Abstract

First-order perturbation theory is used to describe diffractive optical elements. This method provides an extension of Kirchhoff’s thin element approximation. In particular, the perturbation approximation considers propagation effects due to a finite depth of diffractive structures. The perturbation method is explicitly applied to various problems in diffractive optics, mostly related to the analysis of surface-relief structures. As part of this investigation this approach is compared with alternative extensions of the thin element model. This comparison illustrates that perturbation theory allows a consistent unified treatment of many diffraction phenomena, preserving the simplicity of Fourier optics.

© 1999 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription