Abstract

Over recent decades a quiet revolution has taken place in the application of modern imaging theory to many fields of applied imaging. Nowhere has this movement been more dramatic than within the field of diagnostic medical x-ray imaging, to the extent that there is now a growing consensus around a universal imaging language for the description and comparison of the increasingly diverse range of technologies. This common language, which owes much to the basic quantum-limited approach pioneered by Rose and his contemporaries, embodies the fundamentally statistical nature of image signals and enables scientists and engineers to simultaneously develop new system designs optimized for the detection of small signals while constraining patient x-ray exposures to tolerable levels. We attempt to provide a summary of some of the more salient features of progress being made in the understanding of the signal-to-noise limitations of medical imaging systems and to place this progress within a historical context. Emphasis is placed on medical diagnostics based on x-ray imaging techniques.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Rose, “Sensitivity performance of the human eye on an absolute scale,” J. Opt. Soc. Am. 38, 196–208 (1948).
    [CrossRef] [PubMed]
  2. A. Rose, “Television pickup tubes and the problem of vision,” in Advances in Electronics and Electron Physics, L. Marton, ed. (Academic, New York, 1948), pp. 131–166.
  3. A. Rose, “Quantum and noise limitations of the visual process,” J. Opt. Soc. Am. 43, 715–716 (1953).
    [CrossRef] [PubMed]
  4. A. Rose, “A unified approach to the performance of photographic film, television pick-up tubes, and the human eye,” J. Soc. Motion Pict. Telev. Eng. 47, 273–294 (1946).
  5. A. Rose, Vision: Human and Electronic (Plenum, New York, 1974).
  6. American National Standards Institute, “Methods for the sensitometry of medical x-ray screen–film processing systems,” (American National Standards Institute, New York, 1982).
  7. R. Shaw, “The equivalent quantum efficiency of the photographic process,” J. Photogr. Sci. 11, 199–204 (1963).
  8. M. Rabbani, R. Shaw, R. L. Van Metter, “Detective quantum efficiency of imaging systems with amplifying and scattering mechanisms,” J. Opt. Soc. Am. A 4, 895–901 (1987).
    [CrossRef] [PubMed]
  9. P. B. Fellgett, “On the ultimate sensitivity and practical performance of radiation detectors,” J. Opt. Soc. Am. 39, 970–976 (1949).
    [CrossRef] [PubMed]
  10. H. J. Zwieg, “Performance criteria for photo-detectors—concepts in evolution,” Photograph. Sci. Eng. 8, 305 (1964).
  11. R. C. Jones, “A new classification system for radiation detectors,” J. Opt. Soc. Am. 39, 327–343 (1949).
    [CrossRef] [PubMed]
  12. A. E. Burgess, “The Rose model, revisited,” J. Opt. Soc. Am. A 16, 633–646 (1999).
    [CrossRef]
  13. K. Rossmann, “Measurement of the modulation transfer function of radiographic systems containing fluorescent screens,” Phys. Med. Biol. 9, 551–557 (1964).
    [CrossRef]
  14. K. Doi, “Optical transfer functions of the focal spot of x-ray tubes,” Am. J. Roentgenol. 94, 712–718 (1965).
  15. G. Lubberts, K. Rossmann, “Modulation transfer function associated with geometrical unsharpness in medical radiography,” Phys. Med. Biol. 12, 65–77 (1967).
    [CrossRef] [PubMed]
  16. K. Rossman, G. Sanderson, “Validity of the modulation transfer function of radiographic screen–film systems measured by the slit method,” Phys. Med. Biol. 13, 259–268 (1968).
    [CrossRef]
  17. K. Rossmann, “The spatial frequency spectrum: a means for studying the quality of radiographic imaging systems,” Radiology 90, 1–13 (1968).
    [PubMed]
  18. K. Rossmann, “Point spread-function, line spread-function, and modulation transfer function,” Radiology 93, 257–272 (1969).
    [PubMed]
  19. “Modulation transfer function of screen–film systems,” (International Commission on Radiation Units and Measurements, Bethesda, Md., 1986).
  20. A. E. Burgess, “Focal spots: I. MTF separability,” Invest. Radiol. 12, 36–43 (1977).
    [CrossRef] [PubMed]
  21. A. E. Burgess, “Focal spots: II. Models,” Invest. Radiol. 12, 44–53 (1977).
    [CrossRef] [PubMed]
  22. C. E. Metz, K. Doi, “Transfer function analysis of radiographic imaging systems,” Phys. Med. Biol. 24, 1079–1106 (1979).
    [CrossRef] [PubMed]
  23. J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978).
  24. J. C. Dainty, R. Shaw, Image Science (Academic, New York, 1974).
  25. H. H. Barrett, W. Swindell, Radiological Imaging—The Theory of Image Formation, Detection, and Processing (Academic, New York, 1981).
  26. M. C. Steckner, D. J. Drost, F. S. Prato, “Computing the modulation transfer function of a magnetic resonance imager,” Med. Phys. 21, 483–498 (1994).
    [CrossRef] [PubMed]
  27. R. F. Wagner, K. E. Weaver, “Noise measurements on rare-earth intensifying screen systems,” in Medical X-Ray Photo-Optical Systems Evaluation, R. F. Wagner, K. E. Weaver, D. G. Goodenough, eds., Proc. SPIE56, 198–207 (1974).
    [CrossRef]
  28. O. H. Schade, “Evaluation of noisy images,” in Medical X-Ray Photo-Optical Systems Evaluation, R. F. Wagner, K. E. Weaver, D. G. Goodenough, eds., Proc. SPIE56, 107–114 (1974).
    [CrossRef]
  29. A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed. (McGraw-Hill, New York, 1991).
  30. I. A. Cunningham, “Analyzing system performance,” in The Expanding Role of Medical Physics in Diagnostic Imaging, G. D. Frey, P. Sprawls, eds. (Advanced Medical Publishing for American Association of Physicists in Medicine, Madison, Wis.1997), pp. 231–263.
  31. “Medical imaging—the assessment of image quality,” (International Commission of Radiation Units and Measurements, Bethesda, Md., 1995).
  32. C. E. Metz, R. F. Wagner, K. Doi, D. G. Brown, R. M. Nishikawa, K. J. Myers, “Toward consensus on quantitative assessment of medical imaging systems,” Med. Phys. 22, 1057–1061 (1995).
    [CrossRef] [PubMed]
  33. J. T. Dobbins, D. L. Ergun, L. Rutz, D. A. Hinshaw, H. Blume, D. C. Clark, “DQE(f) of four generations of computed radiography acquisition devices,” Med. Phys. 22, 1581–1593 (1995).
    [CrossRef] [PubMed]
  34. R. Shaw, “Some fundamental properties of xeroradiographic images,” in Application of Optical Instrumentation in Medicine IV, J. E. Gray, W. R. Hendee, eds., Proc. SPIE70, 359–363 (1975).
    [CrossRef]
  35. R. F. Wagner, E. P. Muntz, “Detective quantum efficiency (DQE) analysis of electrostatic imaging and screen–film imaging in mammography,” in Application of Optical Instrumentation in Medicine VII, J. E. Gray, ed., Proc. SPIE173, 162–165 (1979).
    [CrossRef]
  36. R. Shaw, R. L. Van Metter, “An analysis of the fundamental limitations of screen–film systems for x-ray detection. I. General theory,” in Application of Optical Instrumentation in Medicine XII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE454, 128–132 (1984).
    [CrossRef]
  37. R. Shaw, R. L. Van Metter, “An analysis of the fundamental limitations of screen–film systems for x-ray detection. II. Model calculations,” in Application of Optical Instrumentation in Medicine XII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE454, 133–141 (1984).
    [CrossRef]
  38. P. C. Bunch, R. Shaw, R. L. Van Metter, “Signal-to-noise measurements for a screen–film system,” in Application of Optical Instrumentation in Medicine XII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE454, 154–163 (1984).
    [CrossRef]
  39. R. Shaw, R. L. Van Metter, “The role of screen and film in determining the noise-equivalent number of quanta recorded by a screen–film system,” in Application of Optical Instrumentation in Medicine XIII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE535, 184–194 (1985).
    [CrossRef]
  40. P. C. Bunch, K. E. Huff, R. Shaw, R. L. Van Metter, “Comparison of theory and experiment for the DQE of a radiographic screen–film system,” in Application of Optical Instrumentation in Medicine XIII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE535, 166–185 (1985).
    [CrossRef]
  41. R. L. Van Metter, R. Shaw, “The effect of bias exposure on the detective quantum efficiency of radiographic screen–film systems,” in Application of Optical Instrumentation in Medicine XIII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE535, 157–162 (1985).
    [CrossRef]
  42. P. L. Dillon, J. F. Hamilton, M. Rabbani, R. Shaw, R. L. Van Metter, “Principles governing the transfer of signal modulation and photon noise by amplifying and scattering mechanisms,” in Application of Optical Instrumentation in Medicine XIII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE535, 130–139 (1985).
    [CrossRef]
  43. M. Rabbani, R. L. Van Metter, “Analysis of signal and noise propagation for several imaging mechanisms,” J. Opt. Soc. Am. A 6, 1156–1164 (1989).
    [CrossRef]
  44. H. J. Zwieg, “Detective quantum efficiency of photodetectors with some amplifying mechanism,” J. Opt. Soc. Am. 55, 525–528 (1965).
    [CrossRef]
  45. H. H. Barrett, R. F. Wagner, K. J. Myers, “Correlated point processes in radiological imaging,” in Medical Imaging 1997: Physics of Medical Imaging, R. L. Van Metter, J. Beutel, eds., Proc. SPIE3032, 110–125 (1997).
    [CrossRef]
  46. M. Rabbani, R. Shaw, “The influence of grain threshold on quantum mottle in radiographic film–screen systems,” in Medical Imaging, S. J. Dwyer, R. H. Schneider, eds., Proc. SPIE767, 226–235 (1987).
    [CrossRef]
  47. M. Rabbani, R. Shaw, “The influence of grain threshold on quantum mottle in radiographic screen–film systems. II,” in Medical Imaging II: Part A—Image Formation, Detection, Processing, and Interpretation, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE914A, 117–127 (1988).
    [CrossRef]
  48. M. Rabbani, R. L. Van Metter, “Some new applications of multivariate moment-generating functions to screen–film systems,” in Medical Imaging III: Image Formation, S. J. Dwyer, R. Jost, R. H. Schneider, eds., Proc. SPIE1090, 86–94 (1989).
    [CrossRef]
  49. R. L. Van Metter, M. Rabbani, “Analysis of the effects of depth dependence of x-ray interactions on the NPS of radiographic screens,” in Medical Imaging IV: Image Formation, R. H. Schneider, ed., Proc. SPIE1231, 271–274 (1990).
    [CrossRef]
  50. H. Mulder, “Signal and noise transfer through imaging systems consisting of a cascade of amplifying and scattering processes,” J. Opt. Soc. Am. A 10, 2038–2045 (1993).
    [CrossRef]
  51. R. M. Nishikawa, M. J. Yaffe, “Model of the spatial-frequency-dependent detective quantum efficiency of phosphor screens,” Med. Phys. 17, 894–904 (1990).
    [CrossRef] [PubMed]
  52. M. M. Ter-Pogossian, The Physical Aspects of Diagnostic Radiology (Harper & Row, New York, 1967).
  53. C. A. Mistretta, “X-ray image intensifiers,” in American Association of Physicists in Medicine Monogr. No. 3, The Physics of Medical Imaging: Recording System Measurements and Techniques, A. G. Haus, ed. (American Institute of Physics, New York, 1979), pp. 182–205.
  54. A. Macovski, Medical Imaging Systems (Prentice-Hall, Englewood Cliffs, N.J., 1983).
  55. H. Roehrig, S. Nudelman, T. Y. Fu, “Electro-optical devices for use in photoelectronic-digital radiology,” in American Association of Physicists in Medicine Monogr. No. 11, Electronic Imaging in Medicine, G. D. Fullerton, W. R. Hendee, J. C. Lasher, W. S. Properzio, S. J. Riederer, eds. (American Institute of Physics, New York, 1984), pp. 82–129.
  56. H. Roehrig, T. Y. Fu, “Physical properties of photoelectronic imaging devices and systems,” in American Association of Physicists in Medicine Monogr. No. 12, Recent Developments in Digital Imaging, K. Doi, L. Lanzl, P. J. P. Lin, eds. (American Institute of Physics, New York, 1985), pp. 82–140.
  57. I. A. Cunningham, M. S. Westmore, A. Fenster, “A spatial-frequency-dependent quantum accounting diagram and detective quantum efficiency model of signal and noise propagation in cascaded imaging systems,” Med. Phys. 21, 417–427 (1994).
    [CrossRef] [PubMed]
  58. I. A. Cunningham, M. S. Westmore, A. Fenster, “Visual impact of the non-zero spatial frequency quantum sink,” in Medical Imaging 1994: Physics of Medical Imaging, R. Shaw, ed., Proc. SPIE2163, 274–283 (1994).
    [CrossRef]
  59. J. P. Bissonnette, I. A. Cunningham, D. A. Jaffray, A. Fenster, P. Munro, “A quantum accounting and detective quantum efficiency analysis for video-based portal imaging,” Med. Phys. 24, 815–826 (1997).
    [CrossRef] [PubMed]
  60. J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, J. M. Boudry, I. A. Cunningham, “Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology,” Med. Phys. 24, 71–89 (1997).
    [CrossRef] [PubMed]
  61. J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, I. A. Cunningham, “Signal, noise power spectrum and detective quantum efficiency of indirect-detection flat-panel imagers for diagnostic radiology,” Med. Phys. 25, 614–628 (1998).
    [CrossRef] [PubMed]
  62. I. A. Cunningham, “Linear-systems modeling of parallel cascaded stochastic processes: the NPS of radiographic screens with reabsorption of characteristic radiation,” in Medical Imaging 1998: Physics of Medical Imaging, J. T. Dobbins, J. M. Boone, eds., Proc. SPIE3336, 220–230 (1998).
    [CrossRef]
  63. C. E. Metz, C. J. Vyborny, “Wiener spectral effects of spatial correlation between the sites of characteristic x-ray emission and reabsorption in radiographic screen–film systems,” Phys. Med. Biol. 28, 547–564 (1983).
    [CrossRef] [PubMed]
  64. W. Hillen, W. Eckenbach, P. Quadflieg, T. Zaengel, “Signal-to-noise performance in cesium iodide x-ray fluorescent screens,” in Medical Imaging V: Image Physics, R. H. Schneider, ed. Proc. SPIE1443, 120–131 (1991).
    [CrossRef]
  65. I. A. Cunningham, “Degradation of the detective quantum efficiency due to a non-unity detector fill factor,” in Medical Imaging 1997: Physics of Medical Imaging, R. L. Van Metter, J. Beutel, eds., Proc. SPIE3032, 22–31 (1997).
    [CrossRef]
  66. H. H. Barrett, J. L. Denny, R. F. Wagner, K. J. Myers, “Objective assessment of image quality. II. Fisher information, Fourier crosstalk, and figures of merit for task performance,” J. Opt. Soc. Am. A 12, 834–852 (1995).
    [CrossRef]
  67. H. H. Barrett, J. L. Denny, H. C. Gifford, C. K. Abbey, R. F. Wagner, K. J. Myers, “Generalized NEQ: Fourier analysis where you would least expect to find it,” in Medical Imaging 1996: Physics of Medical Imaging, R. L. Van Metter, J. Beutel, eds., Proc. SPIE2708, 41–52 (1996).
    [CrossRef]

1999 (1)

1998 (1)

J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, I. A. Cunningham, “Signal, noise power spectrum and detective quantum efficiency of indirect-detection flat-panel imagers for diagnostic radiology,” Med. Phys. 25, 614–628 (1998).
[CrossRef] [PubMed]

1997 (2)

J. P. Bissonnette, I. A. Cunningham, D. A. Jaffray, A. Fenster, P. Munro, “A quantum accounting and detective quantum efficiency analysis for video-based portal imaging,” Med. Phys. 24, 815–826 (1997).
[CrossRef] [PubMed]

J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, J. M. Boudry, I. A. Cunningham, “Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology,” Med. Phys. 24, 71–89 (1997).
[CrossRef] [PubMed]

1995 (3)

H. H. Barrett, J. L. Denny, R. F. Wagner, K. J. Myers, “Objective assessment of image quality. II. Fisher information, Fourier crosstalk, and figures of merit for task performance,” J. Opt. Soc. Am. A 12, 834–852 (1995).
[CrossRef]

C. E. Metz, R. F. Wagner, K. Doi, D. G. Brown, R. M. Nishikawa, K. J. Myers, “Toward consensus on quantitative assessment of medical imaging systems,” Med. Phys. 22, 1057–1061 (1995).
[CrossRef] [PubMed]

J. T. Dobbins, D. L. Ergun, L. Rutz, D. A. Hinshaw, H. Blume, D. C. Clark, “DQE(f) of four generations of computed radiography acquisition devices,” Med. Phys. 22, 1581–1593 (1995).
[CrossRef] [PubMed]

1994 (2)

M. C. Steckner, D. J. Drost, F. S. Prato, “Computing the modulation transfer function of a magnetic resonance imager,” Med. Phys. 21, 483–498 (1994).
[CrossRef] [PubMed]

I. A. Cunningham, M. S. Westmore, A. Fenster, “A spatial-frequency-dependent quantum accounting diagram and detective quantum efficiency model of signal and noise propagation in cascaded imaging systems,” Med. Phys. 21, 417–427 (1994).
[CrossRef] [PubMed]

1993 (1)

1990 (1)

R. M. Nishikawa, M. J. Yaffe, “Model of the spatial-frequency-dependent detective quantum efficiency of phosphor screens,” Med. Phys. 17, 894–904 (1990).
[CrossRef] [PubMed]

1989 (1)

1987 (1)

1983 (1)

C. E. Metz, C. J. Vyborny, “Wiener spectral effects of spatial correlation between the sites of characteristic x-ray emission and reabsorption in radiographic screen–film systems,” Phys. Med. Biol. 28, 547–564 (1983).
[CrossRef] [PubMed]

1979 (1)

C. E. Metz, K. Doi, “Transfer function analysis of radiographic imaging systems,” Phys. Med. Biol. 24, 1079–1106 (1979).
[CrossRef] [PubMed]

1977 (2)

A. E. Burgess, “Focal spots: I. MTF separability,” Invest. Radiol. 12, 36–43 (1977).
[CrossRef] [PubMed]

A. E. Burgess, “Focal spots: II. Models,” Invest. Radiol. 12, 44–53 (1977).
[CrossRef] [PubMed]

1969 (1)

K. Rossmann, “Point spread-function, line spread-function, and modulation transfer function,” Radiology 93, 257–272 (1969).
[PubMed]

1968 (2)

K. Rossman, G. Sanderson, “Validity of the modulation transfer function of radiographic screen–film systems measured by the slit method,” Phys. Med. Biol. 13, 259–268 (1968).
[CrossRef]

K. Rossmann, “The spatial frequency spectrum: a means for studying the quality of radiographic imaging systems,” Radiology 90, 1–13 (1968).
[PubMed]

1967 (1)

G. Lubberts, K. Rossmann, “Modulation transfer function associated with geometrical unsharpness in medical radiography,” Phys. Med. Biol. 12, 65–77 (1967).
[CrossRef] [PubMed]

1965 (2)

K. Doi, “Optical transfer functions of the focal spot of x-ray tubes,” Am. J. Roentgenol. 94, 712–718 (1965).

H. J. Zwieg, “Detective quantum efficiency of photodetectors with some amplifying mechanism,” J. Opt. Soc. Am. 55, 525–528 (1965).
[CrossRef]

1964 (2)

H. J. Zwieg, “Performance criteria for photo-detectors—concepts in evolution,” Photograph. Sci. Eng. 8, 305 (1964).

K. Rossmann, “Measurement of the modulation transfer function of radiographic systems containing fluorescent screens,” Phys. Med. Biol. 9, 551–557 (1964).
[CrossRef]

1963 (1)

R. Shaw, “The equivalent quantum efficiency of the photographic process,” J. Photogr. Sci. 11, 199–204 (1963).

1953 (1)

1949 (2)

1948 (1)

1946 (1)

A. Rose, “A unified approach to the performance of photographic film, television pick-up tubes, and the human eye,” J. Soc. Motion Pict. Telev. Eng. 47, 273–294 (1946).

Abbey, C. K.

H. H. Barrett, J. L. Denny, H. C. Gifford, C. K. Abbey, R. F. Wagner, K. J. Myers, “Generalized NEQ: Fourier analysis where you would least expect to find it,” in Medical Imaging 1996: Physics of Medical Imaging, R. L. Van Metter, J. Beutel, eds., Proc. SPIE2708, 41–52 (1996).
[CrossRef]

Antonuk, L. E.

J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, I. A. Cunningham, “Signal, noise power spectrum and detective quantum efficiency of indirect-detection flat-panel imagers for diagnostic radiology,” Med. Phys. 25, 614–628 (1998).
[CrossRef] [PubMed]

J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, J. M. Boudry, I. A. Cunningham, “Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology,” Med. Phys. 24, 71–89 (1997).
[CrossRef] [PubMed]

Barrett, H. H.

H. H. Barrett, J. L. Denny, R. F. Wagner, K. J. Myers, “Objective assessment of image quality. II. Fisher information, Fourier crosstalk, and figures of merit for task performance,” J. Opt. Soc. Am. A 12, 834–852 (1995).
[CrossRef]

H. H. Barrett, J. L. Denny, H. C. Gifford, C. K. Abbey, R. F. Wagner, K. J. Myers, “Generalized NEQ: Fourier analysis where you would least expect to find it,” in Medical Imaging 1996: Physics of Medical Imaging, R. L. Van Metter, J. Beutel, eds., Proc. SPIE2708, 41–52 (1996).
[CrossRef]

H. H. Barrett, R. F. Wagner, K. J. Myers, “Correlated point processes in radiological imaging,” in Medical Imaging 1997: Physics of Medical Imaging, R. L. Van Metter, J. Beutel, eds., Proc. SPIE3032, 110–125 (1997).
[CrossRef]

H. H. Barrett, W. Swindell, Radiological Imaging—The Theory of Image Formation, Detection, and Processing (Academic, New York, 1981).

Bissonnette, J. P.

J. P. Bissonnette, I. A. Cunningham, D. A. Jaffray, A. Fenster, P. Munro, “A quantum accounting and detective quantum efficiency analysis for video-based portal imaging,” Med. Phys. 24, 815–826 (1997).
[CrossRef] [PubMed]

Blume, H.

J. T. Dobbins, D. L. Ergun, L. Rutz, D. A. Hinshaw, H. Blume, D. C. Clark, “DQE(f) of four generations of computed radiography acquisition devices,” Med. Phys. 22, 1581–1593 (1995).
[CrossRef] [PubMed]

Boudry, J. M.

J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, J. M. Boudry, I. A. Cunningham, “Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology,” Med. Phys. 24, 71–89 (1997).
[CrossRef] [PubMed]

Brown, D. G.

C. E. Metz, R. F. Wagner, K. Doi, D. G. Brown, R. M. Nishikawa, K. J. Myers, “Toward consensus on quantitative assessment of medical imaging systems,” Med. Phys. 22, 1057–1061 (1995).
[CrossRef] [PubMed]

Bunch, P. C.

P. C. Bunch, K. E. Huff, R. Shaw, R. L. Van Metter, “Comparison of theory and experiment for the DQE of a radiographic screen–film system,” in Application of Optical Instrumentation in Medicine XIII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE535, 166–185 (1985).
[CrossRef]

P. C. Bunch, R. Shaw, R. L. Van Metter, “Signal-to-noise measurements for a screen–film system,” in Application of Optical Instrumentation in Medicine XII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE454, 154–163 (1984).
[CrossRef]

Burgess, A. E.

A. E. Burgess, “The Rose model, revisited,” J. Opt. Soc. Am. A 16, 633–646 (1999).
[CrossRef]

A. E. Burgess, “Focal spots: II. Models,” Invest. Radiol. 12, 44–53 (1977).
[CrossRef] [PubMed]

A. E. Burgess, “Focal spots: I. MTF separability,” Invest. Radiol. 12, 36–43 (1977).
[CrossRef] [PubMed]

Clark, D. C.

J. T. Dobbins, D. L. Ergun, L. Rutz, D. A. Hinshaw, H. Blume, D. C. Clark, “DQE(f) of four generations of computed radiography acquisition devices,” Med. Phys. 22, 1581–1593 (1995).
[CrossRef] [PubMed]

Cunningham, I. A.

J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, I. A. Cunningham, “Signal, noise power spectrum and detective quantum efficiency of indirect-detection flat-panel imagers for diagnostic radiology,” Med. Phys. 25, 614–628 (1998).
[CrossRef] [PubMed]

J. P. Bissonnette, I. A. Cunningham, D. A. Jaffray, A. Fenster, P. Munro, “A quantum accounting and detective quantum efficiency analysis for video-based portal imaging,” Med. Phys. 24, 815–826 (1997).
[CrossRef] [PubMed]

J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, J. M. Boudry, I. A. Cunningham, “Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology,” Med. Phys. 24, 71–89 (1997).
[CrossRef] [PubMed]

I. A. Cunningham, M. S. Westmore, A. Fenster, “A spatial-frequency-dependent quantum accounting diagram and detective quantum efficiency model of signal and noise propagation in cascaded imaging systems,” Med. Phys. 21, 417–427 (1994).
[CrossRef] [PubMed]

I. A. Cunningham, M. S. Westmore, A. Fenster, “Visual impact of the non-zero spatial frequency quantum sink,” in Medical Imaging 1994: Physics of Medical Imaging, R. Shaw, ed., Proc. SPIE2163, 274–283 (1994).
[CrossRef]

I. A. Cunningham, “Linear-systems modeling of parallel cascaded stochastic processes: the NPS of radiographic screens with reabsorption of characteristic radiation,” in Medical Imaging 1998: Physics of Medical Imaging, J. T. Dobbins, J. M. Boone, eds., Proc. SPIE3336, 220–230 (1998).
[CrossRef]

I. A. Cunningham, “Analyzing system performance,” in The Expanding Role of Medical Physics in Diagnostic Imaging, G. D. Frey, P. Sprawls, eds. (Advanced Medical Publishing for American Association of Physicists in Medicine, Madison, Wis.1997), pp. 231–263.

I. A. Cunningham, “Degradation of the detective quantum efficiency due to a non-unity detector fill factor,” in Medical Imaging 1997: Physics of Medical Imaging, R. L. Van Metter, J. Beutel, eds., Proc. SPIE3032, 22–31 (1997).
[CrossRef]

Dainty, J. C.

J. C. Dainty, R. Shaw, Image Science (Academic, New York, 1974).

Denny, J. L.

H. H. Barrett, J. L. Denny, R. F. Wagner, K. J. Myers, “Objective assessment of image quality. II. Fisher information, Fourier crosstalk, and figures of merit for task performance,” J. Opt. Soc. Am. A 12, 834–852 (1995).
[CrossRef]

H. H. Barrett, J. L. Denny, H. C. Gifford, C. K. Abbey, R. F. Wagner, K. J. Myers, “Generalized NEQ: Fourier analysis where you would least expect to find it,” in Medical Imaging 1996: Physics of Medical Imaging, R. L. Van Metter, J. Beutel, eds., Proc. SPIE2708, 41–52 (1996).
[CrossRef]

Dillon, P. L.

P. L. Dillon, J. F. Hamilton, M. Rabbani, R. Shaw, R. L. Van Metter, “Principles governing the transfer of signal modulation and photon noise by amplifying and scattering mechanisms,” in Application of Optical Instrumentation in Medicine XIII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE535, 130–139 (1985).
[CrossRef]

Dobbins, J. T.

J. T. Dobbins, D. L. Ergun, L. Rutz, D. A. Hinshaw, H. Blume, D. C. Clark, “DQE(f) of four generations of computed radiography acquisition devices,” Med. Phys. 22, 1581–1593 (1995).
[CrossRef] [PubMed]

Doi, K.

C. E. Metz, R. F. Wagner, K. Doi, D. G. Brown, R. M. Nishikawa, K. J. Myers, “Toward consensus on quantitative assessment of medical imaging systems,” Med. Phys. 22, 1057–1061 (1995).
[CrossRef] [PubMed]

C. E. Metz, K. Doi, “Transfer function analysis of radiographic imaging systems,” Phys. Med. Biol. 24, 1079–1106 (1979).
[CrossRef] [PubMed]

K. Doi, “Optical transfer functions of the focal spot of x-ray tubes,” Am. J. Roentgenol. 94, 712–718 (1965).

Drost, D. J.

M. C. Steckner, D. J. Drost, F. S. Prato, “Computing the modulation transfer function of a magnetic resonance imager,” Med. Phys. 21, 483–498 (1994).
[CrossRef] [PubMed]

Eckenbach, W.

W. Hillen, W. Eckenbach, P. Quadflieg, T. Zaengel, “Signal-to-noise performance in cesium iodide x-ray fluorescent screens,” in Medical Imaging V: Image Physics, R. H. Schneider, ed. Proc. SPIE1443, 120–131 (1991).
[CrossRef]

El-Mohri, Y.

J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, I. A. Cunningham, “Signal, noise power spectrum and detective quantum efficiency of indirect-detection flat-panel imagers for diagnostic radiology,” Med. Phys. 25, 614–628 (1998).
[CrossRef] [PubMed]

J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, J. M. Boudry, I. A. Cunningham, “Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology,” Med. Phys. 24, 71–89 (1997).
[CrossRef] [PubMed]

Ergun, D. L.

J. T. Dobbins, D. L. Ergun, L. Rutz, D. A. Hinshaw, H. Blume, D. C. Clark, “DQE(f) of four generations of computed radiography acquisition devices,” Med. Phys. 22, 1581–1593 (1995).
[CrossRef] [PubMed]

Fellgett, P. B.

Fenster, A.

J. P. Bissonnette, I. A. Cunningham, D. A. Jaffray, A. Fenster, P. Munro, “A quantum accounting and detective quantum efficiency analysis for video-based portal imaging,” Med. Phys. 24, 815–826 (1997).
[CrossRef] [PubMed]

I. A. Cunningham, M. S. Westmore, A. Fenster, “A spatial-frequency-dependent quantum accounting diagram and detective quantum efficiency model of signal and noise propagation in cascaded imaging systems,” Med. Phys. 21, 417–427 (1994).
[CrossRef] [PubMed]

I. A. Cunningham, M. S. Westmore, A. Fenster, “Visual impact of the non-zero spatial frequency quantum sink,” in Medical Imaging 1994: Physics of Medical Imaging, R. Shaw, ed., Proc. SPIE2163, 274–283 (1994).
[CrossRef]

Fu, T. Y.

H. Roehrig, S. Nudelman, T. Y. Fu, “Electro-optical devices for use in photoelectronic-digital radiology,” in American Association of Physicists in Medicine Monogr. No. 11, Electronic Imaging in Medicine, G. D. Fullerton, W. R. Hendee, J. C. Lasher, W. S. Properzio, S. J. Riederer, eds. (American Institute of Physics, New York, 1984), pp. 82–129.

H. Roehrig, T. Y. Fu, “Physical properties of photoelectronic imaging devices and systems,” in American Association of Physicists in Medicine Monogr. No. 12, Recent Developments in Digital Imaging, K. Doi, L. Lanzl, P. J. P. Lin, eds. (American Institute of Physics, New York, 1985), pp. 82–140.

Gaskill, J. D.

J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978).

Gifford, H. C.

H. H. Barrett, J. L. Denny, H. C. Gifford, C. K. Abbey, R. F. Wagner, K. J. Myers, “Generalized NEQ: Fourier analysis where you would least expect to find it,” in Medical Imaging 1996: Physics of Medical Imaging, R. L. Van Metter, J. Beutel, eds., Proc. SPIE2708, 41–52 (1996).
[CrossRef]

Hamilton, J. F.

P. L. Dillon, J. F. Hamilton, M. Rabbani, R. Shaw, R. L. Van Metter, “Principles governing the transfer of signal modulation and photon noise by amplifying and scattering mechanisms,” in Application of Optical Instrumentation in Medicine XIII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE535, 130–139 (1985).
[CrossRef]

Hillen, W.

W. Hillen, W. Eckenbach, P. Quadflieg, T. Zaengel, “Signal-to-noise performance in cesium iodide x-ray fluorescent screens,” in Medical Imaging V: Image Physics, R. H. Schneider, ed. Proc. SPIE1443, 120–131 (1991).
[CrossRef]

Hinshaw, D. A.

J. T. Dobbins, D. L. Ergun, L. Rutz, D. A. Hinshaw, H. Blume, D. C. Clark, “DQE(f) of four generations of computed radiography acquisition devices,” Med. Phys. 22, 1581–1593 (1995).
[CrossRef] [PubMed]

Huang, W.

J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, I. A. Cunningham, “Signal, noise power spectrum and detective quantum efficiency of indirect-detection flat-panel imagers for diagnostic radiology,” Med. Phys. 25, 614–628 (1998).
[CrossRef] [PubMed]

J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, J. M. Boudry, I. A. Cunningham, “Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology,” Med. Phys. 24, 71–89 (1997).
[CrossRef] [PubMed]

Huff, K. E.

P. C. Bunch, K. E. Huff, R. Shaw, R. L. Van Metter, “Comparison of theory and experiment for the DQE of a radiographic screen–film system,” in Application of Optical Instrumentation in Medicine XIII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE535, 166–185 (1985).
[CrossRef]

Jaffray, D. A.

J. P. Bissonnette, I. A. Cunningham, D. A. Jaffray, A. Fenster, P. Munro, “A quantum accounting and detective quantum efficiency analysis for video-based portal imaging,” Med. Phys. 24, 815–826 (1997).
[CrossRef] [PubMed]

Jones, R. C.

Lubberts, G.

G. Lubberts, K. Rossmann, “Modulation transfer function associated with geometrical unsharpness in medical radiography,” Phys. Med. Biol. 12, 65–77 (1967).
[CrossRef] [PubMed]

Macovski, A.

A. Macovski, Medical Imaging Systems (Prentice-Hall, Englewood Cliffs, N.J., 1983).

Metz, C. E.

C. E. Metz, R. F. Wagner, K. Doi, D. G. Brown, R. M. Nishikawa, K. J. Myers, “Toward consensus on quantitative assessment of medical imaging systems,” Med. Phys. 22, 1057–1061 (1995).
[CrossRef] [PubMed]

C. E. Metz, C. J. Vyborny, “Wiener spectral effects of spatial correlation between the sites of characteristic x-ray emission and reabsorption in radiographic screen–film systems,” Phys. Med. Biol. 28, 547–564 (1983).
[CrossRef] [PubMed]

C. E. Metz, K. Doi, “Transfer function analysis of radiographic imaging systems,” Phys. Med. Biol. 24, 1079–1106 (1979).
[CrossRef] [PubMed]

Mistretta, C. A.

C. A. Mistretta, “X-ray image intensifiers,” in American Association of Physicists in Medicine Monogr. No. 3, The Physics of Medical Imaging: Recording System Measurements and Techniques, A. G. Haus, ed. (American Institute of Physics, New York, 1979), pp. 182–205.

Mulder, H.

Munro, P.

J. P. Bissonnette, I. A. Cunningham, D. A. Jaffray, A. Fenster, P. Munro, “A quantum accounting and detective quantum efficiency analysis for video-based portal imaging,” Med. Phys. 24, 815–826 (1997).
[CrossRef] [PubMed]

Muntz, E. P.

R. F. Wagner, E. P. Muntz, “Detective quantum efficiency (DQE) analysis of electrostatic imaging and screen–film imaging in mammography,” in Application of Optical Instrumentation in Medicine VII, J. E. Gray, ed., Proc. SPIE173, 162–165 (1979).
[CrossRef]

Myers, K. J.

H. H. Barrett, J. L. Denny, R. F. Wagner, K. J. Myers, “Objective assessment of image quality. II. Fisher information, Fourier crosstalk, and figures of merit for task performance,” J. Opt. Soc. Am. A 12, 834–852 (1995).
[CrossRef]

C. E. Metz, R. F. Wagner, K. Doi, D. G. Brown, R. M. Nishikawa, K. J. Myers, “Toward consensus on quantitative assessment of medical imaging systems,” Med. Phys. 22, 1057–1061 (1995).
[CrossRef] [PubMed]

H. H. Barrett, J. L. Denny, H. C. Gifford, C. K. Abbey, R. F. Wagner, K. J. Myers, “Generalized NEQ: Fourier analysis where you would least expect to find it,” in Medical Imaging 1996: Physics of Medical Imaging, R. L. Van Metter, J. Beutel, eds., Proc. SPIE2708, 41–52 (1996).
[CrossRef]

H. H. Barrett, R. F. Wagner, K. J. Myers, “Correlated point processes in radiological imaging,” in Medical Imaging 1997: Physics of Medical Imaging, R. L. Van Metter, J. Beutel, eds., Proc. SPIE3032, 110–125 (1997).
[CrossRef]

Nishikawa, R. M.

C. E. Metz, R. F. Wagner, K. Doi, D. G. Brown, R. M. Nishikawa, K. J. Myers, “Toward consensus on quantitative assessment of medical imaging systems,” Med. Phys. 22, 1057–1061 (1995).
[CrossRef] [PubMed]

R. M. Nishikawa, M. J. Yaffe, “Model of the spatial-frequency-dependent detective quantum efficiency of phosphor screens,” Med. Phys. 17, 894–904 (1990).
[CrossRef] [PubMed]

Nudelman, S.

H. Roehrig, S. Nudelman, T. Y. Fu, “Electro-optical devices for use in photoelectronic-digital radiology,” in American Association of Physicists in Medicine Monogr. No. 11, Electronic Imaging in Medicine, G. D. Fullerton, W. R. Hendee, J. C. Lasher, W. S. Properzio, S. J. Riederer, eds. (American Institute of Physics, New York, 1984), pp. 82–129.

Papoulis, A.

A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed. (McGraw-Hill, New York, 1991).

Prato, F. S.

M. C. Steckner, D. J. Drost, F. S. Prato, “Computing the modulation transfer function of a magnetic resonance imager,” Med. Phys. 21, 483–498 (1994).
[CrossRef] [PubMed]

Quadflieg, P.

W. Hillen, W. Eckenbach, P. Quadflieg, T. Zaengel, “Signal-to-noise performance in cesium iodide x-ray fluorescent screens,” in Medical Imaging V: Image Physics, R. H. Schneider, ed. Proc. SPIE1443, 120–131 (1991).
[CrossRef]

Rabbani, M.

M. Rabbani, R. L. Van Metter, “Analysis of signal and noise propagation for several imaging mechanisms,” J. Opt. Soc. Am. A 6, 1156–1164 (1989).
[CrossRef]

M. Rabbani, R. Shaw, R. L. Van Metter, “Detective quantum efficiency of imaging systems with amplifying and scattering mechanisms,” J. Opt. Soc. Am. A 4, 895–901 (1987).
[CrossRef] [PubMed]

P. L. Dillon, J. F. Hamilton, M. Rabbani, R. Shaw, R. L. Van Metter, “Principles governing the transfer of signal modulation and photon noise by amplifying and scattering mechanisms,” in Application of Optical Instrumentation in Medicine XIII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE535, 130–139 (1985).
[CrossRef]

M. Rabbani, R. L. Van Metter, “Some new applications of multivariate moment-generating functions to screen–film systems,” in Medical Imaging III: Image Formation, S. J. Dwyer, R. Jost, R. H. Schneider, eds., Proc. SPIE1090, 86–94 (1989).
[CrossRef]

M. Rabbani, R. Shaw, “The influence of grain threshold on quantum mottle in radiographic film–screen systems,” in Medical Imaging, S. J. Dwyer, R. H. Schneider, eds., Proc. SPIE767, 226–235 (1987).
[CrossRef]

R. L. Van Metter, M. Rabbani, “Analysis of the effects of depth dependence of x-ray interactions on the NPS of radiographic screens,” in Medical Imaging IV: Image Formation, R. H. Schneider, ed., Proc. SPIE1231, 271–274 (1990).
[CrossRef]

M. Rabbani, R. Shaw, “The influence of grain threshold on quantum mottle in radiographic screen–film systems. II,” in Medical Imaging II: Part A—Image Formation, Detection, Processing, and Interpretation, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE914A, 117–127 (1988).
[CrossRef]

Roehrig, H.

H. Roehrig, T. Y. Fu, “Physical properties of photoelectronic imaging devices and systems,” in American Association of Physicists in Medicine Monogr. No. 12, Recent Developments in Digital Imaging, K. Doi, L. Lanzl, P. J. P. Lin, eds. (American Institute of Physics, New York, 1985), pp. 82–140.

H. Roehrig, S. Nudelman, T. Y. Fu, “Electro-optical devices for use in photoelectronic-digital radiology,” in American Association of Physicists in Medicine Monogr. No. 11, Electronic Imaging in Medicine, G. D. Fullerton, W. R. Hendee, J. C. Lasher, W. S. Properzio, S. J. Riederer, eds. (American Institute of Physics, New York, 1984), pp. 82–129.

Rose, A.

A. Rose, “Quantum and noise limitations of the visual process,” J. Opt. Soc. Am. 43, 715–716 (1953).
[CrossRef] [PubMed]

A. Rose, “Sensitivity performance of the human eye on an absolute scale,” J. Opt. Soc. Am. 38, 196–208 (1948).
[CrossRef] [PubMed]

A. Rose, “A unified approach to the performance of photographic film, television pick-up tubes, and the human eye,” J. Soc. Motion Pict. Telev. Eng. 47, 273–294 (1946).

A. Rose, Vision: Human and Electronic (Plenum, New York, 1974).

A. Rose, “Television pickup tubes and the problem of vision,” in Advances in Electronics and Electron Physics, L. Marton, ed. (Academic, New York, 1948), pp. 131–166.

Rossman, K.

K. Rossman, G. Sanderson, “Validity of the modulation transfer function of radiographic screen–film systems measured by the slit method,” Phys. Med. Biol. 13, 259–268 (1968).
[CrossRef]

Rossmann, K.

K. Rossmann, “Point spread-function, line spread-function, and modulation transfer function,” Radiology 93, 257–272 (1969).
[PubMed]

K. Rossmann, “The spatial frequency spectrum: a means for studying the quality of radiographic imaging systems,” Radiology 90, 1–13 (1968).
[PubMed]

G. Lubberts, K. Rossmann, “Modulation transfer function associated with geometrical unsharpness in medical radiography,” Phys. Med. Biol. 12, 65–77 (1967).
[CrossRef] [PubMed]

K. Rossmann, “Measurement of the modulation transfer function of radiographic systems containing fluorescent screens,” Phys. Med. Biol. 9, 551–557 (1964).
[CrossRef]

Rutz, L.

J. T. Dobbins, D. L. Ergun, L. Rutz, D. A. Hinshaw, H. Blume, D. C. Clark, “DQE(f) of four generations of computed radiography acquisition devices,” Med. Phys. 22, 1581–1593 (1995).
[CrossRef] [PubMed]

Sanderson, G.

K. Rossman, G. Sanderson, “Validity of the modulation transfer function of radiographic screen–film systems measured by the slit method,” Phys. Med. Biol. 13, 259–268 (1968).
[CrossRef]

Schade, O. H.

O. H. Schade, “Evaluation of noisy images,” in Medical X-Ray Photo-Optical Systems Evaluation, R. F. Wagner, K. E. Weaver, D. G. Goodenough, eds., Proc. SPIE56, 107–114 (1974).
[CrossRef]

Shaw, R.

M. Rabbani, R. Shaw, R. L. Van Metter, “Detective quantum efficiency of imaging systems with amplifying and scattering mechanisms,” J. Opt. Soc. Am. A 4, 895–901 (1987).
[CrossRef] [PubMed]

R. Shaw, “The equivalent quantum efficiency of the photographic process,” J. Photogr. Sci. 11, 199–204 (1963).

R. L. Van Metter, R. Shaw, “The effect of bias exposure on the detective quantum efficiency of radiographic screen–film systems,” in Application of Optical Instrumentation in Medicine XIII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE535, 157–162 (1985).
[CrossRef]

J. C. Dainty, R. Shaw, Image Science (Academic, New York, 1974).

R. Shaw, R. L. Van Metter, “An analysis of the fundamental limitations of screen–film systems for x-ray detection. II. Model calculations,” in Application of Optical Instrumentation in Medicine XII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE454, 133–141 (1984).
[CrossRef]

R. Shaw, R. L. Van Metter, “The role of screen and film in determining the noise-equivalent number of quanta recorded by a screen–film system,” in Application of Optical Instrumentation in Medicine XIII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE535, 184–194 (1985).
[CrossRef]

R. Shaw, R. L. Van Metter, “An analysis of the fundamental limitations of screen–film systems for x-ray detection. I. General theory,” in Application of Optical Instrumentation in Medicine XII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE454, 128–132 (1984).
[CrossRef]

M. Rabbani, R. Shaw, “The influence of grain threshold on quantum mottle in radiographic screen–film systems. II,” in Medical Imaging II: Part A—Image Formation, Detection, Processing, and Interpretation, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE914A, 117–127 (1988).
[CrossRef]

P. C. Bunch, K. E. Huff, R. Shaw, R. L. Van Metter, “Comparison of theory and experiment for the DQE of a radiographic screen–film system,” in Application of Optical Instrumentation in Medicine XIII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE535, 166–185 (1985).
[CrossRef]

P. L. Dillon, J. F. Hamilton, M. Rabbani, R. Shaw, R. L. Van Metter, “Principles governing the transfer of signal modulation and photon noise by amplifying and scattering mechanisms,” in Application of Optical Instrumentation in Medicine XIII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE535, 130–139 (1985).
[CrossRef]

M. Rabbani, R. Shaw, “The influence of grain threshold on quantum mottle in radiographic film–screen systems,” in Medical Imaging, S. J. Dwyer, R. H. Schneider, eds., Proc. SPIE767, 226–235 (1987).
[CrossRef]

R. Shaw, “Some fundamental properties of xeroradiographic images,” in Application of Optical Instrumentation in Medicine IV, J. E. Gray, W. R. Hendee, eds., Proc. SPIE70, 359–363 (1975).
[CrossRef]

P. C. Bunch, R. Shaw, R. L. Van Metter, “Signal-to-noise measurements for a screen–film system,” in Application of Optical Instrumentation in Medicine XII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE454, 154–163 (1984).
[CrossRef]

Siewerdsen, J. H.

J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, I. A. Cunningham, “Signal, noise power spectrum and detective quantum efficiency of indirect-detection flat-panel imagers for diagnostic radiology,” Med. Phys. 25, 614–628 (1998).
[CrossRef] [PubMed]

J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, J. M. Boudry, I. A. Cunningham, “Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology,” Med. Phys. 24, 71–89 (1997).
[CrossRef] [PubMed]

Steckner, M. C.

M. C. Steckner, D. J. Drost, F. S. Prato, “Computing the modulation transfer function of a magnetic resonance imager,” Med. Phys. 21, 483–498 (1994).
[CrossRef] [PubMed]

Swindell, W.

H. H. Barrett, W. Swindell, Radiological Imaging—The Theory of Image Formation, Detection, and Processing (Academic, New York, 1981).

Ter-Pogossian, M. M.

M. M. Ter-Pogossian, The Physical Aspects of Diagnostic Radiology (Harper & Row, New York, 1967).

Van Metter, R. L.

M. Rabbani, R. L. Van Metter, “Analysis of signal and noise propagation for several imaging mechanisms,” J. Opt. Soc. Am. A 6, 1156–1164 (1989).
[CrossRef]

M. Rabbani, R. Shaw, R. L. Van Metter, “Detective quantum efficiency of imaging systems with amplifying and scattering mechanisms,” J. Opt. Soc. Am. A 4, 895–901 (1987).
[CrossRef] [PubMed]

P. L. Dillon, J. F. Hamilton, M. Rabbani, R. Shaw, R. L. Van Metter, “Principles governing the transfer of signal modulation and photon noise by amplifying and scattering mechanisms,” in Application of Optical Instrumentation in Medicine XIII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE535, 130–139 (1985).
[CrossRef]

M. Rabbani, R. L. Van Metter, “Some new applications of multivariate moment-generating functions to screen–film systems,” in Medical Imaging III: Image Formation, S. J. Dwyer, R. Jost, R. H. Schneider, eds., Proc. SPIE1090, 86–94 (1989).
[CrossRef]

R. L. Van Metter, M. Rabbani, “Analysis of the effects of depth dependence of x-ray interactions on the NPS of radiographic screens,” in Medical Imaging IV: Image Formation, R. H. Schneider, ed., Proc. SPIE1231, 271–274 (1990).
[CrossRef]

P. C. Bunch, R. Shaw, R. L. Van Metter, “Signal-to-noise measurements for a screen–film system,” in Application of Optical Instrumentation in Medicine XII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE454, 154–163 (1984).
[CrossRef]

R. L. Van Metter, R. Shaw, “The effect of bias exposure on the detective quantum efficiency of radiographic screen–film systems,” in Application of Optical Instrumentation in Medicine XIII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE535, 157–162 (1985).
[CrossRef]

R. Shaw, R. L. Van Metter, “The role of screen and film in determining the noise-equivalent number of quanta recorded by a screen–film system,” in Application of Optical Instrumentation in Medicine XIII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE535, 184–194 (1985).
[CrossRef]

R. Shaw, R. L. Van Metter, “An analysis of the fundamental limitations of screen–film systems for x-ray detection. II. Model calculations,” in Application of Optical Instrumentation in Medicine XII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE454, 133–141 (1984).
[CrossRef]

P. C. Bunch, K. E. Huff, R. Shaw, R. L. Van Metter, “Comparison of theory and experiment for the DQE of a radiographic screen–film system,” in Application of Optical Instrumentation in Medicine XIII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE535, 166–185 (1985).
[CrossRef]

R. Shaw, R. L. Van Metter, “An analysis of the fundamental limitations of screen–film systems for x-ray detection. I. General theory,” in Application of Optical Instrumentation in Medicine XII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE454, 128–132 (1984).
[CrossRef]

Vyborny, C. J.

C. E. Metz, C. J. Vyborny, “Wiener spectral effects of spatial correlation between the sites of characteristic x-ray emission and reabsorption in radiographic screen–film systems,” Phys. Med. Biol. 28, 547–564 (1983).
[CrossRef] [PubMed]

Wagner, R. F.

H. H. Barrett, J. L. Denny, R. F. Wagner, K. J. Myers, “Objective assessment of image quality. II. Fisher information, Fourier crosstalk, and figures of merit for task performance,” J. Opt. Soc. Am. A 12, 834–852 (1995).
[CrossRef]

C. E. Metz, R. F. Wagner, K. Doi, D. G. Brown, R. M. Nishikawa, K. J. Myers, “Toward consensus on quantitative assessment of medical imaging systems,” Med. Phys. 22, 1057–1061 (1995).
[CrossRef] [PubMed]

R. F. Wagner, E. P. Muntz, “Detective quantum efficiency (DQE) analysis of electrostatic imaging and screen–film imaging in mammography,” in Application of Optical Instrumentation in Medicine VII, J. E. Gray, ed., Proc. SPIE173, 162–165 (1979).
[CrossRef]

H. H. Barrett, J. L. Denny, H. C. Gifford, C. K. Abbey, R. F. Wagner, K. J. Myers, “Generalized NEQ: Fourier analysis where you would least expect to find it,” in Medical Imaging 1996: Physics of Medical Imaging, R. L. Van Metter, J. Beutel, eds., Proc. SPIE2708, 41–52 (1996).
[CrossRef]

H. H. Barrett, R. F. Wagner, K. J. Myers, “Correlated point processes in radiological imaging,” in Medical Imaging 1997: Physics of Medical Imaging, R. L. Van Metter, J. Beutel, eds., Proc. SPIE3032, 110–125 (1997).
[CrossRef]

R. F. Wagner, K. E. Weaver, “Noise measurements on rare-earth intensifying screen systems,” in Medical X-Ray Photo-Optical Systems Evaluation, R. F. Wagner, K. E. Weaver, D. G. Goodenough, eds., Proc. SPIE56, 198–207 (1974).
[CrossRef]

Weaver, K. E.

R. F. Wagner, K. E. Weaver, “Noise measurements on rare-earth intensifying screen systems,” in Medical X-Ray Photo-Optical Systems Evaluation, R. F. Wagner, K. E. Weaver, D. G. Goodenough, eds., Proc. SPIE56, 198–207 (1974).
[CrossRef]

Westmore, M. S.

I. A. Cunningham, M. S. Westmore, A. Fenster, “A spatial-frequency-dependent quantum accounting diagram and detective quantum efficiency model of signal and noise propagation in cascaded imaging systems,” Med. Phys. 21, 417–427 (1994).
[CrossRef] [PubMed]

I. A. Cunningham, M. S. Westmore, A. Fenster, “Visual impact of the non-zero spatial frequency quantum sink,” in Medical Imaging 1994: Physics of Medical Imaging, R. Shaw, ed., Proc. SPIE2163, 274–283 (1994).
[CrossRef]

Yaffe, M. J.

R. M. Nishikawa, M. J. Yaffe, “Model of the spatial-frequency-dependent detective quantum efficiency of phosphor screens,” Med. Phys. 17, 894–904 (1990).
[CrossRef] [PubMed]

Yorkston, J.

J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, I. A. Cunningham, “Signal, noise power spectrum and detective quantum efficiency of indirect-detection flat-panel imagers for diagnostic radiology,” Med. Phys. 25, 614–628 (1998).
[CrossRef] [PubMed]

J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, J. M. Boudry, I. A. Cunningham, “Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology,” Med. Phys. 24, 71–89 (1997).
[CrossRef] [PubMed]

Zaengel, T.

W. Hillen, W. Eckenbach, P. Quadflieg, T. Zaengel, “Signal-to-noise performance in cesium iodide x-ray fluorescent screens,” in Medical Imaging V: Image Physics, R. H. Schneider, ed. Proc. SPIE1443, 120–131 (1991).
[CrossRef]

Zwieg, H. J.

H. J. Zwieg, “Detective quantum efficiency of photodetectors with some amplifying mechanism,” J. Opt. Soc. Am. 55, 525–528 (1965).
[CrossRef]

H. J. Zwieg, “Performance criteria for photo-detectors—concepts in evolution,” Photograph. Sci. Eng. 8, 305 (1964).

Am. J. Roentgenol. (1)

K. Doi, “Optical transfer functions of the focal spot of x-ray tubes,” Am. J. Roentgenol. 94, 712–718 (1965).

Invest. Radiol. (2)

A. E. Burgess, “Focal spots: I. MTF separability,” Invest. Radiol. 12, 36–43 (1977).
[CrossRef] [PubMed]

A. E. Burgess, “Focal spots: II. Models,” Invest. Radiol. 12, 44–53 (1977).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (5)

J. Opt. Soc. Am. A (5)

J. Photogr. Sci. (1)

R. Shaw, “The equivalent quantum efficiency of the photographic process,” J. Photogr. Sci. 11, 199–204 (1963).

J. Soc. Motion Pict. Telev. Eng. (1)

A. Rose, “A unified approach to the performance of photographic film, television pick-up tubes, and the human eye,” J. Soc. Motion Pict. Telev. Eng. 47, 273–294 (1946).

Med. Phys. (8)

C. E. Metz, R. F. Wagner, K. Doi, D. G. Brown, R. M. Nishikawa, K. J. Myers, “Toward consensus on quantitative assessment of medical imaging systems,” Med. Phys. 22, 1057–1061 (1995).
[CrossRef] [PubMed]

J. T. Dobbins, D. L. Ergun, L. Rutz, D. A. Hinshaw, H. Blume, D. C. Clark, “DQE(f) of four generations of computed radiography acquisition devices,” Med. Phys. 22, 1581–1593 (1995).
[CrossRef] [PubMed]

M. C. Steckner, D. J. Drost, F. S. Prato, “Computing the modulation transfer function of a magnetic resonance imager,” Med. Phys. 21, 483–498 (1994).
[CrossRef] [PubMed]

R. M. Nishikawa, M. J. Yaffe, “Model of the spatial-frequency-dependent detective quantum efficiency of phosphor screens,” Med. Phys. 17, 894–904 (1990).
[CrossRef] [PubMed]

J. P. Bissonnette, I. A. Cunningham, D. A. Jaffray, A. Fenster, P. Munro, “A quantum accounting and detective quantum efficiency analysis for video-based portal imaging,” Med. Phys. 24, 815–826 (1997).
[CrossRef] [PubMed]

J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, J. M. Boudry, I. A. Cunningham, “Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology,” Med. Phys. 24, 71–89 (1997).
[CrossRef] [PubMed]

J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, I. A. Cunningham, “Signal, noise power spectrum and detective quantum efficiency of indirect-detection flat-panel imagers for diagnostic radiology,” Med. Phys. 25, 614–628 (1998).
[CrossRef] [PubMed]

I. A. Cunningham, M. S. Westmore, A. Fenster, “A spatial-frequency-dependent quantum accounting diagram and detective quantum efficiency model of signal and noise propagation in cascaded imaging systems,” Med. Phys. 21, 417–427 (1994).
[CrossRef] [PubMed]

Photograph. Sci. Eng. (1)

H. J. Zwieg, “Performance criteria for photo-detectors—concepts in evolution,” Photograph. Sci. Eng. 8, 305 (1964).

Phys. Med. Biol. (5)

K. Rossmann, “Measurement of the modulation transfer function of radiographic systems containing fluorescent screens,” Phys. Med. Biol. 9, 551–557 (1964).
[CrossRef]

C. E. Metz, C. J. Vyborny, “Wiener spectral effects of spatial correlation between the sites of characteristic x-ray emission and reabsorption in radiographic screen–film systems,” Phys. Med. Biol. 28, 547–564 (1983).
[CrossRef] [PubMed]

C. E. Metz, K. Doi, “Transfer function analysis of radiographic imaging systems,” Phys. Med. Biol. 24, 1079–1106 (1979).
[CrossRef] [PubMed]

G. Lubberts, K. Rossmann, “Modulation transfer function associated with geometrical unsharpness in medical radiography,” Phys. Med. Biol. 12, 65–77 (1967).
[CrossRef] [PubMed]

K. Rossman, G. Sanderson, “Validity of the modulation transfer function of radiographic screen–film systems measured by the slit method,” Phys. Med. Biol. 13, 259–268 (1968).
[CrossRef]

Radiology (2)

K. Rossmann, “The spatial frequency spectrum: a means for studying the quality of radiographic imaging systems,” Radiology 90, 1–13 (1968).
[PubMed]

K. Rossmann, “Point spread-function, line spread-function, and modulation transfer function,” Radiology 93, 257–272 (1969).
[PubMed]

Other (36)

“Modulation transfer function of screen–film systems,” (International Commission on Radiation Units and Measurements, Bethesda, Md., 1986).

J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978).

J. C. Dainty, R. Shaw, Image Science (Academic, New York, 1974).

H. H. Barrett, W. Swindell, Radiological Imaging—The Theory of Image Formation, Detection, and Processing (Academic, New York, 1981).

R. Shaw, “Some fundamental properties of xeroradiographic images,” in Application of Optical Instrumentation in Medicine IV, J. E. Gray, W. R. Hendee, eds., Proc. SPIE70, 359–363 (1975).
[CrossRef]

R. F. Wagner, E. P. Muntz, “Detective quantum efficiency (DQE) analysis of electrostatic imaging and screen–film imaging in mammography,” in Application of Optical Instrumentation in Medicine VII, J. E. Gray, ed., Proc. SPIE173, 162–165 (1979).
[CrossRef]

R. Shaw, R. L. Van Metter, “An analysis of the fundamental limitations of screen–film systems for x-ray detection. I. General theory,” in Application of Optical Instrumentation in Medicine XII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE454, 128–132 (1984).
[CrossRef]

R. Shaw, R. L. Van Metter, “An analysis of the fundamental limitations of screen–film systems for x-ray detection. II. Model calculations,” in Application of Optical Instrumentation in Medicine XII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE454, 133–141 (1984).
[CrossRef]

P. C. Bunch, R. Shaw, R. L. Van Metter, “Signal-to-noise measurements for a screen–film system,” in Application of Optical Instrumentation in Medicine XII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE454, 154–163 (1984).
[CrossRef]

R. Shaw, R. L. Van Metter, “The role of screen and film in determining the noise-equivalent number of quanta recorded by a screen–film system,” in Application of Optical Instrumentation in Medicine XIII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE535, 184–194 (1985).
[CrossRef]

P. C. Bunch, K. E. Huff, R. Shaw, R. L. Van Metter, “Comparison of theory and experiment for the DQE of a radiographic screen–film system,” in Application of Optical Instrumentation in Medicine XIII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE535, 166–185 (1985).
[CrossRef]

R. L. Van Metter, R. Shaw, “The effect of bias exposure on the detective quantum efficiency of radiographic screen–film systems,” in Application of Optical Instrumentation in Medicine XIII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE535, 157–162 (1985).
[CrossRef]

P. L. Dillon, J. F. Hamilton, M. Rabbani, R. Shaw, R. L. Van Metter, “Principles governing the transfer of signal modulation and photon noise by amplifying and scattering mechanisms,” in Application of Optical Instrumentation in Medicine XIII, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE535, 130–139 (1985).
[CrossRef]

W. Hillen, W. Eckenbach, P. Quadflieg, T. Zaengel, “Signal-to-noise performance in cesium iodide x-ray fluorescent screens,” in Medical Imaging V: Image Physics, R. H. Schneider, ed. Proc. SPIE1443, 120–131 (1991).
[CrossRef]

I. A. Cunningham, “Degradation of the detective quantum efficiency due to a non-unity detector fill factor,” in Medical Imaging 1997: Physics of Medical Imaging, R. L. Van Metter, J. Beutel, eds., Proc. SPIE3032, 22–31 (1997).
[CrossRef]

I. A. Cunningham, M. S. Westmore, A. Fenster, “Visual impact of the non-zero spatial frequency quantum sink,” in Medical Imaging 1994: Physics of Medical Imaging, R. Shaw, ed., Proc. SPIE2163, 274–283 (1994).
[CrossRef]

I. A. Cunningham, “Linear-systems modeling of parallel cascaded stochastic processes: the NPS of radiographic screens with reabsorption of characteristic radiation,” in Medical Imaging 1998: Physics of Medical Imaging, J. T. Dobbins, J. M. Boone, eds., Proc. SPIE3336, 220–230 (1998).
[CrossRef]

M. M. Ter-Pogossian, The Physical Aspects of Diagnostic Radiology (Harper & Row, New York, 1967).

C. A. Mistretta, “X-ray image intensifiers,” in American Association of Physicists in Medicine Monogr. No. 3, The Physics of Medical Imaging: Recording System Measurements and Techniques, A. G. Haus, ed. (American Institute of Physics, New York, 1979), pp. 182–205.

A. Macovski, Medical Imaging Systems (Prentice-Hall, Englewood Cliffs, N.J., 1983).

H. Roehrig, S. Nudelman, T. Y. Fu, “Electro-optical devices for use in photoelectronic-digital radiology,” in American Association of Physicists in Medicine Monogr. No. 11, Electronic Imaging in Medicine, G. D. Fullerton, W. R. Hendee, J. C. Lasher, W. S. Properzio, S. J. Riederer, eds. (American Institute of Physics, New York, 1984), pp. 82–129.

H. Roehrig, T. Y. Fu, “Physical properties of photoelectronic imaging devices and systems,” in American Association of Physicists in Medicine Monogr. No. 12, Recent Developments in Digital Imaging, K. Doi, L. Lanzl, P. J. P. Lin, eds. (American Institute of Physics, New York, 1985), pp. 82–140.

R. F. Wagner, K. E. Weaver, “Noise measurements on rare-earth intensifying screen systems,” in Medical X-Ray Photo-Optical Systems Evaluation, R. F. Wagner, K. E. Weaver, D. G. Goodenough, eds., Proc. SPIE56, 198–207 (1974).
[CrossRef]

O. H. Schade, “Evaluation of noisy images,” in Medical X-Ray Photo-Optical Systems Evaluation, R. F. Wagner, K. E. Weaver, D. G. Goodenough, eds., Proc. SPIE56, 107–114 (1974).
[CrossRef]

A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed. (McGraw-Hill, New York, 1991).

I. A. Cunningham, “Analyzing system performance,” in The Expanding Role of Medical Physics in Diagnostic Imaging, G. D. Frey, P. Sprawls, eds. (Advanced Medical Publishing for American Association of Physicists in Medicine, Madison, Wis.1997), pp. 231–263.

“Medical imaging—the assessment of image quality,” (International Commission of Radiation Units and Measurements, Bethesda, Md., 1995).

H. H. Barrett, R. F. Wagner, K. J. Myers, “Correlated point processes in radiological imaging,” in Medical Imaging 1997: Physics of Medical Imaging, R. L. Van Metter, J. Beutel, eds., Proc. SPIE3032, 110–125 (1997).
[CrossRef]

M. Rabbani, R. Shaw, “The influence of grain threshold on quantum mottle in radiographic film–screen systems,” in Medical Imaging, S. J. Dwyer, R. H. Schneider, eds., Proc. SPIE767, 226–235 (1987).
[CrossRef]

M. Rabbani, R. Shaw, “The influence of grain threshold on quantum mottle in radiographic screen–film systems. II,” in Medical Imaging II: Part A—Image Formation, Detection, Processing, and Interpretation, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE914A, 117–127 (1988).
[CrossRef]

M. Rabbani, R. L. Van Metter, “Some new applications of multivariate moment-generating functions to screen–film systems,” in Medical Imaging III: Image Formation, S. J. Dwyer, R. Jost, R. H. Schneider, eds., Proc. SPIE1090, 86–94 (1989).
[CrossRef]

R. L. Van Metter, M. Rabbani, “Analysis of the effects of depth dependence of x-ray interactions on the NPS of radiographic screens,” in Medical Imaging IV: Image Formation, R. H. Schneider, ed., Proc. SPIE1231, 271–274 (1990).
[CrossRef]

H. H. Barrett, J. L. Denny, H. C. Gifford, C. K. Abbey, R. F. Wagner, K. J. Myers, “Generalized NEQ: Fourier analysis where you would least expect to find it,” in Medical Imaging 1996: Physics of Medical Imaging, R. L. Van Metter, J. Beutel, eds., Proc. SPIE2708, 41–52 (1996).
[CrossRef]

A. Rose, Vision: Human and Electronic (Plenum, New York, 1974).

American National Standards Institute, “Methods for the sensitometry of medical x-ray screen–film processing systems,” (American National Standards Institute, New York, 1982).

A. Rose, “Television pickup tubes and the problem of vision,” in Advances in Electronics and Electron Physics, L. Marton, ed. (Academic, New York, 1948), pp. 131–166.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

NEQ characteristics for a model screen,39 compared with an ideal quantum-limited detector, NEQideal(q¯, 0).

Fig. 2
Fig. 2

The low-spatial-frequency NEQ characteristics for a model film.39

Fig. 3
Fig. 3

Model NEQ characteristics for screen–film combination. Regions A–D indicate differing influences of screen- and film-component parameters.

Fig. 4
Fig. 4

Schematic of a stochastic amplification stage cascading into a stochastic scattering stage.42

Fig. 5
Fig. 5

Schematic of the approach used to find a solution for noise transfer by a radiographic screen–film system.46,47

Fig. 6
Fig. 6

Schematic of a hypothetical system consisting of a radiographic screen, a lens assembly, and a CCD camera.

Fig. 7
Fig. 7

QAD analysis of the system shown in Fig. 6. This analysis shows that a secondary quantum sink exists in the number of optical quanta at spatial frequencies greater than approximately 2.5 c/mm. A Monte Carlo calculation was used to generate images composed of the distribution of image quanta at each stage of the cascade, illustrating the degradation in image quality.

Fig. 8
Fig. 8

The experimentally measured DQE and the theoretical DQE based on the cascaded model show excellent agreement for a video-based imaging system developed for radiation therapy verification.

Fig. 9
Fig. 9

Schematic of the parallel cascade model used to determine the reabsorption of characteristic K x rays in a radiographic screen.

Tables (1)

Tables Icon

Table 1 Expressions Describing Transfer of Average Number of Quanta, q¯, and Noise, NPS (u), through Three Elementary Processes

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

SNRRose=A(q¯b-q¯o)Aq¯b=CAq¯b.
NPSd(u, v)=limX,Y E12X12Y-XX-YYΔd(x, y)×exp[-i2π(ux+vy)]dxdy2,
σ2=--NPS(u, v)dudv.
Nb=-ax/2ax/2-ay/2ay/2qb(x, y)dxdy
=--qb(x, y)xax, yaydxdy,
Nb=qb(x, y) ** (x/ax, y/ay)|x,y=0,0
=d(x, y)|x,y=0,0,
σb2=--NPSd(u, v)dudv
=ax2ay2--NPSb(u, v)×sinc2(πaxu)sinc2(πayv)dudv,
σb2=ax2ay2q¯b-- sinc2(πaxu)sinc2(πayv)dudv
=axayq¯b=Aq¯b,
NEQ(q¯, u)=q¯2G¯2MTF2(u)NPSd(u)
NEQ(q¯, u)=d¯2MTF2(u)NPSd(u),
NEQ(q¯, u)=(log10 e)2γ2MTF2(u)NPS(u),
SNRI2=G¯2-|Δf˜in(u)|2MTF2(u)NPSd(u)du
DQE(u)=NEQ(u)q¯=qG¯2MTF2(u)NPSd(u),
=d¯2MTF2(u)q¯NPSd(u),
DQE(u)=SNRout2(q¯, u)SNRin2(q¯, u).
DQE(q¯, u)=(log10 e)2γ2MTF2(u)q¯NPS(u)
DQESF(q¯, u)=ηS1+mm+1mηFDQEF(q¯, u)MTFS2(u),
σout2=g¯2σin2+σg2N¯in.
σg2=g¯(1-g¯).
DQE11+1g¯1+1g¯1g¯2++1g¯1g¯2g¯N,
DQE(u)=11+1+g1MTF12(u)g¯1MTF12(u)++1+gNMTFN2(u)g¯1g¯NMTF12(u)MTFN2(u),
gj=σgj2g¯j-1.
DQE(u)11+1g¯1MTF12(u)++1g¯1g¯NMTF12(u)MTFN2(u),

Metrics