Abstract

Image sampling effects have been variously quantified as aliased signal, spatial signal, and spatial noise. However, a relationship between these characteristics and human object recognition has not been established in a coherent, mathematical form. We present a heuristic study that characterizes the performance degradation that is due to the spurious response of a sampled imaging system as an effective increase in system blur. A character recognition experiment was performed in which 20 observers responded to 3500 character pairs of blur and sample spacing. A baseline was created where the probability of character recognition was determined as a function of blur without sampling. The sampled characters were then compared with this baseline so that the effect of sampling on character recognition could be determined. Finally, an increase in blur was established as a function of spurious response, which describes the overall effect of sampling on observer character recognition.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Park, R. Hazra, “Aliasing as noise: a quantitative and qualitative assessment,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing IV, G. Holst, ed., Proc. SPIE1969, 54–65 (1993).
    [CrossRef]
  2. T. Meitzler, G. Gerhart, “Spatial aliasing effects in ground vehicle IR imagery,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing III, G. Holst, ed., Proc. SPIE1689, 226–241 (1992).
    [CrossRef]
  3. P. Owen, J. Dawson, “Resolving the differences in oversampled and undersampled imaging sensors: updated target acquisition modeling strategies for staring and scanning FLIR systems,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing III, G. Holst, ed., Proc. SPIE1689, 251–261 (1992).
    [CrossRef]
  4. F. Huck, S. Park, D. Speray, N. Halyo, “Information density and efficiency of two-dimensional sampled imagery,” in Image Quality, P. S. Cheatham, ed., Proc. SPIE310, 36–42 (1981).
    [CrossRef]
  5. J. Kruthers, T. Williams, G. O’Brien, K. Le, J. Howe, “A Study of the Effects of Focal Plane Array Design Parameters on ATR Performance,” in Architecture, Hardware, and Forward-Looking Infrared Issues in Automatic Object Recognition, L. Garn, L. Graceffo, eds., Proc. SPIE1957, 165–181 (1993).
    [CrossRef]
  6. S. Park, R. Schowengerdt, “Image sampling, reconstruction, and the effect of sample-scene phasing,” Appl. Opt. 21, 3142–3151 (1986).
    [CrossRef]
  7. W. Wittenstein, J. Fontanella, A. Newberry, J. Baars, “The definition and the OTF and the measurement of aliasing for sampled imaging systems,” Opt. Acta 29, 41–50 (1982).
    [CrossRef]
  8. R. Vollmerhausen, “Impact of display modulation transfer function on the quality of sampled imagery,” in Aerospace/Defense Sensing and Controls, G. Holst, ed., Proc. SPIE2743, 12–22 (1996).
    [CrossRef]
  9. R. Vollmerhausen, “Display of sampled imagery,” in EO Imaging Systems and Modeling, L. Biberman, ed. (Ontar Corp., Andover, Mass., in press).
  10. J. D’Agostino, M. Friedman, R. LaFollette, M. Crenshaw, “An experimental study of the effects of sampling on FLIR performance,” (Night Vision and Electronic Sensors Directorate, Ft. Belvoir, Va., 1990).
  11. J. Howe, L. Scott, S. Pletz, J. Horger, J. Mark, “Thermal model improvement through perception testing,” (Night Vision and Electronic Sensors Directorate, Ft. Belvoir, Va., 1989).
  12. J. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978), pp. 60–62.
  13. D. F. Barbe, S. B. Campana, “Imaging arrays using the charge coupled concept,” in Advances in Image Pickup and Display, B. Kazan, ed. (Academic, New York, 1977), Vol. 3, pp. 171–296.
  14. Instructions for the Use of the RIT Alphanumeric Resolution Test Object (Graphic Arts Research Center, Institute of Technology, Rochester, N.Y., 1980).
  15. G. Waldman, J. Wooton, Electro-optical Systems Performance Modeling (Artech House, Boston, Mass., 1993), pp. 170–172.
  16. R. Vollmerhausen, R. Driggers, B. O’Kane, “The influence of sampling on recognition and identification performance,” Opt. Eng. (to be published).

1986 (1)

1982 (1)

W. Wittenstein, J. Fontanella, A. Newberry, J. Baars, “The definition and the OTF and the measurement of aliasing for sampled imaging systems,” Opt. Acta 29, 41–50 (1982).
[CrossRef]

Baars, J.

W. Wittenstein, J. Fontanella, A. Newberry, J. Baars, “The definition and the OTF and the measurement of aliasing for sampled imaging systems,” Opt. Acta 29, 41–50 (1982).
[CrossRef]

Barbe, D. F.

D. F. Barbe, S. B. Campana, “Imaging arrays using the charge coupled concept,” in Advances in Image Pickup and Display, B. Kazan, ed. (Academic, New York, 1977), Vol. 3, pp. 171–296.

Campana, S. B.

D. F. Barbe, S. B. Campana, “Imaging arrays using the charge coupled concept,” in Advances in Image Pickup and Display, B. Kazan, ed. (Academic, New York, 1977), Vol. 3, pp. 171–296.

Crenshaw, M.

J. D’Agostino, M. Friedman, R. LaFollette, M. Crenshaw, “An experimental study of the effects of sampling on FLIR performance,” (Night Vision and Electronic Sensors Directorate, Ft. Belvoir, Va., 1990).

D’Agostino, J.

J. D’Agostino, M. Friedman, R. LaFollette, M. Crenshaw, “An experimental study of the effects of sampling on FLIR performance,” (Night Vision and Electronic Sensors Directorate, Ft. Belvoir, Va., 1990).

Dawson, J.

P. Owen, J. Dawson, “Resolving the differences in oversampled and undersampled imaging sensors: updated target acquisition modeling strategies for staring and scanning FLIR systems,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing III, G. Holst, ed., Proc. SPIE1689, 251–261 (1992).
[CrossRef]

Driggers, R.

R. Vollmerhausen, R. Driggers, B. O’Kane, “The influence of sampling on recognition and identification performance,” Opt. Eng. (to be published).

Fontanella, J.

W. Wittenstein, J. Fontanella, A. Newberry, J. Baars, “The definition and the OTF and the measurement of aliasing for sampled imaging systems,” Opt. Acta 29, 41–50 (1982).
[CrossRef]

Friedman, M.

J. D’Agostino, M. Friedman, R. LaFollette, M. Crenshaw, “An experimental study of the effects of sampling on FLIR performance,” (Night Vision and Electronic Sensors Directorate, Ft. Belvoir, Va., 1990).

Gaskill, J.

J. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978), pp. 60–62.

Gerhart, G.

T. Meitzler, G. Gerhart, “Spatial aliasing effects in ground vehicle IR imagery,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing III, G. Holst, ed., Proc. SPIE1689, 226–241 (1992).
[CrossRef]

Halyo, N.

F. Huck, S. Park, D. Speray, N. Halyo, “Information density and efficiency of two-dimensional sampled imagery,” in Image Quality, P. S. Cheatham, ed., Proc. SPIE310, 36–42 (1981).
[CrossRef]

Hazra, R.

S. Park, R. Hazra, “Aliasing as noise: a quantitative and qualitative assessment,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing IV, G. Holst, ed., Proc. SPIE1969, 54–65 (1993).
[CrossRef]

Horger, J.

J. Howe, L. Scott, S. Pletz, J. Horger, J. Mark, “Thermal model improvement through perception testing,” (Night Vision and Electronic Sensors Directorate, Ft. Belvoir, Va., 1989).

Howe, J.

J. Howe, L. Scott, S. Pletz, J. Horger, J. Mark, “Thermal model improvement through perception testing,” (Night Vision and Electronic Sensors Directorate, Ft. Belvoir, Va., 1989).

J. Kruthers, T. Williams, G. O’Brien, K. Le, J. Howe, “A Study of the Effects of Focal Plane Array Design Parameters on ATR Performance,” in Architecture, Hardware, and Forward-Looking Infrared Issues in Automatic Object Recognition, L. Garn, L. Graceffo, eds., Proc. SPIE1957, 165–181 (1993).
[CrossRef]

Huck, F.

F. Huck, S. Park, D. Speray, N. Halyo, “Information density and efficiency of two-dimensional sampled imagery,” in Image Quality, P. S. Cheatham, ed., Proc. SPIE310, 36–42 (1981).
[CrossRef]

Kruthers, J.

J. Kruthers, T. Williams, G. O’Brien, K. Le, J. Howe, “A Study of the Effects of Focal Plane Array Design Parameters on ATR Performance,” in Architecture, Hardware, and Forward-Looking Infrared Issues in Automatic Object Recognition, L. Garn, L. Graceffo, eds., Proc. SPIE1957, 165–181 (1993).
[CrossRef]

LaFollette, R.

J. D’Agostino, M. Friedman, R. LaFollette, M. Crenshaw, “An experimental study of the effects of sampling on FLIR performance,” (Night Vision and Electronic Sensors Directorate, Ft. Belvoir, Va., 1990).

Le, K.

J. Kruthers, T. Williams, G. O’Brien, K. Le, J. Howe, “A Study of the Effects of Focal Plane Array Design Parameters on ATR Performance,” in Architecture, Hardware, and Forward-Looking Infrared Issues in Automatic Object Recognition, L. Garn, L. Graceffo, eds., Proc. SPIE1957, 165–181 (1993).
[CrossRef]

Mark, J.

J. Howe, L. Scott, S. Pletz, J. Horger, J. Mark, “Thermal model improvement through perception testing,” (Night Vision and Electronic Sensors Directorate, Ft. Belvoir, Va., 1989).

Meitzler, T.

T. Meitzler, G. Gerhart, “Spatial aliasing effects in ground vehicle IR imagery,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing III, G. Holst, ed., Proc. SPIE1689, 226–241 (1992).
[CrossRef]

Newberry, A.

W. Wittenstein, J. Fontanella, A. Newberry, J. Baars, “The definition and the OTF and the measurement of aliasing for sampled imaging systems,” Opt. Acta 29, 41–50 (1982).
[CrossRef]

O’Brien, G.

J. Kruthers, T. Williams, G. O’Brien, K. Le, J. Howe, “A Study of the Effects of Focal Plane Array Design Parameters on ATR Performance,” in Architecture, Hardware, and Forward-Looking Infrared Issues in Automatic Object Recognition, L. Garn, L. Graceffo, eds., Proc. SPIE1957, 165–181 (1993).
[CrossRef]

O’Kane, B.

R. Vollmerhausen, R. Driggers, B. O’Kane, “The influence of sampling on recognition and identification performance,” Opt. Eng. (to be published).

Owen, P.

P. Owen, J. Dawson, “Resolving the differences in oversampled and undersampled imaging sensors: updated target acquisition modeling strategies for staring and scanning FLIR systems,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing III, G. Holst, ed., Proc. SPIE1689, 251–261 (1992).
[CrossRef]

Park, S.

S. Park, R. Schowengerdt, “Image sampling, reconstruction, and the effect of sample-scene phasing,” Appl. Opt. 21, 3142–3151 (1986).
[CrossRef]

F. Huck, S. Park, D. Speray, N. Halyo, “Information density and efficiency of two-dimensional sampled imagery,” in Image Quality, P. S. Cheatham, ed., Proc. SPIE310, 36–42 (1981).
[CrossRef]

S. Park, R. Hazra, “Aliasing as noise: a quantitative and qualitative assessment,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing IV, G. Holst, ed., Proc. SPIE1969, 54–65 (1993).
[CrossRef]

Pletz, S.

J. Howe, L. Scott, S. Pletz, J. Horger, J. Mark, “Thermal model improvement through perception testing,” (Night Vision and Electronic Sensors Directorate, Ft. Belvoir, Va., 1989).

Schowengerdt, R.

Scott, L.

J. Howe, L. Scott, S. Pletz, J. Horger, J. Mark, “Thermal model improvement through perception testing,” (Night Vision and Electronic Sensors Directorate, Ft. Belvoir, Va., 1989).

Speray, D.

F. Huck, S. Park, D. Speray, N. Halyo, “Information density and efficiency of two-dimensional sampled imagery,” in Image Quality, P. S. Cheatham, ed., Proc. SPIE310, 36–42 (1981).
[CrossRef]

Vollmerhausen, R.

R. Vollmerhausen, “Display of sampled imagery,” in EO Imaging Systems and Modeling, L. Biberman, ed. (Ontar Corp., Andover, Mass., in press).

R. Vollmerhausen, R. Driggers, B. O’Kane, “The influence of sampling on recognition and identification performance,” Opt. Eng. (to be published).

R. Vollmerhausen, “Impact of display modulation transfer function on the quality of sampled imagery,” in Aerospace/Defense Sensing and Controls, G. Holst, ed., Proc. SPIE2743, 12–22 (1996).
[CrossRef]

Waldman, G.

G. Waldman, J. Wooton, Electro-optical Systems Performance Modeling (Artech House, Boston, Mass., 1993), pp. 170–172.

Williams, T.

J. Kruthers, T. Williams, G. O’Brien, K. Le, J. Howe, “A Study of the Effects of Focal Plane Array Design Parameters on ATR Performance,” in Architecture, Hardware, and Forward-Looking Infrared Issues in Automatic Object Recognition, L. Garn, L. Graceffo, eds., Proc. SPIE1957, 165–181 (1993).
[CrossRef]

Wittenstein, W.

W. Wittenstein, J. Fontanella, A. Newberry, J. Baars, “The definition and the OTF and the measurement of aliasing for sampled imaging systems,” Opt. Acta 29, 41–50 (1982).
[CrossRef]

Wooton, J.

G. Waldman, J. Wooton, Electro-optical Systems Performance Modeling (Artech House, Boston, Mass., 1993), pp. 170–172.

Appl. Opt. (1)

Opt. Acta (1)

W. Wittenstein, J. Fontanella, A. Newberry, J. Baars, “The definition and the OTF and the measurement of aliasing for sampled imaging systems,” Opt. Acta 29, 41–50 (1982).
[CrossRef]

Other (14)

R. Vollmerhausen, “Impact of display modulation transfer function on the quality of sampled imagery,” in Aerospace/Defense Sensing and Controls, G. Holst, ed., Proc. SPIE2743, 12–22 (1996).
[CrossRef]

R. Vollmerhausen, “Display of sampled imagery,” in EO Imaging Systems and Modeling, L. Biberman, ed. (Ontar Corp., Andover, Mass., in press).

J. D’Agostino, M. Friedman, R. LaFollette, M. Crenshaw, “An experimental study of the effects of sampling on FLIR performance,” (Night Vision and Electronic Sensors Directorate, Ft. Belvoir, Va., 1990).

J. Howe, L. Scott, S. Pletz, J. Horger, J. Mark, “Thermal model improvement through perception testing,” (Night Vision and Electronic Sensors Directorate, Ft. Belvoir, Va., 1989).

J. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978), pp. 60–62.

D. F. Barbe, S. B. Campana, “Imaging arrays using the charge coupled concept,” in Advances in Image Pickup and Display, B. Kazan, ed. (Academic, New York, 1977), Vol. 3, pp. 171–296.

Instructions for the Use of the RIT Alphanumeric Resolution Test Object (Graphic Arts Research Center, Institute of Technology, Rochester, N.Y., 1980).

G. Waldman, J. Wooton, Electro-optical Systems Performance Modeling (Artech House, Boston, Mass., 1993), pp. 170–172.

R. Vollmerhausen, R. Driggers, B. O’Kane, “The influence of sampling on recognition and identification performance,” Opt. Eng. (to be published).

S. Park, R. Hazra, “Aliasing as noise: a quantitative and qualitative assessment,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing IV, G. Holst, ed., Proc. SPIE1969, 54–65 (1993).
[CrossRef]

T. Meitzler, G. Gerhart, “Spatial aliasing effects in ground vehicle IR imagery,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing III, G. Holst, ed., Proc. SPIE1689, 226–241 (1992).
[CrossRef]

P. Owen, J. Dawson, “Resolving the differences in oversampled and undersampled imaging sensors: updated target acquisition modeling strategies for staring and scanning FLIR systems,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing III, G. Holst, ed., Proc. SPIE1689, 251–261 (1992).
[CrossRef]

F. Huck, S. Park, D. Speray, N. Halyo, “Information density and efficiency of two-dimensional sampled imagery,” in Image Quality, P. S. Cheatham, ed., Proc. SPIE310, 36–42 (1981).
[CrossRef]

J. Kruthers, T. Williams, G. O’Brien, K. Le, J. Howe, “A Study of the Effects of Focal Plane Array Design Parameters on ATR Performance,” in Architecture, Hardware, and Forward-Looking Infrared Issues in Automatic Object Recognition, L. Garn, L. Graceffo, eds., Proc. SPIE1957, 165–181 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Three-step imaging process.

Fig. 2
Fig. 2

Presample blur.

Fig. 3
Fig. 3

Output of sampling.

Fig. 4
Fig. 4

Sampled signal (solid curves) and display transfer (dashed curves).

Fig. 5
Fig. 5

System output signal.

Fig. 6
Fig. 6

Input character pair.

Fig. 7
Fig. 7

One of Ge cell 14 images.

Fig. 8
Fig. 8

One of Ge cell 3 images.

Fig. 9
Fig. 9

Character pair of cell 8 in the Fe block.

Fig. 10
Fig. 10

Ge baseline curve fit.

Fig. 11
Fig. 11

Equivalent-blur technique (small blur region was not used).

Fig. 12
Fig. 12

Relative-blur spot increase versus spurious response.

Fig. 13
Fig. 13

Two-dimensional fit of increase in blur with spurious response.

Fig. 14
Fig. 14

One-dimensional fit of increase in blur with spurious response.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

o1(x, y)=--i(x-α, y-β)h(α, β)dαdβ=i(x, y) **  h(x, y),
combxb=|b|n=-δ(x-nb).
o2(x, y)=o1(x, y) 1abcombxa, yb=[i(x, y) **  h(x, y)] 1abcombxa, yb.
o(x, y)=o1(x, y) **  d(x, y)=[i(x, y) **  h(x, y)] 1abcombxa, yb ** d(x, y).
O1(ξ, η)=I(ξ, η)Hpre(ξ, η),
O2(ξ, η)=[I(ξ, η)Hpre(ξ, η)] ** comb(aξ, bη).
O2(ξ, η)=Hpre(ξ, η) ** comb(aξ, bη),
O(ξ, η)=[Hpre(ξ, η) ** comb(aξ, bη)]D(ξ, η),
SRξ=-RSS(ξ)dξ-baseband(ξdξ).
Gaus(r/b)=exp[-π(r/b)2],
r=x2+y2.
beq=b12+b22,
b2=2π(0.54)SS,
o(x)=i(x) * 1arectxa * 1bGausxb,
H(ξ)=sinc(aξ)Gaus(bξ),
BlurIncrease=BaselineBlur+AdditionalBlurBaselineBlur.
RI=11-0.32SR,
RI=11-0.32SR.

Metrics