Abstract

Light-adapted foveal luminance increment thresholds were measured for white photopic targets of 1.5-arc min diameter and 220-ms duration. We aimed to learn about the properties of mechanisms that subserve the detection of these targets. To study this subject we developed a noise probe technique that inserts noise close to the site of the stimulus. Threshold is more than doubled when zero-mean luminance noise is placed at a pair of flanking spots in the horizontal meridian centered on the test spot and 1.5 arc min distant. The detection mechanism thus has a broad field, since noise effects persist at 5-arc min separation. The masking effect increases when the noise is in antiphase at the two flanking spots. Neither even- nor odd-symmetric mechanisms are able to explain these findings, regardless of whether linear or nonlinear processing is employed. The target detection may be mediated in part by a motion-sensitive mechanism.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. E. Cohn, D. I. A. MacLeod, “Flash masking by nearby luminance noise,” in OSA Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 58.
  2. B. Chen, D. I. A. MacLeod, A. Stockman, “Improvement in human vision under bright light: grain or gain?” J. Physiol. (London) 394, 41–66 (1987).
  3. T. E. Cohn, D. J. Lasley, “Visual sensitivity,” Annu. Rev. Psychol. 37, 495–521 (1986).
    [CrossRef] [PubMed]
  4. T. E. Cohn, “Spatial and temporal summation in human peripheral vision,” in Vision: Coding and Efficiency, C. Blakemore, ed. (Cambridge University, Cambridge, UK, 1990), Chap. 33, pp. 376–385.
  5. P. J. Demarco, M. G. Brigell, M. Gordon, “The peripheral flicker effect: desensitization of the luminance pathway by static and modulated light,” Vision Res. 37, 2419–2425 (1997).
    [CrossRef] [PubMed]
  6. D. Willen, Department of Psychology, Harvard University, Cambridge, Mass. 02138 (personal communication, 1990).
  7. T. E. Cohn, L. N. Thibos, R. N. Kleinstein, “Detectability of a luminance increment,” J. Opt. Soc. Am. 64, 1321–1327 (1974).
    [CrossRef] [PubMed]
  8. A. Fiorentini, M. T. Zoli, “Detection of a target superimposed to a step pattern of illumination. II: Effects of a just perceptible illumination step,” Atti Fond. Giorgio Ronchi 22, 207–217 (1967).
  9. T. E. Cohn, B. L. Gros, “New apparent motion stimulus without correlated space and time change,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 1031–217 (1993).
  10. P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
    [CrossRef] [PubMed]
  11. T. E. Cohn, “Quantum fluctuation limit in foveal vision,” Vision Res. 16, 573–579 (1976).
    [CrossRef] [PubMed]
  12. B. L. Gros, D. R. Pope, T. E. Cohn, “Relative efficiency for the detection of apparent motion,” Vision Res. 36, 2297–2302 (1996).
    [CrossRef] [PubMed]
  13. T. W. Butler, P. E. King-Smith, R. K. Moore, L. A. Riggs, “Visual sensitivity to retinal image movements,” J. Physiol. (London) 263, 170–171 (1976).
  14. A. B. Watson, H. B. Barlow, J. G. Robson, “What does the eye see best?” Nature (London) 302, 419–422 (1983).
    [CrossRef]

1997

P. J. Demarco, M. G. Brigell, M. Gordon, “The peripheral flicker effect: desensitization of the luminance pathway by static and modulated light,” Vision Res. 37, 2419–2425 (1997).
[CrossRef] [PubMed]

1996

B. L. Gros, D. R. Pope, T. E. Cohn, “Relative efficiency for the detection of apparent motion,” Vision Res. 36, 2297–2302 (1996).
[CrossRef] [PubMed]

1993

T. E. Cohn, B. L. Gros, “New apparent motion stimulus without correlated space and time change,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 1031–217 (1993).

1989

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
[CrossRef] [PubMed]

1987

B. Chen, D. I. A. MacLeod, A. Stockman, “Improvement in human vision under bright light: grain or gain?” J. Physiol. (London) 394, 41–66 (1987).

1986

T. E. Cohn, D. J. Lasley, “Visual sensitivity,” Annu. Rev. Psychol. 37, 495–521 (1986).
[CrossRef] [PubMed]

1983

A. B. Watson, H. B. Barlow, J. G. Robson, “What does the eye see best?” Nature (London) 302, 419–422 (1983).
[CrossRef]

1976

T. E. Cohn, “Quantum fluctuation limit in foveal vision,” Vision Res. 16, 573–579 (1976).
[CrossRef] [PubMed]

T. W. Butler, P. E. King-Smith, R. K. Moore, L. A. Riggs, “Visual sensitivity to retinal image movements,” J. Physiol. (London) 263, 170–171 (1976).

1974

1967

A. Fiorentini, M. T. Zoli, “Detection of a target superimposed to a step pattern of illumination. II: Effects of a just perceptible illumination step,” Atti Fond. Giorgio Ronchi 22, 207–217 (1967).

Barlow, H. B.

A. B. Watson, H. B. Barlow, J. G. Robson, “What does the eye see best?” Nature (London) 302, 419–422 (1983).
[CrossRef]

Brigell, M. G.

P. J. Demarco, M. G. Brigell, M. Gordon, “The peripheral flicker effect: desensitization of the luminance pathway by static and modulated light,” Vision Res. 37, 2419–2425 (1997).
[CrossRef] [PubMed]

Butler, T. W.

T. W. Butler, P. E. King-Smith, R. K. Moore, L. A. Riggs, “Visual sensitivity to retinal image movements,” J. Physiol. (London) 263, 170–171 (1976).

Cavanagh, P.

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
[CrossRef] [PubMed]

Chen, B.

B. Chen, D. I. A. MacLeod, A. Stockman, “Improvement in human vision under bright light: grain or gain?” J. Physiol. (London) 394, 41–66 (1987).

Cohn, T. E.

B. L. Gros, D. R. Pope, T. E. Cohn, “Relative efficiency for the detection of apparent motion,” Vision Res. 36, 2297–2302 (1996).
[CrossRef] [PubMed]

T. E. Cohn, B. L. Gros, “New apparent motion stimulus without correlated space and time change,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 1031–217 (1993).

T. E. Cohn, D. J. Lasley, “Visual sensitivity,” Annu. Rev. Psychol. 37, 495–521 (1986).
[CrossRef] [PubMed]

T. E. Cohn, “Quantum fluctuation limit in foveal vision,” Vision Res. 16, 573–579 (1976).
[CrossRef] [PubMed]

T. E. Cohn, L. N. Thibos, R. N. Kleinstein, “Detectability of a luminance increment,” J. Opt. Soc. Am. 64, 1321–1327 (1974).
[CrossRef] [PubMed]

T. E. Cohn, “Spatial and temporal summation in human peripheral vision,” in Vision: Coding and Efficiency, C. Blakemore, ed. (Cambridge University, Cambridge, UK, 1990), Chap. 33, pp. 376–385.

T. E. Cohn, D. I. A. MacLeod, “Flash masking by nearby luminance noise,” in OSA Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 58.

Demarco, P. J.

P. J. Demarco, M. G. Brigell, M. Gordon, “The peripheral flicker effect: desensitization of the luminance pathway by static and modulated light,” Vision Res. 37, 2419–2425 (1997).
[CrossRef] [PubMed]

Fiorentini, A.

A. Fiorentini, M. T. Zoli, “Detection of a target superimposed to a step pattern of illumination. II: Effects of a just perceptible illumination step,” Atti Fond. Giorgio Ronchi 22, 207–217 (1967).

Gordon, M.

P. J. Demarco, M. G. Brigell, M. Gordon, “The peripheral flicker effect: desensitization of the luminance pathway by static and modulated light,” Vision Res. 37, 2419–2425 (1997).
[CrossRef] [PubMed]

Gros, B. L.

B. L. Gros, D. R. Pope, T. E. Cohn, “Relative efficiency for the detection of apparent motion,” Vision Res. 36, 2297–2302 (1996).
[CrossRef] [PubMed]

T. E. Cohn, B. L. Gros, “New apparent motion stimulus without correlated space and time change,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 1031–217 (1993).

King-Smith, P. E.

T. W. Butler, P. E. King-Smith, R. K. Moore, L. A. Riggs, “Visual sensitivity to retinal image movements,” J. Physiol. (London) 263, 170–171 (1976).

Kleinstein, R. N.

Lasley, D. J.

T. E. Cohn, D. J. Lasley, “Visual sensitivity,” Annu. Rev. Psychol. 37, 495–521 (1986).
[CrossRef] [PubMed]

MacLeod, D. I. A.

B. Chen, D. I. A. MacLeod, A. Stockman, “Improvement in human vision under bright light: grain or gain?” J. Physiol. (London) 394, 41–66 (1987).

T. E. Cohn, D. I. A. MacLeod, “Flash masking by nearby luminance noise,” in OSA Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 58.

Mather, G.

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
[CrossRef] [PubMed]

Moore, R. K.

T. W. Butler, P. E. King-Smith, R. K. Moore, L. A. Riggs, “Visual sensitivity to retinal image movements,” J. Physiol. (London) 263, 170–171 (1976).

Pope, D. R.

B. L. Gros, D. R. Pope, T. E. Cohn, “Relative efficiency for the detection of apparent motion,” Vision Res. 36, 2297–2302 (1996).
[CrossRef] [PubMed]

Riggs, L. A.

T. W. Butler, P. E. King-Smith, R. K. Moore, L. A. Riggs, “Visual sensitivity to retinal image movements,” J. Physiol. (London) 263, 170–171 (1976).

Robson, J. G.

A. B. Watson, H. B. Barlow, J. G. Robson, “What does the eye see best?” Nature (London) 302, 419–422 (1983).
[CrossRef]

Stockman, A.

B. Chen, D. I. A. MacLeod, A. Stockman, “Improvement in human vision under bright light: grain or gain?” J. Physiol. (London) 394, 41–66 (1987).

Thibos, L. N.

Watson, A. B.

A. B. Watson, H. B. Barlow, J. G. Robson, “What does the eye see best?” Nature (London) 302, 419–422 (1983).
[CrossRef]

Willen, D.

D. Willen, Department of Psychology, Harvard University, Cambridge, Mass. 02138 (personal communication, 1990).

Zoli, M. T.

A. Fiorentini, M. T. Zoli, “Detection of a target superimposed to a step pattern of illumination. II: Effects of a just perceptible illumination step,” Atti Fond. Giorgio Ronchi 22, 207–217 (1967).

Annu. Rev. Psychol.

T. E. Cohn, D. J. Lasley, “Visual sensitivity,” Annu. Rev. Psychol. 37, 495–521 (1986).
[CrossRef] [PubMed]

Atti Fond. Giorgio Ronchi

A. Fiorentini, M. T. Zoli, “Detection of a target superimposed to a step pattern of illumination. II: Effects of a just perceptible illumination step,” Atti Fond. Giorgio Ronchi 22, 207–217 (1967).

Invest. Ophthalmol. Visual Sci. Suppl.

T. E. Cohn, B. L. Gros, “New apparent motion stimulus without correlated space and time change,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 1031–217 (1993).

J. Opt. Soc. Am.

J. Physiol. (London)

T. W. Butler, P. E. King-Smith, R. K. Moore, L. A. Riggs, “Visual sensitivity to retinal image movements,” J. Physiol. (London) 263, 170–171 (1976).

B. Chen, D. I. A. MacLeod, A. Stockman, “Improvement in human vision under bright light: grain or gain?” J. Physiol. (London) 394, 41–66 (1987).

Nature (London)

A. B. Watson, H. B. Barlow, J. G. Robson, “What does the eye see best?” Nature (London) 302, 419–422 (1983).
[CrossRef]

Spatial Vision

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
[CrossRef] [PubMed]

Vision Res.

T. E. Cohn, “Quantum fluctuation limit in foveal vision,” Vision Res. 16, 573–579 (1976).
[CrossRef] [PubMed]

B. L. Gros, D. R. Pope, T. E. Cohn, “Relative efficiency for the detection of apparent motion,” Vision Res. 36, 2297–2302 (1996).
[CrossRef] [PubMed]

P. J. Demarco, M. G. Brigell, M. Gordon, “The peripheral flicker effect: desensitization of the luminance pathway by static and modulated light,” Vision Res. 37, 2419–2425 (1997).
[CrossRef] [PubMed]

Other

D. Willen, Department of Psychology, Harvard University, Cambridge, Mass. 02138 (personal communication, 1990).

T. E. Cohn, D. I. A. MacLeod, “Flash masking by nearby luminance noise,” in OSA Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 58.

T. E. Cohn, “Spatial and temporal summation in human peripheral vision,” in Vision: Coding and Efficiency, C. Blakemore, ed. (Cambridge University, Cambridge, UK, 1990), Chap. 33, pp. 376–385.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic representation of target plane. A horizontal array of luminous spots separated by 1.5 or 2.3 arc min is fixed in the field of view. The center (fixation) spot is marked by fiducial lines. Stimuli to be detected are brief luminance changes at the center spot. A pair of flanking spots, equidistant from the center spot, is selected as the locus of luminance perturbation in a given run.

Fig. 2
Fig. 2

Threshold (ordinate) versus flank separation (abscissa) for two subjects. Points are averages from several runs. Two different noise conditions are plotted separately. In-phase noise refers to identical waveforms at the two flanking spots. Out-phase noise refers to the case in which the waveform at one spot is inverted with respect to that at the other. Thresholds plotted as out-phase noise at zero separation are the no-noise thresholds. These data are obtained in threshold determination runs with noise and no-noise conditions randomly interleaved. Differences between thresholds at in-phase and out-phase noise reach significance, even for a single observer (e.g., p<0.001t-test—for the pair at 3-arc min separation).

Fig. 3
Fig. 3

Threshold (ordinate) versus pedestal contrast (abscissa). The no-noise threshold for this subject is approximately 10. A pedestal of 10 markedly lowers the threshold, while increasing it to 20 raises threshold from the no-noise condition. Subject, TC.

Tables (4)

Tables Icon

Table 1 Thresholds on a Pedestal at the Target Spot

Tables Icon

Table 2 Thresholds for Subthreshold Summation at 1.5-arc min Separation

Tables Icon

Table 3 Threshold for 3-arc min Separation

Tables Icon

Table 4 Expected Threshold Effects in Candidate Mechanisms

Metrics