Abstract

The design and fabrication of a micropolarizer array for imaging polarimetry is described for the 3–5-µm-wavelength region. Each micropolarizer consists of a 475-nm-period Mo wire grid in a 16 µm×16 µm aperture. Interference lithography is used to generate the small grating features through an etch mask layer. Arrays of 256×256 micropolarizers at three distinct angular orientations have been fabricated that permit the measurement of the first three Stokes vector components in each pixel of an imaging polarimeter. An imaging system composed of a micropolarizer array integrated directly onto a focal plane array has been assembled, and initial testing has been performed.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Rogne, F. G. Smith, J. E. Rice, “Passive target detection using polarized component of infrared signatures,” in Polarimetry: Radar, Infrared, Visible, Ultraviolet, and X-Ray, R. A. Chipman, J. W. Morris, eds., Proc. SPIE1317, 242–251 (1990).
    [CrossRef]
  2. C. S. L. Chun, D. L. Fleming, E. J. Torok, “Polarization-sensitive thermal imaging,” in Automatic Object Recognition IV, F. A. Sadjadi, ed., Proc. SPIE2234, 275–286 (1994).
    [CrossRef]
  3. E. J. Guo, D. J. Brady, “Fabrication of high-resolution micropolarizer arrays,” Opt. Eng. 36, 2268–2271 (1997).
    [CrossRef]
  4. G. R. Bird, M. Parrish, “The wire grid as a near-infrared polarizer,” J. Opt. Soc. Am. 50, 886–891 (1960).
    [CrossRef]
  5. B. J. B. Young, H. A. Graham, E. W. Peterson, “Wire grid infrared polarizer,” Appl. Opt. 4, 1023–1026 (1965).
    [CrossRef]
  6. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1986), p. 554.
  7. E. Hecht, Optics, 3rd ed. (Addison-Wesley, Reading, Mass., 1998), p. 366.
  8. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).
    [CrossRef]
  9. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).
    [CrossRef]
  10. R. J. Champetier, G. J. Friese, “Use of polished fused silica to standardize directional polarized emittance and reflectance measurements in the infrared,” (Space and Missile Systems Organization, Air Force Systems Command, Los Angeles, Calif., 1974).
  11. L. Mashev, S. Tonchev, “Formation of holographic diffraction gratings in photoresist,” Appl. Phys. A 26, 143–149 (1981).
    [CrossRef]
  12. K. Yokomori, “Dielectric surface-relief gratings with high diffraction efficiency,” Appl. Opt. 23, 2303–2310 (1984).
    [CrossRef] [PubMed]
  13. R. D. Boyd, J. A. Britten, D. E. Decker, B. W. Shore, B. C. Stuart, M. D. Perry, L. Li, “High-efficiency metallic diffraction gratings for laser applications,” Appl. Opt. 34, 1697–1706 (1995).
    [CrossRef] [PubMed]
  14. H. T. Nguyen, B. W. Shore, S. J. Bryan, J. A. Britten, R. D. Boyd, M. D. Perry, “High-efficiency fused-silica transmission gratings,” Opt. Lett. 22, 142–144 (1997).
    [CrossRef] [PubMed]

1997 (2)

1996 (1)

1995 (2)

1984 (1)

1981 (1)

L. Mashev, S. Tonchev, “Formation of holographic diffraction gratings in photoresist,” Appl. Phys. A 26, 143–149 (1981).
[CrossRef]

1965 (1)

1960 (1)

Bird, G. R.

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1986), p. 554.

Boyd, R. D.

Brady, D. J.

E. J. Guo, D. J. Brady, “Fabrication of high-resolution micropolarizer arrays,” Opt. Eng. 36, 2268–2271 (1997).
[CrossRef]

Britten, J. A.

Bryan, S. J.

Champetier, R. J.

R. J. Champetier, G. J. Friese, “Use of polished fused silica to standardize directional polarized emittance and reflectance measurements in the infrared,” (Space and Missile Systems Organization, Air Force Systems Command, Los Angeles, Calif., 1974).

Chun, C. S. L.

C. S. L. Chun, D. L. Fleming, E. J. Torok, “Polarization-sensitive thermal imaging,” in Automatic Object Recognition IV, F. A. Sadjadi, ed., Proc. SPIE2234, 275–286 (1994).
[CrossRef]

Decker, D. E.

Fleming, D. L.

C. S. L. Chun, D. L. Fleming, E. J. Torok, “Polarization-sensitive thermal imaging,” in Automatic Object Recognition IV, F. A. Sadjadi, ed., Proc. SPIE2234, 275–286 (1994).
[CrossRef]

Friese, G. J.

R. J. Champetier, G. J. Friese, “Use of polished fused silica to standardize directional polarized emittance and reflectance measurements in the infrared,” (Space and Missile Systems Organization, Air Force Systems Command, Los Angeles, Calif., 1974).

Gaylord, T. K.

Graham, H. A.

Grann, E. B.

Guo, E. J.

E. J. Guo, D. J. Brady, “Fabrication of high-resolution micropolarizer arrays,” Opt. Eng. 36, 2268–2271 (1997).
[CrossRef]

Hecht, E.

E. Hecht, Optics, 3rd ed. (Addison-Wesley, Reading, Mass., 1998), p. 366.

Li, L.

Mashev, L.

L. Mashev, S. Tonchev, “Formation of holographic diffraction gratings in photoresist,” Appl. Phys. A 26, 143–149 (1981).
[CrossRef]

Moharam, M. G.

Nguyen, H. T.

Parrish, M.

Perry, M. D.

Peterson, E. W.

Pommet, D. A.

Rice, J. E.

T. J. Rogne, F. G. Smith, J. E. Rice, “Passive target detection using polarized component of infrared signatures,” in Polarimetry: Radar, Infrared, Visible, Ultraviolet, and X-Ray, R. A. Chipman, J. W. Morris, eds., Proc. SPIE1317, 242–251 (1990).
[CrossRef]

Rogne, T. J.

T. J. Rogne, F. G. Smith, J. E. Rice, “Passive target detection using polarized component of infrared signatures,” in Polarimetry: Radar, Infrared, Visible, Ultraviolet, and X-Ray, R. A. Chipman, J. W. Morris, eds., Proc. SPIE1317, 242–251 (1990).
[CrossRef]

Shore, B. W.

Smith, F. G.

T. J. Rogne, F. G. Smith, J. E. Rice, “Passive target detection using polarized component of infrared signatures,” in Polarimetry: Radar, Infrared, Visible, Ultraviolet, and X-Ray, R. A. Chipman, J. W. Morris, eds., Proc. SPIE1317, 242–251 (1990).
[CrossRef]

Stuart, B. C.

Tonchev, S.

L. Mashev, S. Tonchev, “Formation of holographic diffraction gratings in photoresist,” Appl. Phys. A 26, 143–149 (1981).
[CrossRef]

Torok, E. J.

C. S. L. Chun, D. L. Fleming, E. J. Torok, “Polarization-sensitive thermal imaging,” in Automatic Object Recognition IV, F. A. Sadjadi, ed., Proc. SPIE2234, 275–286 (1994).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1986), p. 554.

Yokomori, K.

Young, B. J. B.

Appl. Opt. (3)

Appl. Phys. A (1)

L. Mashev, S. Tonchev, “Formation of holographic diffraction gratings in photoresist,” Appl. Phys. A 26, 143–149 (1981).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Opt. Eng. (1)

E. J. Guo, D. J. Brady, “Fabrication of high-resolution micropolarizer arrays,” Opt. Eng. 36, 2268–2271 (1997).
[CrossRef]

Opt. Lett. (1)

Other (5)

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1986), p. 554.

E. Hecht, Optics, 3rd ed. (Addison-Wesley, Reading, Mass., 1998), p. 366.

R. J. Champetier, G. J. Friese, “Use of polished fused silica to standardize directional polarized emittance and reflectance measurements in the infrared,” (Space and Missile Systems Organization, Air Force Systems Command, Los Angeles, Calif., 1974).

T. J. Rogne, F. G. Smith, J. E. Rice, “Passive target detection using polarized component of infrared signatures,” in Polarimetry: Radar, Infrared, Visible, Ultraviolet, and X-Ray, R. A. Chipman, J. W. Morris, eds., Proc. SPIE1317, 242–251 (1990).
[CrossRef]

C. S. L. Chun, D. L. Fleming, E. J. Torok, “Polarization-sensitive thermal imaging,” in Automatic Object Recognition IV, F. A. Sadjadi, ed., Proc. SPIE2234, 275–286 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of unit cell containing a 2×2 array of micropolarizers.

Fig. 2
Fig. 2

Simulation results for (a) TE and TM transmitted power and (b) extinction ratio as a function of metal thickness for a Mo wire grid polarizer on Si (normal-incidence illumination, 475-nm grating period, 30% Mo fill factor).

Fig. 3
Fig. 3

Simulation results for (a) TE and TM transmitted power and (b) extinction ratio as a function of metal fill factor for a Mo wire grid polarizer on Si (normal-incidence illumination, 475-nm grating period, 200-nm Mo thickness).

Fig. 4
Fig. 4

Schematic diagram of interferometric exposure setup.

Fig. 5
Fig. 5

Schematic illustration of micropolarizer fabrication steps for a single angular orientation: (a) SiO2 masking layer deposited on Mo, (b) windows patterned in SiO2, (c) result of interference lithography, (d) after metal etch and strip of other layers.

Fig. 6
Fig. 6

Top-view SEM images of wire grid polarizers that pass (a) vertical, (b) horizontal, and (c) 45° linearly polarized light.

Fig. 7
Fig. 7

SEM cross-sectional images of (a) 16-µm-wide 90° polarizer, (b) close-up view of the center of (a), and (c) close-up view of the left-hand side of (a).

Fig. 8
Fig. 8

SEM image of grating cross section with SiO2 capping layer.

Fig. 9
Fig. 9

Sample of initial imagery obtained with integrated micropolarizer and FPA camera system.

Fig. 10
Fig. 10

(a)–(c) Images of a static scene for the S0, S1, and S2 Stokes vector components, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S0=I0+I90,
S1=2I0-S0,
S2=2I45-S0,
n=-1.715+2.957λ-0.1060λ2,
k=0.3483+4.366λ-0.2528λ2.

Metrics