D. W. Prather, J. N. Mait, M. S. Mirotznik, J. P. Collins, “Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15, 1599–1607 (1998).

[CrossRef]

J. N. Mait, D. W. Prather, M. S. Mirotznik, “Binary subwavelength diffractive-lens design,” Opt. Lett. 23, 1343–1345 (1998).

[CrossRef]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).

[CrossRef]

P. Lalanne, “Improved formulation of the coupled-wave method for two-dimensional gratings,” J. Opt. Soc. Am. A 14, 1592–1598 (1997).

[CrossRef]

J. A. Roden, S. D. Gedney, “Efficient implementation of the uniaxial-based PML media in three-dimensional nonorthogonal coordinates with the use of the FDTD technique,” Microwave Opt. Technol. Lett. 14, 71–75 (1997).

[CrossRef]

F. L. Teixeira, W. C. Chew, “PML-FDTD in cylindrical and spherical grids,” IEEE Microwave Guided Wave Lett. 7, 285–287 (1997).

[CrossRef]

F. Teixeira, W. Chew, “Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates,” IEEE Microwave Guided Wave Lett. 7, 371–373 (1997).

[CrossRef]

Y. Chen, R. Mittra, P. Harms, “Finite-difference time-domain algorithm for solving Maxwell’s equations in rotationally symmetric geometries,” IEEE Trans. Microwave Theory Tech. 44, 832–839 (1996).

[CrossRef]

C. M. Rappaport, “Interpreting and improving the PML absorbing boundary condition using anisotropic lossy mapping of space,” IEEE Trans. Magn. 32, 968–974 (1996).

[CrossRef]

S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996).

[CrossRef]

P. Lalanne, G. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996).

[CrossRef]

G. Granet, B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13, 1019–1023 (1996).

[CrossRef]

K. Hirayama, E. N. Glytsis, T. K. Gaylord, D. W. Wilson, “Rigorous electromagnetic analysis of diffractive cylindrical lenses,” J. Opt. Soc. Am. A 13, 2219–2231 (1996).

[CrossRef]

M. S. Mirotznik, D. W. Prather, J. N. Mait, “A hybrid finite-boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1322 (1996).

[CrossRef]

A. Wang, A. Prata, “Lenslet analysis by rigorous vector diffraction theory,” J. Opt. Soc. Am. A 12, 1161–1169 (1995).

[CrossRef]

Z. S. Sacks, D. M. Kingsland, R. Lee, J. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propag. 43, 1460–1463 (1995).

[CrossRef]

W. V. Andrew, C. A. Balanis, P. A. Tirkas, “A comparison of the Berenger perfectly matched layer and the Lindman high-order ABC’s for the FDTD method,” IEEE Microwave Guided Wave Lett. 5, 192–194 (1995).

[CrossRef]

B. Stupfel, R. Mittra, “A theoretical study of numerical absorbing boundary conditions,” IEEE Trans. Antennas Propag. 43, 478–486 (1995).

[CrossRef]

D. Ge, S. Shi, Z. Zhu, “A new FDTD scheme for introducing incident fields,” Microwave J. 11, 187–190 (1995).

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).

[CrossRef]

D. S. Katz, E. T. Thiele, A. Taflove, “Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FD-TD meshes,” IEEE Microwave Guided Lett. 4, 268–270 (1994).

[CrossRef]

W. C. Chew, W. H. Weedon, “A 3-D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microwave Opt. Technol. Lett. 7, 599–604 (1994).

[CrossRef]

E. A. Navarro, C. Wu, P. Y. Chung, J. Litva, “Application of PML superabsorbing boundary condition to non-orthogonal FDTD method,” Electron. Lett. 30, 1654–1656 (1994).

[CrossRef]

B. Lichtenberg, N. C. Gallagher, “Numerical modeling of diffractive devices using the finite element method,” Opt. Eng. 33, 3518–3526 (1994).

[CrossRef]

D. Davidson, R. Ziolkowski, “Body-of-revolution finite-difference time-domain modeling of space–time focusing by a three-dimensional lens,” J. Opt. Soc. Am. A 11, 1471–1490 (1994).

[CrossRef]

S. Gedney, R. Mittra, “The use of the FFT for the efficient solution of the problem of electromagnetic scattering by a body of revolution,” IEEE Trans. Antennas Propag. 38, 313–322 (1990).

[CrossRef]

C. L. Britt, “Solution of electromagnetic scattering problems using time domain techniques,” IEEE Trans. Antennas Propag. 37, 1181–1192 (1989).

[CrossRef]

A. Taflove, K. R. Umashankar, “The finite-difference time-domain (FD-TD) method for numerical modeling of electromagnetic scattering,” IEEE Trans. Magn. 25, 3086–3091 (1989).

[CrossRef]

A. Kishk, L. Shafai, “Different formulations for numerical solution of single or multibodies of revolution with mixed boundary conditions,” IEEE Trans. Antennas Propag. AP-34, 666–673 (1986).

[CrossRef]

A. Kishk, L. Shafai, “On the accuracy limits of different integral-equation formulations for numerical solution of dielectric bodies of revolution,” Can. J. Phys. 63, 1532–1539 (1985).

[CrossRef]

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).

[CrossRef]

L. Medgyesi-Mitschang, J. Putnam, “Electromagnetic scattering from axially inhomogeneous bodies of revolution,” IEEE Trans. Antennas Propag. AP-32, 797–806 (1984).

[CrossRef]

K. Umashankar, A. Taflove, “A novel method to analyze electromagnetic scattering of complex objects,” IEEE Trans. Electromagn. Compat. EMC-24, 397–405 (1982).

[CrossRef]

G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat. EMC-23, 377–382 (1981).

[CrossRef]

A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems,” IEEE Trans. Electromagn. Compat. EMC-22, 191–202 (1980).

[CrossRef]

J. Mautz, R. Harrington, “Electromagnetic scattering from a homogeneous material body of revolution,” Arch. Elektr. Uebertrag. 33, 71–80 (1979).

M. Morgan, K. Mei, “Finite-element computation of scattering by inhomogeneous penetrable bodies of revolution,” IEEE Trans. Antennas Propag. AP-27, 202–214 (1979).

[CrossRef]

T. Wu, L. Tsai, “Scattering from arbitrarily-shaped lossy dielectric bodies of revolution,” Radio Sci. 12, 709–718 (1977).

[CrossRef]

A. Taflove, M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Trans. Microwave Theory Tech. MTT-23, 623–630 (1975).

[CrossRef]

J. Mautz, R. Harrington, “Radiation and scattering from bodies of revolution,” Appl. Sci. Res. 20, 405–435 (1969).

[CrossRef]

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).

M. Andreasen, “Scattering from bodies of revolution,” IEEE Trans. Antennas Propag. AP-13, 303–310 (1965).

[CrossRef]

M. Andreasen, “Scattering from bodies of revolution,” IEEE Trans. Antennas Propag. AP-13, 303–310 (1965).

[CrossRef]

W. V. Andrew, C. A. Balanis, P. A. Tirkas, “A comparison of the Berenger perfectly matched layer and the Lindman high-order ABC’s for the FDTD method,” IEEE Microwave Guided Wave Lett. 5, 192–194 (1995).

[CrossRef]

W. V. Andrew, C. A. Balanis, P. A. Tirkas, “A comparison of the Berenger perfectly matched layer and the Lindman high-order ABC’s for the FDTD method,” IEEE Microwave Guided Wave Lett. 5, 192–194 (1995).

[CrossRef]

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).

[CrossRef]

C. L. Britt, “Solution of electromagnetic scattering problems using time domain techniques,” IEEE Trans. Antennas Propag. 37, 1181–1192 (1989).

[CrossRef]

A. Taflove, M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Trans. Microwave Theory Tech. MTT-23, 623–630 (1975).

[CrossRef]

Y. Chen, R. Mittra, P. Harms, “Finite-difference time-domain algorithm for solving Maxwell’s equations in rotationally symmetric geometries,” IEEE Trans. Microwave Theory Tech. 44, 832–839 (1996).

[CrossRef]

F. Teixeira, W. Chew, “Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates,” IEEE Microwave Guided Wave Lett. 7, 371–373 (1997).

[CrossRef]

F. L. Teixeira, W. C. Chew, “PML-FDTD in cylindrical and spherical grids,” IEEE Microwave Guided Wave Lett. 7, 285–287 (1997).

[CrossRef]

W. C. Chew, W. H. Weedon, “A 3-D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microwave Opt. Technol. Lett. 7, 599–604 (1994).

[CrossRef]

E. A. Navarro, C. Wu, P. Y. Chung, J. Litva, “Application of PML superabsorbing boundary condition to non-orthogonal FDTD method,” Electron. Lett. 30, 1654–1656 (1994).

[CrossRef]

B. Lichtenberg, N. C. Gallagher, “Numerical modeling of diffractive devices using the finite element method,” Opt. Eng. 33, 3518–3526 (1994).

[CrossRef]

K. Hirayama, E. N. Glytsis, T. K. Gaylord, D. W. Wilson, “Rigorous electromagnetic analysis of diffractive cylindrical lenses,” J. Opt. Soc. Am. A 13, 2219–2231 (1996).

[CrossRef]

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).

[CrossRef]

D. Ge, S. Shi, Z. Zhu, “A new FDTD scheme for introducing incident fields,” Microwave J. 11, 187–190 (1995).

S. Gedney, R. Mittra, “The use of the FFT for the efficient solution of the problem of electromagnetic scattering by a body of revolution,” IEEE Trans. Antennas Propag. 38, 313–322 (1990).

[CrossRef]

J. A. Roden, S. D. Gedney, “Efficient implementation of the uniaxial-based PML media in three-dimensional nonorthogonal coordinates with the use of the FDTD technique,” Microwave Opt. Technol. Lett. 14, 71–75 (1997).

[CrossRef]

S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996).

[CrossRef]

Y. Chen, R. Mittra, P. Harms, “Finite-difference time-domain algorithm for solving Maxwell’s equations in rotationally symmetric geometries,” IEEE Trans. Microwave Theory Tech. 44, 832–839 (1996).

[CrossRef]

J. Mautz, R. Harrington, “Electromagnetic scattering from a homogeneous material body of revolution,” Arch. Elektr. Uebertrag. 33, 71–80 (1979).

J. Mautz, R. Harrington, “Radiation and scattering from bodies of revolution,” Appl. Sci. Res. 20, 405–435 (1969).

[CrossRef]

A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice-Hall, Englewood Cliffs, N.J., 1991).

D. S. Katz, E. T. Thiele, A. Taflove, “Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FD-TD meshes,” IEEE Microwave Guided Lett. 4, 268–270 (1994).

[CrossRef]

Z. S. Sacks, D. M. Kingsland, R. Lee, J. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propag. 43, 1460–1463 (1995).

[CrossRef]

A. Kishk, L. Shafai, “Different formulations for numerical solution of single or multibodies of revolution with mixed boundary conditions,” IEEE Trans. Antennas Propag. AP-34, 666–673 (1986).

[CrossRef]

A. Kishk, L. Shafai, “On the accuracy limits of different integral-equation formulations for numerical solution of dielectric bodies of revolution,” Can. J. Phys. 63, 1532–1539 (1985).

[CrossRef]

Z. S. Sacks, D. M. Kingsland, R. Lee, J. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propag. 43, 1460–1463 (1995).

[CrossRef]

Z. S. Sacks, D. M. Kingsland, R. Lee, J. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propag. 43, 1460–1463 (1995).

[CrossRef]

B. Lichtenberg, N. C. Gallagher, “Numerical modeling of diffractive devices using the finite element method,” Opt. Eng. 33, 3518–3526 (1994).

[CrossRef]

E. A. Navarro, C. Wu, P. Y. Chung, J. Litva, “Application of PML superabsorbing boundary condition to non-orthogonal FDTD method,” Electron. Lett. 30, 1654–1656 (1994).

[CrossRef]

J. N. Mait, D. W. Prather, M. S. Mirotznik, “Binary subwavelength diffractive-lens design,” Opt. Lett. 23, 1343–1345 (1998).

[CrossRef]

D. W. Prather, J. N. Mait, M. S. Mirotznik, J. P. Collins, “Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15, 1599–1607 (1998).

[CrossRef]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).

[CrossRef]

M. S. Mirotznik, D. W. Prather, J. N. Mait, “A hybrid finite-boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1322 (1996).

[CrossRef]

D. W. Prather, S. Shi, M. S. Mirotznik, J. N. Mait, “Vector-based analysis of axially symmetric and conductive diffractive lenses,” in Diffractive Optics and Micro-Optics, Vol. 10 of 1998 OSA Technical Digest (Optical Society of America, Washington, D.C., 1998), pp. 94–96.

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary element method for vector modeling diffractive optical elements,” in Diffractive and Holographic Optics Technology II, I. Cindrich, S. H. Lee, eds., Proc. SPIE2404, 28–39 (1995).

P. D. Maker, D. W. Wilson, R. E. Muller, “Fabrication and performance of optical interconnect analog phase holograms made by electron beam lithography,” in Optoelectronic Interconnects and Packaging, R. T. Chen, P. S. Guilfoyle, eds., Proc. SPIECR 62, 415–430 (1996).

J. Mautz, R. Harrington, “Electromagnetic scattering from a homogeneous material body of revolution,” Arch. Elektr. Uebertrag. 33, 71–80 (1979).

J. Mautz, R. Harrington, “Radiation and scattering from bodies of revolution,” Appl. Sci. Res. 20, 405–435 (1969).

[CrossRef]

L. Medgyesi-Mitschang, J. Putnam, “Electromagnetic scattering from axially inhomogeneous bodies of revolution,” IEEE Trans. Antennas Propag. AP-32, 797–806 (1984).

[CrossRef]

M. Morgan, K. Mei, “Finite-element computation of scattering by inhomogeneous penetrable bodies of revolution,” IEEE Trans. Antennas Propag. AP-27, 202–214 (1979).

[CrossRef]

J. N. Mait, D. W. Prather, M. S. Mirotznik, “Binary subwavelength diffractive-lens design,” Opt. Lett. 23, 1343–1345 (1998).

[CrossRef]

D. W. Prather, J. N. Mait, M. S. Mirotznik, J. P. Collins, “Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15, 1599–1607 (1998).

[CrossRef]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).

[CrossRef]

M. S. Mirotznik, D. W. Prather, J. N. Mait, “A hybrid finite-boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1322 (1996).

[CrossRef]

D. W. Prather, S. Shi, M. S. Mirotznik, J. N. Mait, “Vector-based analysis of axially symmetric and conductive diffractive lenses,” in Diffractive Optics and Micro-Optics, Vol. 10 of 1998 OSA Technical Digest (Optical Society of America, Washington, D.C., 1998), pp. 94–96.

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary element method for vector modeling diffractive optical elements,” in Diffractive and Holographic Optics Technology II, I. Cindrich, S. H. Lee, eds., Proc. SPIE2404, 28–39 (1995).

Y. Chen, R. Mittra, P. Harms, “Finite-difference time-domain algorithm for solving Maxwell’s equations in rotationally symmetric geometries,” IEEE Trans. Microwave Theory Tech. 44, 832–839 (1996).

[CrossRef]

B. Stupfel, R. Mittra, “A theoretical study of numerical absorbing boundary conditions,” IEEE Trans. Antennas Propag. 43, 478–486 (1995).

[CrossRef]

S. Gedney, R. Mittra, “The use of the FFT for the efficient solution of the problem of electromagnetic scattering by a body of revolution,” IEEE Trans. Antennas Propag. 38, 313–322 (1990).

[CrossRef]

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).

[CrossRef]

M. Morgan, K. Mei, “Finite-element computation of scattering by inhomogeneous penetrable bodies of revolution,” IEEE Trans. Antennas Propag. AP-27, 202–214 (1979).

[CrossRef]

P. D. Maker, D. W. Wilson, R. E. Muller, “Fabrication and performance of optical interconnect analog phase holograms made by electron beam lithography,” in Optoelectronic Interconnects and Packaging, R. T. Chen, P. S. Guilfoyle, eds., Proc. SPIECR 62, 415–430 (1996).

G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat. EMC-23, 377–382 (1981).

[CrossRef]

E. A. Navarro, C. Wu, P. Y. Chung, J. Litva, “Application of PML superabsorbing boundary condition to non-orthogonal FDTD method,” Electron. Lett. 30, 1654–1656 (1994).

[CrossRef]

J. N. Mait, D. W. Prather, M. S. Mirotznik, “Binary subwavelength diffractive-lens design,” Opt. Lett. 23, 1343–1345 (1998).

[CrossRef]

D. W. Prather, J. N. Mait, M. S. Mirotznik, J. P. Collins, “Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15, 1599–1607 (1998).

[CrossRef]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).

[CrossRef]

M. S. Mirotznik, D. W. Prather, J. N. Mait, “A hybrid finite-boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1322 (1996).

[CrossRef]

D. W. Prather, S. Shi, M. S. Mirotznik, J. N. Mait, “Vector-based analysis of axially symmetric and conductive diffractive lenses,” in Diffractive Optics and Micro-Optics, Vol. 10 of 1998 OSA Technical Digest (Optical Society of America, Washington, D.C., 1998), pp. 94–96.

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary element method for vector modeling diffractive optical elements,” in Diffractive and Holographic Optics Technology II, I. Cindrich, S. H. Lee, eds., Proc. SPIE2404, 28–39 (1995).

L. Medgyesi-Mitschang, J. Putnam, “Electromagnetic scattering from axially inhomogeneous bodies of revolution,” IEEE Trans. Antennas Propag. AP-32, 797–806 (1984).

[CrossRef]

C. M. Rappaport, “Interpreting and improving the PML absorbing boundary condition using anisotropic lossy mapping of space,” IEEE Trans. Magn. 32, 968–974 (1996).

[CrossRef]

J. A. Roden, S. D. Gedney, “Efficient implementation of the uniaxial-based PML media in three-dimensional nonorthogonal coordinates with the use of the FDTD technique,” Microwave Opt. Technol. Lett. 14, 71–75 (1997).

[CrossRef]

Z. S. Sacks, D. M. Kingsland, R. Lee, J. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propag. 43, 1460–1463 (1995).

[CrossRef]

A. Kishk, L. Shafai, “Different formulations for numerical solution of single or multibodies of revolution with mixed boundary conditions,” IEEE Trans. Antennas Propag. AP-34, 666–673 (1986).

[CrossRef]

A. Kishk, L. Shafai, “On the accuracy limits of different integral-equation formulations for numerical solution of dielectric bodies of revolution,” Can. J. Phys. 63, 1532–1539 (1985).

[CrossRef]

D. Ge, S. Shi, Z. Zhu, “A new FDTD scheme for introducing incident fields,” Microwave J. 11, 187–190 (1995).

D. W. Prather, S. Shi, M. S. Mirotznik, J. N. Mait, “Vector-based analysis of axially symmetric and conductive diffractive lenses,” in Diffractive Optics and Micro-Optics, Vol. 10 of 1998 OSA Technical Digest (Optical Society of America, Washington, D.C., 1998), pp. 94–96.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

B. Stupfel, R. Mittra, “A theoretical study of numerical absorbing boundary conditions,” IEEE Trans. Antennas Propag. 43, 478–486 (1995).

[CrossRef]

G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multi-level diffractive optical elements,” (MIT, Cambridge, Mass., 1991).

D. S. Katz, E. T. Thiele, A. Taflove, “Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FD-TD meshes,” IEEE Microwave Guided Lett. 4, 268–270 (1994).

[CrossRef]

A. Taflove, K. R. Umashankar, “The finite-difference time-domain (FD-TD) method for numerical modeling of electromagnetic scattering,” IEEE Trans. Magn. 25, 3086–3091 (1989).

[CrossRef]

K. Umashankar, A. Taflove, “A novel method to analyze electromagnetic scattering of complex objects,” IEEE Trans. Electromagn. Compat. EMC-24, 397–405 (1982).

[CrossRef]

A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems,” IEEE Trans. Electromagn. Compat. EMC-22, 191–202 (1980).

[CrossRef]

A. Taflove, M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Trans. Microwave Theory Tech. MTT-23, 623–630 (1975).

[CrossRef]

A. Taflove, Computational Electromagnetics: The Finite-Difference Time Domain Method (Artech House, Boston, Mass., 1995).

F. Teixeira, W. Chew, “Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates,” IEEE Microwave Guided Wave Lett. 7, 371–373 (1997).

[CrossRef]

F. L. Teixeira, W. C. Chew, “PML-FDTD in cylindrical and spherical grids,” IEEE Microwave Guided Wave Lett. 7, 285–287 (1997).

[CrossRef]

D. S. Katz, E. T. Thiele, A. Taflove, “Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FD-TD meshes,” IEEE Microwave Guided Lett. 4, 268–270 (1994).

[CrossRef]

W. V. Andrew, C. A. Balanis, P. A. Tirkas, “A comparison of the Berenger perfectly matched layer and the Lindman high-order ABC’s for the FDTD method,” IEEE Microwave Guided Wave Lett. 5, 192–194 (1995).

[CrossRef]

T. Wu, L. Tsai, “Scattering from arbitrarily-shaped lossy dielectric bodies of revolution,” Radio Sci. 12, 709–718 (1977).

[CrossRef]

K. Umashankar, A. Taflove, “A novel method to analyze electromagnetic scattering of complex objects,” IEEE Trans. Electromagn. Compat. EMC-24, 397–405 (1982).

[CrossRef]

A. Taflove, K. R. Umashankar, “The finite-difference time-domain (FD-TD) method for numerical modeling of electromagnetic scattering,” IEEE Trans. Magn. 25, 3086–3091 (1989).

[CrossRef]

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

W. C. Chew, W. H. Weedon, “A 3-D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microwave Opt. Technol. Lett. 7, 599–604 (1994).

[CrossRef]

K. Hirayama, E. N. Glytsis, T. K. Gaylord, D. W. Wilson, “Rigorous electromagnetic analysis of diffractive cylindrical lenses,” J. Opt. Soc. Am. A 13, 2219–2231 (1996).

[CrossRef]

P. D. Maker, D. W. Wilson, R. E. Muller, “Fabrication and performance of optical interconnect analog phase holograms made by electron beam lithography,” in Optoelectronic Interconnects and Packaging, R. T. Chen, P. S. Guilfoyle, eds., Proc. SPIECR 62, 415–430 (1996).

E. A. Navarro, C. Wu, P. Y. Chung, J. Litva, “Application of PML superabsorbing boundary condition to non-orthogonal FDTD method,” Electron. Lett. 30, 1654–1656 (1994).

[CrossRef]

T. Wu, L. Tsai, “Scattering from arbitrarily-shaped lossy dielectric bodies of revolution,” Radio Sci. 12, 709–718 (1977).

[CrossRef]

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).

D. Ge, S. Shi, Z. Zhu, “A new FDTD scheme for introducing incident fields,” Microwave J. 11, 187–190 (1995).

J. Mautz, R. Harrington, “Radiation and scattering from bodies of revolution,” Appl. Sci. Res. 20, 405–435 (1969).

[CrossRef]

J. Mautz, R. Harrington, “Electromagnetic scattering from a homogeneous material body of revolution,” Arch. Elektr. Uebertrag. 33, 71–80 (1979).

A. Kishk, L. Shafai, “On the accuracy limits of different integral-equation formulations for numerical solution of dielectric bodies of revolution,” Can. J. Phys. 63, 1532–1539 (1985).

[CrossRef]

E. A. Navarro, C. Wu, P. Y. Chung, J. Litva, “Application of PML superabsorbing boundary condition to non-orthogonal FDTD method,” Electron. Lett. 30, 1654–1656 (1994).

[CrossRef]

D. S. Katz, E. T. Thiele, A. Taflove, “Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FD-TD meshes,” IEEE Microwave Guided Lett. 4, 268–270 (1994).

[CrossRef]

F. Teixeira, W. Chew, “Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates,” IEEE Microwave Guided Wave Lett. 7, 371–373 (1997).

[CrossRef]

W. V. Andrew, C. A. Balanis, P. A. Tirkas, “A comparison of the Berenger perfectly matched layer and the Lindman high-order ABC’s for the FDTD method,” IEEE Microwave Guided Wave Lett. 5, 192–194 (1995).

[CrossRef]

F. L. Teixeira, W. C. Chew, “PML-FDTD in cylindrical and spherical grids,” IEEE Microwave Guided Wave Lett. 7, 285–287 (1997).

[CrossRef]

S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996).

[CrossRef]

B. Stupfel, R. Mittra, “A theoretical study of numerical absorbing boundary conditions,” IEEE Trans. Antennas Propag. 43, 478–486 (1995).

[CrossRef]

Z. S. Sacks, D. M. Kingsland, R. Lee, J. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propag. 43, 1460–1463 (1995).

[CrossRef]

M. Andreasen, “Scattering from bodies of revolution,” IEEE Trans. Antennas Propag. AP-13, 303–310 (1965).

[CrossRef]

L. Medgyesi-Mitschang, J. Putnam, “Electromagnetic scattering from axially inhomogeneous bodies of revolution,” IEEE Trans. Antennas Propag. AP-32, 797–806 (1984).

[CrossRef]

A. Kishk, L. Shafai, “Different formulations for numerical solution of single or multibodies of revolution with mixed boundary conditions,” IEEE Trans. Antennas Propag. AP-34, 666–673 (1986).

[CrossRef]

S. Gedney, R. Mittra, “The use of the FFT for the efficient solution of the problem of electromagnetic scattering by a body of revolution,” IEEE Trans. Antennas Propag. 38, 313–322 (1990).

[CrossRef]

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).

C. L. Britt, “Solution of electromagnetic scattering problems using time domain techniques,” IEEE Trans. Antennas Propag. 37, 1181–1192 (1989).

[CrossRef]

M. Morgan, K. Mei, “Finite-element computation of scattering by inhomogeneous penetrable bodies of revolution,” IEEE Trans. Antennas Propag. AP-27, 202–214 (1979).

[CrossRef]

G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat. EMC-23, 377–382 (1981).

[CrossRef]

K. Umashankar, A. Taflove, “A novel method to analyze electromagnetic scattering of complex objects,” IEEE Trans. Electromagn. Compat. EMC-24, 397–405 (1982).

[CrossRef]

A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems,” IEEE Trans. Electromagn. Compat. EMC-22, 191–202 (1980).

[CrossRef]

C. M. Rappaport, “Interpreting and improving the PML absorbing boundary condition using anisotropic lossy mapping of space,” IEEE Trans. Magn. 32, 968–974 (1996).

[CrossRef]

A. Taflove, K. R. Umashankar, “The finite-difference time-domain (FD-TD) method for numerical modeling of electromagnetic scattering,” IEEE Trans. Magn. 25, 3086–3091 (1989).

[CrossRef]

Y. Chen, R. Mittra, P. Harms, “Finite-difference time-domain algorithm for solving Maxwell’s equations in rotationally symmetric geometries,” IEEE Trans. Microwave Theory Tech. 44, 832–839 (1996).

[CrossRef]

A. Taflove, M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Trans. Microwave Theory Tech. MTT-23, 623–630 (1975).

[CrossRef]

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).

[CrossRef]

M. S. Mirotznik, D. W. Prather, J. N. Mait, “A hybrid finite-boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1322 (1996).

[CrossRef]

D. Davidson, R. Ziolkowski, “Body-of-revolution finite-difference time-domain modeling of space–time focusing by a three-dimensional lens,” J. Opt. Soc. Am. A 11, 1471–1490 (1994).

[CrossRef]

D. W. Prather, J. N. Mait, M. S. Mirotznik, J. P. Collins, “Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15, 1599–1607 (1998).

[CrossRef]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).

[CrossRef]

P. Lalanne, “Improved formulation of the coupled-wave method for two-dimensional gratings,” J. Opt. Soc. Am. A 14, 1592–1598 (1997).

[CrossRef]

P. Lalanne, G. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996).

[CrossRef]

G. Granet, B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13, 1019–1023 (1996).

[CrossRef]

K. Hirayama, E. N. Glytsis, T. K. Gaylord, D. W. Wilson, “Rigorous electromagnetic analysis of diffractive cylindrical lenses,” J. Opt. Soc. Am. A 13, 2219–2231 (1996).

[CrossRef]

A. Wang, A. Prata, “Lenslet analysis by rigorous vector diffraction theory,” J. Opt. Soc. Am. A 12, 1161–1169 (1995).

[CrossRef]

D. Ge, S. Shi, Z. Zhu, “A new FDTD scheme for introducing incident fields,” Microwave J. 11, 187–190 (1995).

W. C. Chew, W. H. Weedon, “A 3-D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microwave Opt. Technol. Lett. 7, 599–604 (1994).

[CrossRef]

J. A. Roden, S. D. Gedney, “Efficient implementation of the uniaxial-based PML media in three-dimensional nonorthogonal coordinates with the use of the FDTD technique,” Microwave Opt. Technol. Lett. 14, 71–75 (1997).

[CrossRef]

B. Lichtenberg, N. C. Gallagher, “Numerical modeling of diffractive devices using the finite element method,” Opt. Eng. 33, 3518–3526 (1994).

[CrossRef]

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).

[CrossRef]

T. Wu, L. Tsai, “Scattering from arbitrarily-shaped lossy dielectric bodies of revolution,” Radio Sci. 12, 709–718 (1977).

[CrossRef]

A. Taflove, Computational Electromagnetics: The Finite-Difference Time Domain Method (Artech House, Boston, Mass., 1995).

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary element method for vector modeling diffractive optical elements,” in Diffractive and Holographic Optics Technology II, I. Cindrich, S. H. Lee, eds., Proc. SPIE2404, 28–39 (1995).

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice-Hall, Englewood Cliffs, N.J., 1991).

G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multi-level diffractive optical elements,” (MIT, Cambridge, Mass., 1991).

P. D. Maker, D. W. Wilson, R. E. Muller, “Fabrication and performance of optical interconnect analog phase holograms made by electron beam lithography,” in Optoelectronic Interconnects and Packaging, R. T. Chen, P. S. Guilfoyle, eds., Proc. SPIECR 62, 415–430 (1996).

D. W. Prather, S. Shi, M. S. Mirotznik, J. N. Mait, “Vector-based analysis of axially symmetric and conductive diffractive lenses,” in Diffractive Optics and Micro-Optics, Vol. 10 of 1998 OSA Technical Digest (Optical Society of America, Washington, D.C., 1998), pp. 94–96.