North-Holland, Amsterdam, 1981).

G. A. Orban, B. Gulyas, “Image segregation by motion: cortical mechanisms and implementation in neural networks,” in R. Eckmiller, C. Von der Marlsburg, eds., Neurocomputers (Springer-Verlag, Heidelberg), pp. 149–159.

I. M. Spigel, “Problems in the study of visually perceived movement: an introduction,” in R. H. Haber, ed., Contemporary Theory and Research in Visual Perception (Holt, Rinehart & Winston, New York, 1968), 103–121.

H. Wallach, On Perception (Quadrangle, New York, 1976).

P. Tse, P. Cavanagh, K. Nakayama, “The role of parsing in high-level motion processing,” in T. Watanabe, ed., High Level Motion Processing (MIT Press, Cambridge, Mass., 1998), pp. 249–266.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

Spatiotemporal representation of Γ display.12 (a) Near view, (b) far view. Space is plotted on the horizontal axis and time on the vertical axis.

Fig. 2
Fig. 2

(a) Motion task used by Schiller et al.34 Monkeys fixate a point in the middle of the screen that is filled with random dots. When dots in a certain position begin moving coherently, monkeys are trained to saccade to that position. (b) Experimental results: Results before any lesion (control); parvocellular lesions do not produce any deficit in performance; magnocellular lesions reduce performance to chance. (Adapted from Schiller et al.34)

Fig. 3
Fig. 3

Effect of APB on cortical directionally selective cells. (a) A wide bright bar slides to the right through a cell’s receptive field (RF), which is represented by the small circle. Bar edges are coded according to their spatial contrast (i.e., dark side on the left indicates a dark–light or DL edge, while dark side on the right indicates a light–dark or LD edge). (b) Luminance at the receptive field increases as the leading edge of the bar reaches the receptive field. Luminance decreases as the trailing edge reaches the receptive field. Before APB injection, the cell fires to both edges. Edge LD is the first one to cross the receptive field. After APB injection, the cell fires only at the passage of the trailing edge that indicates a decrease in luminance. (c) The bright bar moves from right to left. (d) The first edge to cross the receptive field is the DL edge instead. Before APB injection, the cell again fires at passage of both edges. Responses are not as strong as when the bar was moving to the right, indicating that this cell is more selective to rightward motion than to leftward motion. After APB injection, the cell fires only at the passage of the trailing edge. (Adapted from Schiller.38)

Fig. 4
Fig. 4

Schematic of the Grossberg–Rudd motion model.10,51

Fig. 5
Fig. 5

Schematic of the Chey et al. motion model.66,67

Fig. 6
Fig. 6

(a) Model processing stages, (b) model schematic. The bright and dark stimuli are represented at level 1. A gated dipole detects the unoriented ON and OFF signals at level 2. These signals are grouped into the lightening and darkening channels at level 3 via an on-center off-surround network. The lightening channel is shown at the left. Level 4 is the short-range spatial filter; level 5 pools signals from both channels.

Fig. 7
Fig. 7

Examples of center–surround processing in lightening and darkening cells. For stimuli, white implies a bright spot, black implies a dark spot, and gray implies no input. For ON, OFF, lightening, and darkening cells, white implies active and gray implies inactive cell locations. (a) Onset and offset of bright spots, (b) a segment of Γ display when observed from afar, (c) a segment of Γ display when observed from nearby.

Fig. 8
Fig. 8

Qualitative representation of the functioning of a gated dipole as an unoriented transient filter. See text for details.

Fig. 9
Fig. 9

Simulation results of an unoriented transient filter. The stimuli trace is shown at the bottom of each plot. (a) A stimulus is switched on, generating ON transient and then switched off, generating OFF transient due to rebound. (b) A stimulus is switched on, generating ON transient and then replaced by a stimulus of opposite contrast, generating OFF transient due to the combined effect of rebound and opposite-contrast phasic input.

Fig. 10
Fig. 10

S imulation results of first-order motion. (a) Stimulus, (b) uON, (c) uOFF, (d) wiL, (e) wiD, (f) yiL, (g) yiD, (h) zi. Variable zi represents the rightward motion of both the leading and trailing edges.

Fig. 11
Fig. 11

Simulation results of first-order motion with blocked ON channel. (a) Stimulus, (b) uON, (c) uOFF, (d) wiL, (e) wiD, (f) yiL, (g) yiD, (h) zi. Variable zi represents the rightward motion of the trailing edge.

Fig. 12
Fig. 12

Simulation results of second-order motion. (a) Stimulus, (b) uON, (c) uOFF, (d) wiL, (e) wiD, (f) yiL, (g) yiD, (h) zi. Variable zi represents the rightward motion of the second-order stimulus.

Fig. 13
Fig. 13

Simulation results of Γ display, near view. (a) Stimulus, (b) uON, (c) uOFF, (d) wiL, (e) wiD, (f) yiL, (g) yiD, (h) zi. Variable zi represents the leftward motion of the near Γ display.

Fig. 14
Fig. 14

Simulation results of Γ display, far view. (a) Stimulus, (b) uON, (c) uOFF, (d) wiL, (e) wiD, (f) yiL, (g) yiD, (h) zi. Variable zi represents the rightward motion of the far Γ display.

Fig. 15
Fig. 15

Schematic of motion BCS.

Fig. 16
Fig. 16

Simulation results of motion BCS for first-order motion. (a) xiLL, (b) xiLR, (c) xiDL, (d) xiDR, (e) yiLL, (f) yiLR, (g) yiDL, (h) yiDR, (i) ΥiLL+ΥiDL, (j) ΥiLR+ΥiDR, (k) ZiL, and (l) ZiR. Variable ZiR represents the rightward motion of both the leading and trailing edges.

Fig. 17
Fig. 17

Simulation results of motion BCS for first-order motion with blocked ON channel. (a) xiLL, (b) xiLR, (c) xiDL, (d) xiDR, (e) yiLL, (f) yiLR, (g) yiDL, (h) yiDR, (i) ΥiLL+ΥiDL, (j) ΥiLR+ΥiDR, (k) ZiL, and (l) ZiR. Variable ZiR represents the rightward motion of the trailing edge.

Fig. 18
Fig. 18

Simulation results of motion BCS for second-order motion. (a) xiLL, (b) xiLR, (c) xiDL, (d) xiDR, (e) yiLL, (f) yiLR, (g) yiDL, (h) yiDR, (i) ΥiLL+ΥiDL, (j) ΥiLR+ΥiDR, (k) ZiL, and (l) ZiR. Variable ZiR represents the rightward motion of the second-order stimulus.

Fig. 19
Fig. 19

Simulation results of motion BCS for for Γ display, near view. (a) xiLL, (b) xiLR, (c) xiDL, (d) xiDR, (e) yiLL, (f) yiLR, (g) yiDL, (h) yiDR, (i) ΥiLL+ΥiDL, (j) ΥiLR+ΥiDR, (k) ZiL, and (l) ZiR. Variable ZiL represents the leftward motion of the near Γ display.

Fig. 20
Fig. 20

Simulation results of motion BCS for Γ display, far view. (a) xiLL, (b) xiLR, (c) xiDL, (d) xiDR, (e) yiLL, (f) yiLR, (g) yiDL, (h) yiDR, (i) ΥiLL+ΥiDL, (j) ΥiLR+ΥiDR, (k) ZiL, and (l) ZiR. Variable ZiR represents the rightward motion of the far Γ display.

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

si+=1.0whenthebrightstimulusison0.0otherwise,
si-=1.0whenthedarkstimulusison0.0otherwise.
ddtu1i=-A2u1i+si++γu,
ddtu2i=-A2u2i+si-+γu,
ddtv1i=B2(1-v1i)-C2[u1i]+v1i,
ddtv2i=B2(1-v2i)-C2[u2i]+v2i.
ddtu3i=-A2u3i+D2[u1i]+v1i.
ddtu4i=-A2u4i+D2[u2i]+v2i.
ddtu5i=-A2u5i+(E2-u5i)u3i-(F2+u5i)u4i.
ddtu6i=-A2u6i+(E2-u6i)u4i-(F2+u6i)u3i,
uiON=[u5i-Γu]+.
uiOFF=[u6i-Γu]+.
dwiLdt=-A3wiL+(B3-wiL)×jGjiujON+jHjiujOFF-(C3+wiL)jHjiujON+jGjiujOFF.
dwiDdt=-A3wiD+(B3-wiD)×jGjiujOFF+jHjiujON-(C3+wiD)jHjiujOFF+jGjiujON,
Gji=αwσc2πexp-(j-i)22σc2,
Hji=αwσs2πexp-(j-i)22σs2.
dyiLdt=-A4yiL+(B4-yiL)jPji[wjL]+.
dyiDdt=-A4yiD+(B4-yiD)jPji[wjD]+.
Pji=αyσy2πexp-(j-i)22σy2.
zi=[yiL-Γy]++[yiD-Γy]+.
dξivdt=-ξiv+[wiv-Γw]+,
dxivLdt=-A5xivL+B5[wiv-Γw]+-C5[ξi-1v]+.
dxivRdt=-A5xivR+B5[wiv-Γw]+-C5[ξi+1v]+.
dyivνdt=-A6yivν+(B6-yivν)jPji[xjvν]+,
Pji=αyσy2πexp-(j-i)22σy2,
Yivν=[yivν-Γy]+.
ΥiLL=[YiLL-YiLR]+βY+YiLL+YiLR,
ΥiDL=[YiDL-YiDR]+βY+YiDL+YiDR,
ΥiLR=[YiLR-YiLL]+βY+YiLL+YiLR,
ΥiDR=[YiDR-YiDL]+βY+YiDL+YiDR.
dziνdt=-A7ziν+(B7-ziν)jqji(ΥjLν+ΥjDν),
qji=αzσz2πexp-(j-i)22σz2.
Ziν=[ziν-Γz]+.

Metrics