Abstract

The low-pass nature of the optical systems (both coherent and incoherent) used for volume optical storage results in the presence of intersymbol interference (ISI) at the output of these systems. Since ISI can seriously degrade retrieved data fidelity, we consider the design of linear, minimum-mean-square-error equalizers for two-dimensional finite-contrast optical ISI channels. Signal models are developed and filter design is conducted for various operating environments associated with particular implementations of page-oriented optical memories (POM’s). Specifically, we consider optically incoherent systems dominated by either postdetection thermal or photon-shot noise, and coherent systems are treated subject to either postdetection thermal or coherent speckle noise. Simple locally connected postdetection filters (equalizers) are designed to reduce the impact of ISI and finite contrast on retrieved data. It is demonstrated how these simple ISI mitigation algorithms may be used to improve the fidelity (i.e., bit error rate) of retrieved data and also to enhance the space–bandwidth-product (SBP), the storage density, and the memory capacity of POM systems. The notion of a fidelity-based SBP is quantified and shown to depend strongly on the receiver processing. The fidelity-based SBP of thermal-noise-dominated incoherent imaging systems operating at the Rayleigh resolution is shown to improve by 28% through the use of equalization, and a 48% SBP increase is found in the shot-noise-dominated case. More dramatic gains are found for thermal-noise-dominated coherent systems operating at the Rayleigh resolution, with 116% SBP gains typical in the infinite-contrast case and 30% gains possible for low-contrast (C=4) cases. Equalization is also shown to facilitate a capacity increase for holographic POM systems, providing a 47% increase in the number of stored pages and the storage density for a system operating at the Rayleigh resolution. The maximum storage density in holographic POM is increased by 20% through the use of equalization.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393–400 (1963).
    [CrossRef]
  2. F. S. Chen, J. T. La Macchia, D. B. Frazer, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223 (1968).
    [CrossRef]
  3. B. Hill, “Holographic memories and their future,” in Advances in Holography, N. Farhat, ed. (Marcel Dekker, New York, 1976), Vol. 3, pp. 1–251.
  4. D. Psaltis, “Parallel optics memories,” BYTE 17, 179–182 (1992).
  5. G. Sincerbox, “Holographic storage: will the material and component technology meet the new challenges,” in International Conference on Holography and Optical Information Processing, G. Jin, G. Mu, G. T. Sincerbox, eds., Proc. SPIE2866, 130–135 (1996).
    [CrossRef]
  6. S. Campbell, X. Yi, P. Yeh, “Hybrid sparse-wavelength angularly multiplexed optical data storage system,” Opt. Lett. 19, 2161–2163 (1994).
    [CrossRef] [PubMed]
  7. I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, J. H. Hong, “Compact holographic storage demonstrator with rapid access,” Appl. Opt. 35, 2375–2379 (1996).
    [CrossRef] [PubMed]
  8. H.-Y. S. Li, D. Psaltis, “Three dimensional holographic disks,” Appl. Opt. 33, 3764–3774 (1994).
    [CrossRef] [PubMed]
  9. E. S. Maniloff, S. B. Altner, S. Bernet, F. R. Graf, A. Renn, U. P. Wild, “Recording of 6000 holograms by use of spectral hole burning,” Appl. Opt. 34, 4140–4148 (1995).
    [CrossRef] [PubMed]
  10. F. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
    [CrossRef] [PubMed]
  11. G. W. Burr, F. H. Mok, D. Psaltis, “Angle and space multiplexed holographic storage using the 90 degree geometry,” Opt. Commun. 117, 49–55 (1995).
    [CrossRef]
  12. G. Rakuljic, V. Leyva, A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
    [CrossRef]
  13. C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
    [CrossRef]
  14. A. S. Dvornikov, I. Cokgor, F. McCormick, R. Piyaket, S. Esner, P. M. Rentzepis, “Molecular transformations as a means for 3D optical memory devices,” Opt. Commun. 128, 205–210 (1996).
    [CrossRef]
  15. D. Lande, J. F. Heanue, M. C. Bashaw, L. Hesselink, “Digital wavelength-multiplexed holographic data storage systems,” Opt. Lett. 21, 1780–1782 (1996).
    [CrossRef] [PubMed]
  16. K. M. Chugg, X. P. Chen, M. A. Neifeld, “Two-dimensional linear MMSE equalization for page-oriented optical memories,” in Proceedings of the 31st Annual Asliomar Conference on Signals, Systems, and Computers (IEEE Computer Society Press, Los Alamitos, Calif., 1997), Paper MP6-7.
  17. J. Heanue, M. Bashaw, L. Hesselink, “Channel codes for digital holographic data storage,” J. Opt. Soc. Am. A 12, 2432–2439 (1995).
    [CrossRef]
  18. B. Olson, S. Esener, “Partial response precoding for parallel readout optical memories,” Opt. Lett. 19, 661–663 (1994).
    [CrossRef] [PubMed]
  19. B. Olson, S. Esener, “Multidimensional partial response for parallel readout optical memories,” in Photonics for Processers, Neural Networks, and Memories II, B. Javidi, J. L. Horner, eds., Proc. SPIE2297, 331–344 (1994).
    [CrossRef]
  20. J. F. Heanue, K. Gurkan, L. Hesselink, “Signal detection for page access optical memories with intersymbol interference,” Appl. Opt. 35, 2431–2438 (1996).
    [CrossRef] [PubMed]
  21. J. F. Hutton, G. A. Betzos, M. Schaffer, P. A. Mitkas, “Error correcting codes for page-oriented optical memories,” in Materials, Devices, and Processing for Optoelectronic Processing, B. Javidi, J. A. Neff, eds., Proc. SPIE2848, 146–156 (1996).
    [CrossRef]
  22. B. J. Goertzen, P. A. Mitkas, “Error-correcting code for volume holographic storage of a relational database,” Opt. Lett. 20, 1655–1657 (1995).
    [CrossRef] [PubMed]
  23. G. W. Burr, J. Ashley, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, “Modulation coding for pixel-matched holographic data storage,” Opt. Lett. 22, 639–641 (1997).
    [CrossRef] [PubMed]
  24. A. Vardy, M. Blaum, P. H. Siegel, G. Sincerbox, “Conservative arrays: multidimensional modulation codes for holographic recording,” IEEE Trans. Inf. Theory 42, 227–229 (1996).
    [CrossRef]
  25. M. A. Neifeld, J. D. Hayes, “Parallel error correction for optical memories,” J. Opt. Mem. Neural Networks 3, 87–98 (1994).
  26. M. A. Neifeld, M. McDonald, “Error correction for increasing the usable capacity of photorefractive memories,” Opt. Lett. 19, 1483–1485 (1994).
    [CrossRef] [PubMed]
  27. M. A. Neifeld, J. D. Hayes, “Error correction schemes for volume optical memories,” Appl. Opt. 34, 8183–8191 (1995).
    [CrossRef] [PubMed]
  28. M. P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, E. Oesterschulze, R. M. Shelby, G. T. Sincerbox, M. Quintanilla, “Effects of multilevel phase masks on interpixel crosstalk in digital holographic storage,” Appl. Opt. 36, 3107–3115 (1997).
    [CrossRef] [PubMed]
  29. M. P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. McFarlane, R. M. Shelby, G. T. Sincerbox, G. Wittman, “Holographic data storage materials,” MRS Bull. 21, 51–60 (1996).
  30. G. W. Burr, W. C. Chou, M. A. Neifeld, H. Coufal, J. A. Hoffnagle, C. M. Jefferson, “Experimental evaluation of user capacity in holographic data-storage systems,” Appl. Opt. 37, 5431–5443 (1998).
    [CrossRef]
  31. W. C. Chou, M. A. Neifeld, “Interleaving and error correction in volume holographic memory systems,” Appl. Opt. 37, 6951–6968 (1998).
    [CrossRef]
  32. M. C. Bashaw, J. F. Heanue, L. Hesselink, “Organization of data for monochromatic multiplexed volume holography,” J. Opt. Soc. Am. A 13, 2174–2186 (1996).
    [CrossRef]
  33. C. Gu, J. Hong, I. McMichael, R. Saxena, F. Mok, “Cross-talk limited storage capacity of volume holographic memory,” J. Opt. Soc. Am. A 10, 2547–2550 (1993).
  34. X. Yi, P. Yeh, C. Gu, “Statistical analysis of cross-talk noise and storage capacity in volume holographic memory,” Opt. Lett. 19, 1580–1582 (1994).
    [CrossRef] [PubMed]
  35. E. S. Maniloff, K. M. Johnson, “Effects of scattering on the dynamics of holographic recording and erasure in photorefractive lithium niobate,” J. Appl. Phys. 73, 541–547 (1993).
    [CrossRef]
  36. M. A. Neifeld, K. M. Chugg, B. M. King, “Parallel data detection in page oriented optical memory,” Opt. Lett. 21, 1481–1483 (1996).
    [CrossRef] [PubMed]
  37. C. L. Miller, B. R. Hunt, M. W. Marcellin, M. A. Neifeld, “Binary image reconstructions via 2D Viterbi search,” in Proceedings of IEEE International Conference on Image Processing1997 (IEEE, Piscataway, N.J., 1997), pp. 181–184.
  38. X. P. Chen, K. M. Chugg, “Near-optimal page detection for two-dimensional ISI/AWGN channels using concatenated modeling and iterative detection,” in Proceedings of the International Conference on Communications 1998 (IEEE, Piscataway, N.J., 1998), Paper S27P4.
  39. S. Gopalaswamy, B. V. Kumar, “Readback channel model for an optical tape system,” in 1994 Topical Meeting on Optical Data Storage, D. K. Campbell, M. Chen, K. Ogawa, eds., Proc. SPIE2338, 222–229 (1994).
    [CrossRef]
  40. S. Gopalaswamy, B. V. Kumar, “Decision feedback equalization with multi-channel readback in high density optical recording,” in Coding and Signal Processing for Information Storage, M. N. Armenise, S. Najafi, eds., Proc. SPIE2605, 65–76 (1995).
    [CrossRef]
  41. H. Stark, J. W. Woods, Probability, Random Processes, and Estimation Theory for Engineers (Prentice-Hall, Englewood Cliffs, N.J., 1986).
  42. I. S. Reed, “On a moment theorem for complex Gaussian processes,” IRE Trans. Inf. Theory IT-8, 194–195 (1962).
    [CrossRef]
  43. J. G. Proakis, Digital Communications, 3rd ed. (McGraw-Hill, New York, 1995).
  44. K. M. Chugg, “Performance of optimal digital page detection in a two-dimensional ISI/AWGN channel,” in Proceedings of the 30th Annual Asilomar Conference on Signal, Systems and Computers (IEEE Computer Society Press, Los Alamitos, Calif., 1996), Paper TP4-8.
  45. E. S. Maniloff, K. M. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991).
    [CrossRef]
  46. D. Brady, D. Psaltis, “Information capacity of 3D holographic data storage,” Opt. Quantum Electron. 25, 597–610 (1993).
    [CrossRef]
  47. M. A. Neifeld, M. McDonald, “Lens design issues impacting page access to volume optical media,” Opt. Commun. 120, 8–14 (1995).
    [CrossRef]
  48. D. Mendlovic, A. W. Lohmann, “Space–bandwidth product adaptation and its application to superresolution: fundamentals,” J. Opt. Soc. Am. A 14, 558–562 (1997).
    [CrossRef]
  49. A. J. denDekker, A. vandenBos, “Resolution: a survey,” J. Opt. Soc. Am. A 14, 547–557 (1997).
    [CrossRef]
  50. A. Strasser, E. Maniloff, K. Johnson, S. Goggin, “Procedure for recording multiple-exposure holograms with equal diffraction efficiency in photorefractive media,” Opt. Lett. 14, 6–8 (1989).
    [CrossRef] [PubMed]
  51. D. Brady, D. Psaltis, “Control of volume holograms,” J. Opt. Soc. Am. A 9, 1167–1182 (1992).
    [CrossRef]
  52. B. M. King, M. A. Neifeld, “Parallel detection algorithm for page-oriented optical memories,” Appl. Opt. 37, 6275–6298 (1998).
    [CrossRef]

1998

1997

1996

A. S. Dvornikov, I. Cokgor, F. McCormick, R. Piyaket, S. Esner, P. M. Rentzepis, “Molecular transformations as a means for 3D optical memory devices,” Opt. Commun. 128, 205–210 (1996).
[CrossRef]

A. Vardy, M. Blaum, P. H. Siegel, G. Sincerbox, “Conservative arrays: multidimensional modulation codes for holographic recording,” IEEE Trans. Inf. Theory 42, 227–229 (1996).
[CrossRef]

M. P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. McFarlane, R. M. Shelby, G. T. Sincerbox, G. Wittman, “Holographic data storage materials,” MRS Bull. 21, 51–60 (1996).

M. C. Bashaw, J. F. Heanue, L. Hesselink, “Organization of data for monochromatic multiplexed volume holography,” J. Opt. Soc. Am. A 13, 2174–2186 (1996).
[CrossRef]

I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, J. H. Hong, “Compact holographic storage demonstrator with rapid access,” Appl. Opt. 35, 2375–2379 (1996).
[CrossRef] [PubMed]

J. F. Heanue, K. Gurkan, L. Hesselink, “Signal detection for page access optical memories with intersymbol interference,” Appl. Opt. 35, 2431–2438 (1996).
[CrossRef] [PubMed]

M. A. Neifeld, K. M. Chugg, B. M. King, “Parallel data detection in page oriented optical memory,” Opt. Lett. 21, 1481–1483 (1996).
[CrossRef] [PubMed]

D. Lande, J. F. Heanue, M. C. Bashaw, L. Hesselink, “Digital wavelength-multiplexed holographic data storage systems,” Opt. Lett. 21, 1780–1782 (1996).
[CrossRef] [PubMed]

1995

1994

1993

F. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
[CrossRef] [PubMed]

E. S. Maniloff, K. M. Johnson, “Effects of scattering on the dynamics of holographic recording and erasure in photorefractive lithium niobate,” J. Appl. Phys. 73, 541–547 (1993).
[CrossRef]

C. Gu, J. Hong, I. McMichael, R. Saxena, F. Mok, “Cross-talk limited storage capacity of volume holographic memory,” J. Opt. Soc. Am. A 10, 2547–2550 (1993).

D. Brady, D. Psaltis, “Information capacity of 3D holographic data storage,” Opt. Quantum Electron. 25, 597–610 (1993).
[CrossRef]

1992

1991

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

E. S. Maniloff, K. M. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991).
[CrossRef]

1989

1968

F. S. Chen, J. T. La Macchia, D. B. Frazer, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223 (1968).
[CrossRef]

1963

1962

I. S. Reed, “On a moment theorem for complex Gaussian processes,” IRE Trans. Inf. Theory IT-8, 194–195 (1962).
[CrossRef]

Altner, S. B.

Ashley, J.

Bashaw, M.

Bashaw, M. C.

Bernal, M. P.

M. P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, E. Oesterschulze, R. M. Shelby, G. T. Sincerbox, M. Quintanilla, “Effects of multilevel phase masks on interpixel crosstalk in digital holographic storage,” Appl. Opt. 36, 3107–3115 (1997).
[CrossRef] [PubMed]

M. P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. McFarlane, R. M. Shelby, G. T. Sincerbox, G. Wittman, “Holographic data storage materials,” MRS Bull. 21, 51–60 (1996).

Bernet, S.

Betzos, G. A.

J. F. Hutton, G. A. Betzos, M. Schaffer, P. A. Mitkas, “Error correcting codes for page-oriented optical memories,” in Materials, Devices, and Processing for Optoelectronic Processing, B. Javidi, J. A. Neff, eds., Proc. SPIE2848, 146–156 (1996).
[CrossRef]

Blaum, M.

A. Vardy, M. Blaum, P. H. Siegel, G. Sincerbox, “Conservative arrays: multidimensional modulation codes for holographic recording,” IEEE Trans. Inf. Theory 42, 227–229 (1996).
[CrossRef]

Brady, D.

D. Brady, D. Psaltis, “Information capacity of 3D holographic data storage,” Opt. Quantum Electron. 25, 597–610 (1993).
[CrossRef]

D. Brady, D. Psaltis, “Control of volume holograms,” J. Opt. Soc. Am. A 9, 1167–1182 (1992).
[CrossRef]

Burr, G. W.

Campbell, S.

Chang, T. Y.

Chen, F. S.

F. S. Chen, J. T. La Macchia, D. B. Frazer, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223 (1968).
[CrossRef]

Chen, X. P.

X. P. Chen, K. M. Chugg, “Near-optimal page detection for two-dimensional ISI/AWGN channels using concatenated modeling and iterative detection,” in Proceedings of the International Conference on Communications 1998 (IEEE, Piscataway, N.J., 1998), Paper S27P4.

K. M. Chugg, X. P. Chen, M. A. Neifeld, “Two-dimensional linear MMSE equalization for page-oriented optical memories,” in Proceedings of the 31st Annual Asliomar Conference on Signals, Systems, and Computers (IEEE Computer Society Press, Los Alamitos, Calif., 1997), Paper MP6-7.

Chou, W. C.

Christian, W.

Chugg, K. M.

M. A. Neifeld, K. M. Chugg, B. M. King, “Parallel data detection in page oriented optical memory,” Opt. Lett. 21, 1481–1483 (1996).
[CrossRef] [PubMed]

X. P. Chen, K. M. Chugg, “Near-optimal page detection for two-dimensional ISI/AWGN channels using concatenated modeling and iterative detection,” in Proceedings of the International Conference on Communications 1998 (IEEE, Piscataway, N.J., 1998), Paper S27P4.

K. M. Chugg, X. P. Chen, M. A. Neifeld, “Two-dimensional linear MMSE equalization for page-oriented optical memories,” in Proceedings of the 31st Annual Asliomar Conference on Signals, Systems, and Computers (IEEE Computer Society Press, Los Alamitos, Calif., 1997), Paper MP6-7.

K. M. Chugg, “Performance of optimal digital page detection in a two-dimensional ISI/AWGN channel,” in Proceedings of the 30th Annual Asilomar Conference on Signal, Systems and Computers (IEEE Computer Society Press, Los Alamitos, Calif., 1996), Paper TP4-8.

Cokgor, I.

A. S. Dvornikov, I. Cokgor, F. McCormick, R. Piyaket, S. Esner, P. M. Rentzepis, “Molecular transformations as a means for 3D optical memory devices,” Opt. Commun. 128, 205–210 (1996).
[CrossRef]

Coufal, H.

denDekker, A. J.

Denz, C.

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Dvornikov, A. S.

A. S. Dvornikov, I. Cokgor, F. McCormick, R. Piyaket, S. Esner, P. M. Rentzepis, “Molecular transformations as a means for 3D optical memory devices,” Opt. Commun. 128, 205–210 (1996).
[CrossRef]

Esener, S.

B. Olson, S. Esener, “Partial response precoding for parallel readout optical memories,” Opt. Lett. 19, 661–663 (1994).
[CrossRef] [PubMed]

B. Olson, S. Esener, “Multidimensional partial response for parallel readout optical memories,” in Photonics for Processers, Neural Networks, and Memories II, B. Javidi, J. L. Horner, eds., Proc. SPIE2297, 331–344 (1994).
[CrossRef]

Esner, S.

A. S. Dvornikov, I. Cokgor, F. McCormick, R. Piyaket, S. Esner, P. M. Rentzepis, “Molecular transformations as a means for 3D optical memory devices,” Opt. Commun. 128, 205–210 (1996).
[CrossRef]

Frazer, D. B.

F. S. Chen, J. T. La Macchia, D. B. Frazer, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223 (1968).
[CrossRef]

Goertzen, B. J.

Goggin, S.

Gopalaswamy, S.

S. Gopalaswamy, B. V. Kumar, “Readback channel model for an optical tape system,” in 1994 Topical Meeting on Optical Data Storage, D. K. Campbell, M. Chen, K. Ogawa, eds., Proc. SPIE2338, 222–229 (1994).
[CrossRef]

S. Gopalaswamy, B. V. Kumar, “Decision feedback equalization with multi-channel readback in high density optical recording,” in Coding and Signal Processing for Information Storage, M. N. Armenise, S. Najafi, eds., Proc. SPIE2605, 65–76 (1995).
[CrossRef]

Graf, F. R.

Grygier, R. K.

Gu, C.

Gurkan, K.

Hayes, J. D.

M. A. Neifeld, J. D. Hayes, “Error correction schemes for volume optical memories,” Appl. Opt. 34, 8183–8191 (1995).
[CrossRef] [PubMed]

M. A. Neifeld, J. D. Hayes, “Parallel error correction for optical memories,” J. Opt. Mem. Neural Networks 3, 87–98 (1994).

Heanue, J.

Heanue, J. F.

Hesselink, L.

Hill, B.

B. Hill, “Holographic memories and their future,” in Advances in Holography, N. Farhat, ed. (Marcel Dekker, New York, 1976), Vol. 3, pp. 1–251.

Hoffnagle, J. A.

Hong, J.

Hong, J. H.

Hunt, B. R.

C. L. Miller, B. R. Hunt, M. W. Marcellin, M. A. Neifeld, “Binary image reconstructions via 2D Viterbi search,” in Proceedings of IEEE International Conference on Image Processing1997 (IEEE, Piscataway, N.J., 1997), pp. 181–184.

Hutton, J. F.

J. F. Hutton, G. A. Betzos, M. Schaffer, P. A. Mitkas, “Error correcting codes for page-oriented optical memories,” in Materials, Devices, and Processing for Optoelectronic Processing, B. Javidi, J. A. Neff, eds., Proc. SPIE2848, 146–156 (1996).
[CrossRef]

Jefferson, C. M.

Johnson, K.

Johnson, K. M.

E. S. Maniloff, K. M. Johnson, “Effects of scattering on the dynamics of holographic recording and erasure in photorefractive lithium niobate,” J. Appl. Phys. 73, 541–547 (1993).
[CrossRef]

E. S. Maniloff, K. M. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991).
[CrossRef]

King, B. M.

Kumar, B. V.

S. Gopalaswamy, B. V. Kumar, “Readback channel model for an optical tape system,” in 1994 Topical Meeting on Optical Data Storage, D. K. Campbell, M. Chen, K. Ogawa, eds., Proc. SPIE2338, 222–229 (1994).
[CrossRef]

S. Gopalaswamy, B. V. Kumar, “Decision feedback equalization with multi-channel readback in high density optical recording,” in Coding and Signal Processing for Information Storage, M. N. Armenise, S. Najafi, eds., Proc. SPIE2605, 65–76 (1995).
[CrossRef]

La Macchia, J. T.

F. S. Chen, J. T. La Macchia, D. B. Frazer, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223 (1968).
[CrossRef]

Lande, D.

Leyva, V.

Li, H.-Y. S.

Lohmann, A. W.

Maniloff, E.

Maniloff, E. S.

E. S. Maniloff, S. B. Altner, S. Bernet, F. R. Graf, A. Renn, U. P. Wild, “Recording of 6000 holograms by use of spectral hole burning,” Appl. Opt. 34, 4140–4148 (1995).
[CrossRef] [PubMed]

E. S. Maniloff, K. M. Johnson, “Effects of scattering on the dynamics of holographic recording and erasure in photorefractive lithium niobate,” J. Appl. Phys. 73, 541–547 (1993).
[CrossRef]

E. S. Maniloff, K. M. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991).
[CrossRef]

Marcellin, M. W.

C. L. Miller, B. R. Hunt, M. W. Marcellin, M. A. Neifeld, “Binary image reconstructions via 2D Viterbi search,” in Proceedings of IEEE International Conference on Image Processing1997 (IEEE, Piscataway, N.J., 1997), pp. 181–184.

Marcus, B.

McCormick, F.

A. S. Dvornikov, I. Cokgor, F. McCormick, R. Piyaket, S. Esner, P. M. Rentzepis, “Molecular transformations as a means for 3D optical memory devices,” Opt. Commun. 128, 205–210 (1996).
[CrossRef]

McDonald, M.

M. A. Neifeld, M. McDonald, “Lens design issues impacting page access to volume optical media,” Opt. Commun. 120, 8–14 (1995).
[CrossRef]

M. A. Neifeld, M. McDonald, “Error correction for increasing the usable capacity of photorefractive memories,” Opt. Lett. 19, 1483–1485 (1994).
[CrossRef] [PubMed]

McFarlane, R. M.

M. P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. McFarlane, R. M. Shelby, G. T. Sincerbox, G. Wittman, “Holographic data storage materials,” MRS Bull. 21, 51–60 (1996).

McMichael, I.

Mendlovic, D.

Miller, C. L.

C. L. Miller, B. R. Hunt, M. W. Marcellin, M. A. Neifeld, “Binary image reconstructions via 2D Viterbi search,” in Proceedings of IEEE International Conference on Image Processing1997 (IEEE, Piscataway, N.J., 1997), pp. 181–184.

Mitkas, P. A.

B. J. Goertzen, P. A. Mitkas, “Error-correcting code for volume holographic storage of a relational database,” Opt. Lett. 20, 1655–1657 (1995).
[CrossRef] [PubMed]

J. F. Hutton, G. A. Betzos, M. Schaffer, P. A. Mitkas, “Error correcting codes for page-oriented optical memories,” in Materials, Devices, and Processing for Optoelectronic Processing, B. Javidi, J. A. Neff, eds., Proc. SPIE2848, 146–156 (1996).
[CrossRef]

Mok, F.

Mok, F. H.

G. W. Burr, F. H. Mok, D. Psaltis, “Angle and space multiplexed holographic storage using the 90 degree geometry,” Opt. Commun. 117, 49–55 (1995).
[CrossRef]

Neifeld, M. A.

B. M. King, M. A. Neifeld, “Parallel detection algorithm for page-oriented optical memories,” Appl. Opt. 37, 6275–6298 (1998).
[CrossRef]

W. C. Chou, M. A. Neifeld, “Interleaving and error correction in volume holographic memory systems,” Appl. Opt. 37, 6951–6968 (1998).
[CrossRef]

G. W. Burr, W. C. Chou, M. A. Neifeld, H. Coufal, J. A. Hoffnagle, C. M. Jefferson, “Experimental evaluation of user capacity in holographic data-storage systems,” Appl. Opt. 37, 5431–5443 (1998).
[CrossRef]

M. A. Neifeld, K. M. Chugg, B. M. King, “Parallel data detection in page oriented optical memory,” Opt. Lett. 21, 1481–1483 (1996).
[CrossRef] [PubMed]

M. A. Neifeld, J. D. Hayes, “Error correction schemes for volume optical memories,” Appl. Opt. 34, 8183–8191 (1995).
[CrossRef] [PubMed]

M. A. Neifeld, M. McDonald, “Lens design issues impacting page access to volume optical media,” Opt. Commun. 120, 8–14 (1995).
[CrossRef]

M. A. Neifeld, M. McDonald, “Error correction for increasing the usable capacity of photorefractive memories,” Opt. Lett. 19, 1483–1485 (1994).
[CrossRef] [PubMed]

M. A. Neifeld, J. D. Hayes, “Parallel error correction for optical memories,” J. Opt. Mem. Neural Networks 3, 87–98 (1994).

C. L. Miller, B. R. Hunt, M. W. Marcellin, M. A. Neifeld, “Binary image reconstructions via 2D Viterbi search,” in Proceedings of IEEE International Conference on Image Processing1997 (IEEE, Piscataway, N.J., 1997), pp. 181–184.

K. M. Chugg, X. P. Chen, M. A. Neifeld, “Two-dimensional linear MMSE equalization for page-oriented optical memories,” in Proceedings of the 31st Annual Asliomar Conference on Signals, Systems, and Computers (IEEE Computer Society Press, Los Alamitos, Calif., 1997), Paper MP6-7.

Oesterschulze, E.

Olson, B.

B. Olson, S. Esener, “Partial response precoding for parallel readout optical memories,” Opt. Lett. 19, 661–663 (1994).
[CrossRef] [PubMed]

B. Olson, S. Esener, “Multidimensional partial response for parallel readout optical memories,” in Photonics for Processers, Neural Networks, and Memories II, B. Javidi, J. L. Horner, eds., Proc. SPIE2297, 331–344 (1994).
[CrossRef]

Pauliat, G.

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Piyaket, R.

A. S. Dvornikov, I. Cokgor, F. McCormick, R. Piyaket, S. Esner, P. M. Rentzepis, “Molecular transformations as a means for 3D optical memory devices,” Opt. Commun. 128, 205–210 (1996).
[CrossRef]

Pletcher, D.

Proakis, J. G.

J. G. Proakis, Digital Communications, 3rd ed. (McGraw-Hill, New York, 1995).

Psaltis, D.

G. W. Burr, F. H. Mok, D. Psaltis, “Angle and space multiplexed holographic storage using the 90 degree geometry,” Opt. Commun. 117, 49–55 (1995).
[CrossRef]

H.-Y. S. Li, D. Psaltis, “Three dimensional holographic disks,” Appl. Opt. 33, 3764–3774 (1994).
[CrossRef] [PubMed]

D. Brady, D. Psaltis, “Information capacity of 3D holographic data storage,” Opt. Quantum Electron. 25, 597–610 (1993).
[CrossRef]

D. Psaltis, “Parallel optics memories,” BYTE 17, 179–182 (1992).

D. Brady, D. Psaltis, “Control of volume holograms,” J. Opt. Soc. Am. A 9, 1167–1182 (1992).
[CrossRef]

Quintanilla, M.

Rakuljic, G.

Reed, I. S.

I. S. Reed, “On a moment theorem for complex Gaussian processes,” IRE Trans. Inf. Theory IT-8, 194–195 (1962).
[CrossRef]

Renn, A.

Rentzepis, P. M.

A. S. Dvornikov, I. Cokgor, F. McCormick, R. Piyaket, S. Esner, P. M. Rentzepis, “Molecular transformations as a means for 3D optical memory devices,” Opt. Commun. 128, 205–210 (1996).
[CrossRef]

Roosen, G.

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Saxena, R.

Schaffer, M.

J. F. Hutton, G. A. Betzos, M. Schaffer, P. A. Mitkas, “Error correcting codes for page-oriented optical memories,” in Materials, Devices, and Processing for Optoelectronic Processing, B. Javidi, J. A. Neff, eds., Proc. SPIE2848, 146–156 (1996).
[CrossRef]

Shelby, R. M.

M. P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, E. Oesterschulze, R. M. Shelby, G. T. Sincerbox, M. Quintanilla, “Effects of multilevel phase masks on interpixel crosstalk in digital holographic storage,” Appl. Opt. 36, 3107–3115 (1997).
[CrossRef] [PubMed]

M. P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. McFarlane, R. M. Shelby, G. T. Sincerbox, G. Wittman, “Holographic data storage materials,” MRS Bull. 21, 51–60 (1996).

Siegel, P. H.

A. Vardy, M. Blaum, P. H. Siegel, G. Sincerbox, “Conservative arrays: multidimensional modulation codes for holographic recording,” IEEE Trans. Inf. Theory 42, 227–229 (1996).
[CrossRef]

Sincerbox, G.

A. Vardy, M. Blaum, P. H. Siegel, G. Sincerbox, “Conservative arrays: multidimensional modulation codes for holographic recording,” IEEE Trans. Inf. Theory 42, 227–229 (1996).
[CrossRef]

G. Sincerbox, “Holographic storage: will the material and component technology meet the new challenges,” in International Conference on Holography and Optical Information Processing, G. Jin, G. Mu, G. T. Sincerbox, eds., Proc. SPIE2866, 130–135 (1996).
[CrossRef]

Sincerbox, G. T.

M. P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, E. Oesterschulze, R. M. Shelby, G. T. Sincerbox, M. Quintanilla, “Effects of multilevel phase masks on interpixel crosstalk in digital holographic storage,” Appl. Opt. 36, 3107–3115 (1997).
[CrossRef] [PubMed]

M. P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. McFarlane, R. M. Shelby, G. T. Sincerbox, G. Wittman, “Holographic data storage materials,” MRS Bull. 21, 51–60 (1996).

Stark, H.

H. Stark, J. W. Woods, Probability, Random Processes, and Estimation Theory for Engineers (Prentice-Hall, Englewood Cliffs, N.J., 1986).

Strasser, A.

Tschudi, T.

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

van Heerden, P. J.

vandenBos, A.

Vardy, A.

A. Vardy, M. Blaum, P. H. Siegel, G. Sincerbox, “Conservative arrays: multidimensional modulation codes for holographic recording,” IEEE Trans. Inf. Theory 42, 227–229 (1996).
[CrossRef]

Wild, U. P.

Wittman, G.

M. P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. McFarlane, R. M. Shelby, G. T. Sincerbox, G. Wittman, “Holographic data storage materials,” MRS Bull. 21, 51–60 (1996).

Woods, J. W.

H. Stark, J. W. Woods, Probability, Random Processes, and Estimation Theory for Engineers (Prentice-Hall, Englewood Cliffs, N.J., 1986).

Yariv, A.

Yeh, P.

Yi, X.

Appl. Opt.

P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393–400 (1963).
[CrossRef]

H.-Y. S. Li, D. Psaltis, “Three dimensional holographic disks,” Appl. Opt. 33, 3764–3774 (1994).
[CrossRef] [PubMed]

B. M. King, M. A. Neifeld, “Parallel detection algorithm for page-oriented optical memories,” Appl. Opt. 37, 6275–6298 (1998).
[CrossRef]

W. C. Chou, M. A. Neifeld, “Interleaving and error correction in volume holographic memory systems,” Appl. Opt. 37, 6951–6968 (1998).
[CrossRef]

E. S. Maniloff, S. B. Altner, S. Bernet, F. R. Graf, A. Renn, U. P. Wild, “Recording of 6000 holograms by use of spectral hole burning,” Appl. Opt. 34, 4140–4148 (1995).
[CrossRef] [PubMed]

M. A. Neifeld, J. D. Hayes, “Error correction schemes for volume optical memories,” Appl. Opt. 34, 8183–8191 (1995).
[CrossRef] [PubMed]

I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, J. H. Hong, “Compact holographic storage demonstrator with rapid access,” Appl. Opt. 35, 2375–2379 (1996).
[CrossRef] [PubMed]

J. F. Heanue, K. Gurkan, L. Hesselink, “Signal detection for page access optical memories with intersymbol interference,” Appl. Opt. 35, 2431–2438 (1996).
[CrossRef] [PubMed]

M. P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, E. Oesterschulze, R. M. Shelby, G. T. Sincerbox, M. Quintanilla, “Effects of multilevel phase masks on interpixel crosstalk in digital holographic storage,” Appl. Opt. 36, 3107–3115 (1997).
[CrossRef] [PubMed]

G. W. Burr, W. C. Chou, M. A. Neifeld, H. Coufal, J. A. Hoffnagle, C. M. Jefferson, “Experimental evaluation of user capacity in holographic data-storage systems,” Appl. Opt. 37, 5431–5443 (1998).
[CrossRef]

Appl. Phys. Lett.

F. S. Chen, J. T. La Macchia, D. B. Frazer, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223 (1968).
[CrossRef]

BYTE

D. Psaltis, “Parallel optics memories,” BYTE 17, 179–182 (1992).

IEEE Trans. Inf. Theory

A. Vardy, M. Blaum, P. H. Siegel, G. Sincerbox, “Conservative arrays: multidimensional modulation codes for holographic recording,” IEEE Trans. Inf. Theory 42, 227–229 (1996).
[CrossRef]

IRE Trans. Inf. Theory

I. S. Reed, “On a moment theorem for complex Gaussian processes,” IRE Trans. Inf. Theory IT-8, 194–195 (1962).
[CrossRef]

J. Appl. Phys.

E. S. Maniloff, K. M. Johnson, “Effects of scattering on the dynamics of holographic recording and erasure in photorefractive lithium niobate,” J. Appl. Phys. 73, 541–547 (1993).
[CrossRef]

E. S. Maniloff, K. M. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991).
[CrossRef]

J. Opt. Mem. Neural Networks

M. A. Neifeld, J. D. Hayes, “Parallel error correction for optical memories,” J. Opt. Mem. Neural Networks 3, 87–98 (1994).

J. Opt. Soc. Am. A

MRS Bull.

M. P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. McFarlane, R. M. Shelby, G. T. Sincerbox, G. Wittman, “Holographic data storage materials,” MRS Bull. 21, 51–60 (1996).

Opt. Commun.

G. W. Burr, F. H. Mok, D. Psaltis, “Angle and space multiplexed holographic storage using the 90 degree geometry,” Opt. Commun. 117, 49–55 (1995).
[CrossRef]

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

A. S. Dvornikov, I. Cokgor, F. McCormick, R. Piyaket, S. Esner, P. M. Rentzepis, “Molecular transformations as a means for 3D optical memory devices,” Opt. Commun. 128, 205–210 (1996).
[CrossRef]

M. A. Neifeld, M. McDonald, “Lens design issues impacting page access to volume optical media,” Opt. Commun. 120, 8–14 (1995).
[CrossRef]

Opt. Lett.

B. J. Goertzen, P. A. Mitkas, “Error-correcting code for volume holographic storage of a relational database,” Opt. Lett. 20, 1655–1657 (1995).
[CrossRef] [PubMed]

G. W. Burr, J. Ashley, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, “Modulation coding for pixel-matched holographic data storage,” Opt. Lett. 22, 639–641 (1997).
[CrossRef] [PubMed]

M. A. Neifeld, K. M. Chugg, B. M. King, “Parallel data detection in page oriented optical memory,” Opt. Lett. 21, 1481–1483 (1996).
[CrossRef] [PubMed]

D. Lande, J. F. Heanue, M. C. Bashaw, L. Hesselink, “Digital wavelength-multiplexed holographic data storage systems,” Opt. Lett. 21, 1780–1782 (1996).
[CrossRef] [PubMed]

A. Strasser, E. Maniloff, K. Johnson, S. Goggin, “Procedure for recording multiple-exposure holograms with equal diffraction efficiency in photorefractive media,” Opt. Lett. 14, 6–8 (1989).
[CrossRef] [PubMed]

G. Rakuljic, V. Leyva, A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
[CrossRef]

F. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
[CrossRef] [PubMed]

B. Olson, S. Esener, “Partial response precoding for parallel readout optical memories,” Opt. Lett. 19, 661–663 (1994).
[CrossRef] [PubMed]

M. A. Neifeld, M. McDonald, “Error correction for increasing the usable capacity of photorefractive memories,” Opt. Lett. 19, 1483–1485 (1994).
[CrossRef] [PubMed]

X. Yi, P. Yeh, C. Gu, “Statistical analysis of cross-talk noise and storage capacity in volume holographic memory,” Opt. Lett. 19, 1580–1582 (1994).
[CrossRef] [PubMed]

S. Campbell, X. Yi, P. Yeh, “Hybrid sparse-wavelength angularly multiplexed optical data storage system,” Opt. Lett. 19, 2161–2163 (1994).
[CrossRef] [PubMed]

Opt. Quantum Electron.

D. Brady, D. Psaltis, “Information capacity of 3D holographic data storage,” Opt. Quantum Electron. 25, 597–610 (1993).
[CrossRef]

Other

K. M. Chugg, X. P. Chen, M. A. Neifeld, “Two-dimensional linear MMSE equalization for page-oriented optical memories,” in Proceedings of the 31st Annual Asliomar Conference on Signals, Systems, and Computers (IEEE Computer Society Press, Los Alamitos, Calif., 1997), Paper MP6-7.

B. Olson, S. Esener, “Multidimensional partial response for parallel readout optical memories,” in Photonics for Processers, Neural Networks, and Memories II, B. Javidi, J. L. Horner, eds., Proc. SPIE2297, 331–344 (1994).
[CrossRef]

G. Sincerbox, “Holographic storage: will the material and component technology meet the new challenges,” in International Conference on Holography and Optical Information Processing, G. Jin, G. Mu, G. T. Sincerbox, eds., Proc. SPIE2866, 130–135 (1996).
[CrossRef]

B. Hill, “Holographic memories and their future,” in Advances in Holography, N. Farhat, ed. (Marcel Dekker, New York, 1976), Vol. 3, pp. 1–251.

C. L. Miller, B. R. Hunt, M. W. Marcellin, M. A. Neifeld, “Binary image reconstructions via 2D Viterbi search,” in Proceedings of IEEE International Conference on Image Processing1997 (IEEE, Piscataway, N.J., 1997), pp. 181–184.

X. P. Chen, K. M. Chugg, “Near-optimal page detection for two-dimensional ISI/AWGN channels using concatenated modeling and iterative detection,” in Proceedings of the International Conference on Communications 1998 (IEEE, Piscataway, N.J., 1998), Paper S27P4.

S. Gopalaswamy, B. V. Kumar, “Readback channel model for an optical tape system,” in 1994 Topical Meeting on Optical Data Storage, D. K. Campbell, M. Chen, K. Ogawa, eds., Proc. SPIE2338, 222–229 (1994).
[CrossRef]

S. Gopalaswamy, B. V. Kumar, “Decision feedback equalization with multi-channel readback in high density optical recording,” in Coding and Signal Processing for Information Storage, M. N. Armenise, S. Najafi, eds., Proc. SPIE2605, 65–76 (1995).
[CrossRef]

H. Stark, J. W. Woods, Probability, Random Processes, and Estimation Theory for Engineers (Prentice-Hall, Englewood Cliffs, N.J., 1986).

J. F. Hutton, G. A. Betzos, M. Schaffer, P. A. Mitkas, “Error correcting codes for page-oriented optical memories,” in Materials, Devices, and Processing for Optoelectronic Processing, B. Javidi, J. A. Neff, eds., Proc. SPIE2848, 146–156 (1996).
[CrossRef]

J. G. Proakis, Digital Communications, 3rd ed. (McGraw-Hill, New York, 1995).

K. M. Chugg, “Performance of optimal digital page detection in a two-dimensional ISI/AWGN channel,” in Proceedings of the 30th Annual Asilomar Conference on Signal, Systems and Computers (IEEE Computer Society Press, Los Alamitos, Calif., 1996), Paper TP4-8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

BER versus postdetection Gaussian noise strength (σw-2 in decibels) for both equalization and threshold detection. Curves are parameterized by blur width (W) for the incoherent imaging system.

Fig. 2
Fig. 2

BER versus postdetection Gaussian noise strength for both equalization and threshold detection in the case W=1.0. Curves are parameterized by inverse contrast ratio (1 /C) for the incoherent imaging system.

Fig. 3
Fig. 3

BER versus shot noise strength (s2=α1 in decibels) for both equalization and threshold detection. Curves are parameterized by blur width (W) for the incoherent imaging system.

Fig. 4
Fig. 4

BER versus postdetection Gaussian noise strength for both equalization and threshold detection. Curves are parameterized by blur width (W) for the coherent imaging system. (a) Mild blur, (b) more severe blur.

Fig. 5
Fig. 5

BER versus postdetection Gaussian noise strength for both equalization and threshold detection in the case W=1.0. Curves are parameterized by inverse contrast ratio (1 /C) for the coherent imaging system.

Fig. 6
Fig. 6

BER versus coherent field noise strength (E0-2 in decibels) for both equalization and threshold detection. Curves are parameterized by blur width (W) for the coherent imaging system. (a) Mild blur, (b) more severe blur.

Fig. 7
Fig. 7

(a) Fidelity-based SBP versus blur width for an incoherent imaging system dominated by AWGN in the case of infinite-contrast ratio. The fidelity criterion used is a BER of 10-4. (b) SBP gain associated with equalization.

Fig. 8
Fig. 8

Fidelity-based SBP (left-hand y axis) versus inverse contrast ratio for an incoherent imaging system dominated by AWGN in the case of W=1.0. The SBP gain associated with equalization is also shown (right-hand y axis).

Fig. 9
Fig. 9

Fidelity-based SBP (left-hand y axis) versus blur width for an incoherent imaging system dominated by shot noise in the case of infinite-contrast ratio. The SBP gain associated with equalization is also shown (right-hand y axis).

Fig. 10
Fig. 10

Fidelity-based SBP (left-hand y axis) versus blur width for a coherent imaging system dominated by AWGN in the case of infinite-contrast ratio. The SBP gain associated with equalization is also shown (right-hand y axis).

Fig. 11
Fig. 11

Fidelity-based SBP (left-hand y axis) versus inverse contrast ratio for a coherent imaging system dominated by AWGN in the case of W=1.0. The SBP gain associated with equalization is also shown (right-hand y axis).

Fig. 12
Fig. 12

Relative holographic storage capacity versus blur width for the AWGN-dominated infinite-contrast coherent system. The capacity gain associated with equalization is also shown (right-hand y axis).

Fig. 13
Fig. 13

Relative holographic storage density versus blur width for AWGN-dominated infinite-contrast and low-contrast (C=4) coherent systems.

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

s(x, y)=i=1Nj=1Na(i, j)h(x-iΔ, y-jΔ),
mi, j (x, y)=m(x+iΔ, y+jΔ),-Δ/2<x, yΔ/20,otherwise.
si, j (x, y)=l=-LL m=-LLa(i-l, j-m)hl,m(x, y),
d(i, j)=-Δ/2Δ/2-Δ/2Δ/2ri, j (x, y)d x d y,
x(i, j)=l=-LL m=-LLa(i-l, j-m) f (l, m),
f (l, m)=-Δ/2Δ/2-Δ/2Δ/2hl,m(x, y)d x d y.
x(i, j)=n=-LLa(i-l, j-m)a(i-p, j-q)Rh(n),
Rh(n)=-Δ/2Δ/2-Δ/2Δ/2hl,m(x, y)hp,q*(x, y)d x d y.
z(i, j)=y(i, j)+w(i, j),
P[y(i, j)=k|x(i, j)]=[x(i, j)]kk!exp[-x(i, j)], k=0, 1, 2,.
K (x, y)=E0h(x, y)h*(-x,-y),
y(i, j)=-Δ/2Δ/2-Δ/2Δ/2|si, j (x, y)+i, j (x, y)|2 d x d y=-Δ/2Δ/2-Δ/2Δ/2{|si, j (x, y)|2+|i, j (x, y)|2+2 Re[si, j (x, y)i, j (x, y)]}d x d y=x(i, j)+e(i, j)+c(i, j),
aˇ(i, j)=ma+l=-QQm=-QQz0(i-l, j-m)g(l, m)=ma+gt z0(i, j),
Kz g=kz a,
MMSE=E{[a(i, j)-aˇ(i, j)]2}=σa2-gt k za,
Ry(i, j)=x(0, 0), x(i, j)χE{y(0, 0)y(i, j)|x(0, 0), x(i, j)}×P[x(0, 0), x(i, j)]=x(0, 0), x(i, j)χx(0, 0)x(i, j)P[x(0, 0), x(i, j)]=Rx(i, j),
mx=mal,m=-LLf (l, m),
Kx(i, j)=σa2l,m=-LLf (l, m)f (i-l, j-m),
Kxa(i, j)=σa2 f (i, j).
mx=n=-LL[σa2δ(l-p, m-q)+ma2]Rh(n),
Rx(i, j)=n=-LL n=-LLγ (i, j; n; n)Rh(n)Rh(n),
Kxa(i, j)=2maσa2 Rel,m=-LLRh(l, m; i, j),
γ (i, j; n; n)=E {bcde},
my=mx+me+mc,
Ky(i, j)=Kx(i, j)+Ke(i, j)+Kc(i, j).
E {|(x, y)|2}=K(0, 0)=E0,
K||2(x, y)=|K(x, y)|2.
my=mx+E0.
-Δ/2Δ/2 f (x-x, y-y)d xd yd xd y=14Δ2-ΔΔ1-|x|Δ1-|y|Δf (x, y)d x d y.
Ke(i, j)=E{e0(i, j)e0(0, 0)}=-Δ/2Δ/2E {[|i, j (x, y)|2-K(0, 0)]×[|0,0(x, y)|2-K(0, 0)]}d xd yd xdy=-Δ/2Δ/2K||2(iΔ(x-x),jΔ(y-y))d xd yd x d y=14Δ2-ΔΔ1-|x|Δ1-|y|Δ×|K(iΔ+x, jΔ+y)|2 d x d y.
Ku(i, j)=σa2l,m=-LL-Δ/2Δ/2hl,m(x, y)hl-i,m-j*(x, y)×K (x-x-iΔ, y-y-jΔ)d x d yd x d y,
BERQσaσwi, j=-LLh2(i, j)1/2,
S=i, j=-LLh2(i, j)1/2i, j=-LLh(i, j)=h2h1.
σa2=α1(C-1)2C2.

Metrics