Abstract

Photonic bandgap (PBG) structures constructed from lossy, dispersive dielectric and metallic materials are characterized in terms of their reflection and transmission properties. Particular emphasis is given to PBG structures with defects. These PBG structures are modeled analytically with an ABCD matrix method for their single-frequency response. They also are modeled numerically with a finite-difference time-domain approach to determine their operating characteristics over a wide set of frequencies in a single simulation. It is shown that material dispersion can significantly alter the characteristics of a PBG structure’s frequency response. Metallic PBG structures at optical frequencies thus exhibit bandgap characteristics significantly different from those of their nondispersive dielectric counterparts. It is shown that microcavities whose mirrors are constructed from dispersive-material PBG structures can be designed to outperform similar nondispersive-mirror microcavities.

© 1999 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Radisic, Y. Qian, T. Itoh, “Broad-band power amplifier using dielectric photonic bandgap structure,” IEEE Microwave Guided Wave Lett. 8, 13–15 (1998).
    [CrossRef]
  2. V. Radisic, Y. Qian, R. Coccioli, T. Itoh, “Novel 2-D photonic bandgap structure for microstrip lines,” IEEE Microwave Guided Wave Lett. 8, 69–71 (1998).
    [CrossRef]
  3. E. Yablanovich, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef]
  4. D. Maystre, “Electromagnetic study of photonic band gaps,” Pure Appl. Opt. 3, 975–993 (1994).
    [CrossRef]
  5. J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonics Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
  6. R. W. Ziolkowski, “FDTD Modeling of photonic nanometer-sized power splitters and switches,” in Integrated Photonics Research, Vol. 4 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 175–177.
  7. S. Kawakami, “Fabrication processes for 3D periodic nanostructures and photonic crystals,” in Integrated Photonics Research, Vol. 4 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 178–180.
  8. B. D’Urso, O. Painter, A. Yariv, A. Scherer, “Membrane microresonator lasers with 2-D photonic bandgap crystal mirrors for compact in-plane optics,” in Integrated Photonics Research, Vol. 4 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 181–183.
  9. O. Painter, R. Lee, A. Yariv, A. Scherer, “Photonic bandgap membrane microresonator,” in Integrated Photonics Research, Vol. 4 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 221–223.
  10. J. A. Kong, Electromagnetic Wave Theory (Wiley, New York, 1986), pp. 120–132.
  11. J. B. Judkins, R. W. Ziolkowski, “Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings,” J. Opt. Soc. Am. A 12, 1974–1983 (1995).
    [CrossRef]
  12. M. J. Bloemr, M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676–1678 (1998).
    [CrossRef]
  13. A. Taflove, Computational Electrodynamics (Artech House, Boston, Mass., 1995), pp. 111–134.

1998 (3)

V. Radisic, Y. Qian, T. Itoh, “Broad-band power amplifier using dielectric photonic bandgap structure,” IEEE Microwave Guided Wave Lett. 8, 13–15 (1998).
[CrossRef]

V. Radisic, Y. Qian, R. Coccioli, T. Itoh, “Novel 2-D photonic bandgap structure for microstrip lines,” IEEE Microwave Guided Wave Lett. 8, 69–71 (1998).
[CrossRef]

M. J. Bloemr, M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676–1678 (1998).
[CrossRef]

1995 (1)

1994 (1)

D. Maystre, “Electromagnetic study of photonic band gaps,” Pure Appl. Opt. 3, 975–993 (1994).
[CrossRef]

1987 (1)

E. Yablanovich, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

Bloemr, M. J.

M. J. Bloemr, M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676–1678 (1998).
[CrossRef]

Coccioli, R.

V. Radisic, Y. Qian, R. Coccioli, T. Itoh, “Novel 2-D photonic bandgap structure for microstrip lines,” IEEE Microwave Guided Wave Lett. 8, 69–71 (1998).
[CrossRef]

D’Urso, B.

B. D’Urso, O. Painter, A. Yariv, A. Scherer, “Membrane microresonator lasers with 2-D photonic bandgap crystal mirrors for compact in-plane optics,” in Integrated Photonics Research, Vol. 4 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 181–183.

Itoh, T.

V. Radisic, Y. Qian, R. Coccioli, T. Itoh, “Novel 2-D photonic bandgap structure for microstrip lines,” IEEE Microwave Guided Wave Lett. 8, 69–71 (1998).
[CrossRef]

V. Radisic, Y. Qian, T. Itoh, “Broad-band power amplifier using dielectric photonic bandgap structure,” IEEE Microwave Guided Wave Lett. 8, 13–15 (1998).
[CrossRef]

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonics Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).

Judkins, J. B.

Kawakami, S.

S. Kawakami, “Fabrication processes for 3D periodic nanostructures and photonic crystals,” in Integrated Photonics Research, Vol. 4 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 178–180.

Kong, J. A.

J. A. Kong, Electromagnetic Wave Theory (Wiley, New York, 1986), pp. 120–132.

Lee, R.

O. Painter, R. Lee, A. Yariv, A. Scherer, “Photonic bandgap membrane microresonator,” in Integrated Photonics Research, Vol. 4 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 221–223.

Maystre, D.

D. Maystre, “Electromagnetic study of photonic band gaps,” Pure Appl. Opt. 3, 975–993 (1994).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonics Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).

Painter, O.

O. Painter, R. Lee, A. Yariv, A. Scherer, “Photonic bandgap membrane microresonator,” in Integrated Photonics Research, Vol. 4 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 221–223.

B. D’Urso, O. Painter, A. Yariv, A. Scherer, “Membrane microresonator lasers with 2-D photonic bandgap crystal mirrors for compact in-plane optics,” in Integrated Photonics Research, Vol. 4 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 181–183.

Qian, Y.

V. Radisic, Y. Qian, R. Coccioli, T. Itoh, “Novel 2-D photonic bandgap structure for microstrip lines,” IEEE Microwave Guided Wave Lett. 8, 69–71 (1998).
[CrossRef]

V. Radisic, Y. Qian, T. Itoh, “Broad-band power amplifier using dielectric photonic bandgap structure,” IEEE Microwave Guided Wave Lett. 8, 13–15 (1998).
[CrossRef]

Radisic, V.

V. Radisic, Y. Qian, T. Itoh, “Broad-band power amplifier using dielectric photonic bandgap structure,” IEEE Microwave Guided Wave Lett. 8, 13–15 (1998).
[CrossRef]

V. Radisic, Y. Qian, R. Coccioli, T. Itoh, “Novel 2-D photonic bandgap structure for microstrip lines,” IEEE Microwave Guided Wave Lett. 8, 69–71 (1998).
[CrossRef]

Scalora, M.

M. J. Bloemr, M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676–1678 (1998).
[CrossRef]

Scherer, A.

O. Painter, R. Lee, A. Yariv, A. Scherer, “Photonic bandgap membrane microresonator,” in Integrated Photonics Research, Vol. 4 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 221–223.

B. D’Urso, O. Painter, A. Yariv, A. Scherer, “Membrane microresonator lasers with 2-D photonic bandgap crystal mirrors for compact in-plane optics,” in Integrated Photonics Research, Vol. 4 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 181–183.

Taflove, A.

A. Taflove, Computational Electrodynamics (Artech House, Boston, Mass., 1995), pp. 111–134.

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonics Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).

Yablanovich, E.

E. Yablanovich, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

Yariv, A.

O. Painter, R. Lee, A. Yariv, A. Scherer, “Photonic bandgap membrane microresonator,” in Integrated Photonics Research, Vol. 4 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 221–223.

B. D’Urso, O. Painter, A. Yariv, A. Scherer, “Membrane microresonator lasers with 2-D photonic bandgap crystal mirrors for compact in-plane optics,” in Integrated Photonics Research, Vol. 4 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 181–183.

Ziolkowski, R. W.

J. B. Judkins, R. W. Ziolkowski, “Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings,” J. Opt. Soc. Am. A 12, 1974–1983 (1995).
[CrossRef]

R. W. Ziolkowski, “FDTD Modeling of photonic nanometer-sized power splitters and switches,” in Integrated Photonics Research, Vol. 4 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 175–177.

Appl. Phys. Lett. (1)

M. J. Bloemr, M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676–1678 (1998).
[CrossRef]

IEEE Microwave Guided Wave Lett. (2)

V. Radisic, Y. Qian, T. Itoh, “Broad-band power amplifier using dielectric photonic bandgap structure,” IEEE Microwave Guided Wave Lett. 8, 13–15 (1998).
[CrossRef]

V. Radisic, Y. Qian, R. Coccioli, T. Itoh, “Novel 2-D photonic bandgap structure for microstrip lines,” IEEE Microwave Guided Wave Lett. 8, 69–71 (1998).
[CrossRef]

J. Opt. Soc. Am. A (1)

Phys. Rev. Lett. (1)

E. Yablanovich, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

Pure Appl. Opt. (1)

D. Maystre, “Electromagnetic study of photonic band gaps,” Pure Appl. Opt. 3, 975–993 (1994).
[CrossRef]

Other (7)

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonics Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).

R. W. Ziolkowski, “FDTD Modeling of photonic nanometer-sized power splitters and switches,” in Integrated Photonics Research, Vol. 4 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 175–177.

S. Kawakami, “Fabrication processes for 3D periodic nanostructures and photonic crystals,” in Integrated Photonics Research, Vol. 4 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 178–180.

B. D’Urso, O. Painter, A. Yariv, A. Scherer, “Membrane microresonator lasers with 2-D photonic bandgap crystal mirrors for compact in-plane optics,” in Integrated Photonics Research, Vol. 4 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 181–183.

O. Painter, R. Lee, A. Yariv, A. Scherer, “Photonic bandgap membrane microresonator,” in Integrated Photonics Research, Vol. 4 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 221–223.

J. A. Kong, Electromagnetic Wave Theory (Wiley, New York, 1986), pp. 120–132.

A. Taflove, Computational Electrodynamics (Artech House, Boston, Mass., 1995), pp. 111–134.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics