Abstract

Orientation discrimination thresholds for Gabor stimuli as a function of spatial frequency [0.6, 1, 2, or 4 cycles per degree (cpd)] and contrast were determined for several directions in the color plane spanned by the long-wavelength-sensitive (L) and medium-wavelength-sensitive (M) cones. For Gabor stimuli with carrier frequencies of 2 or 4 cpd we do not find a systematic and robust advantage of a particular color direction in the LM-cone plane when the stimuli are equated in terms of the sum of the absolute L- and M-cone contrasts. Luminance (L+M) and equiluminant (L2M) stimuli of identical overall L- and M-cone contrast yield identical orientation discrimination thresholds for the 2-cpd stimuli for the entire available contrast range (1–11%). For the very-low-spatial-frequency stimuli, orientation discrimination thresholds are lower for equiluminant stimuli than for luminance stimuli of the same cone contrast; for 4 cpd, orientation discrimination thresholds are slightly higher for equiluminant red–green stimuli than for luminance-defined stimuli.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Morgan, “Hyperacuity,” in Spatial Vision, D. Regan, ed. (Macmillan, London, 1991).
  2. P. Martini, P. Girard, M. C. Morrone, D. C. Burr, “Sensitivity to spatial phase at equiluminance,” Vision Res. 36, 1153–1162 (1996).
    [CrossRef] [PubMed]
  3. J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991).
    [CrossRef] [PubMed]
  4. F. L. Kooi, R. L. De Valois, E. Switkes, “Spatial localisation across channels,” Vision Res. 31, 1627–1631 (1991).
    [CrossRef]
  5. M. A. Webster, K. K. De Valois, E. Switkes, “Orientation and spatial frequency discrimination for luminance and chromatic gratings,” J. Opt. Soc. Am. A 7, 1034–1048 (1990).
    [CrossRef] [PubMed]
  6. G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982), p. 615. Since this transformation matrix is not quite correct for the CIE tristimulus values given by the Minolta chromameter, we also took spectroradiometric measurements (Photo Research SpectroScan 650) and computed the L-, M-, S-cone signals by multiplying the spectral energy distribution with the tabulated Smith–Pokorny fundamentals. The cone excitations based on these two methods differ slightly from each other; however, the differences are significant only in the short-wavelength range. For the purpose of our experiment these deviations are negligible, since we do not investigate S-cone contributions.
  7. R. J. Watt, D. P. Andrews, “APE: adaptive probit estimation of the psychometric function,” Curr. Psychol. Rev. 1, 205–214 (1981).
    [CrossRef]
  8. D. C. Burr, S.-A. Wijesundra, “Orientation discrimination depends on spatial frequency,” Vision Res. 31, 1449–1452 (1991).
    [CrossRef] [PubMed]
  9. G. J. C. van der Horst, M. A. Bouman, “Spatiotemporal chromaticity discrimination,” J. Opt. Soc. Am. 59, 1482–1488 (1967);K. T. Mullen, “The contrast sensitivity of human colour vision to red–green and blue–yellow chromatic gratings,” J. Physiol. (London) 359, 381–409 (1985);D. H. Kelly, “Spatiotemporal variation of chromatic and achromatic contrast thresholds,” J. Opt. Soc. Am. 73, 742–750 (1983).
    [CrossRef] [PubMed]
  10. T. Reisbeck, K. R. Gegenfurtner, “Orientation perception for luminance and isoluminant stimuli,” Invest. Ophthalmol. Visual Sci. (Suppl.) 37, 1073 (1996).
  11. M. S. Livingstone, D. H. Hubel, “Anatomy and physiology of a color system in the primate visual cortex,” J. Neurosci. 4, 309–356 (1984).
    [PubMed]
  12. P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990);D. Y. Ts’O, C. Gilbert, “The organisation of chromatic and spatial interactions in the primate visual cortex,” J. Neurosci. 8, 1712–1727 (1988).
    [PubMed]
  13. A. Bradley, E. Switkes, K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28, 841–856 (1988).
    [CrossRef] [PubMed]
  14. S. M. Wuerger, M. J. Morgan, “Orientation discrimination in humans as a function of chromatic content and spatial frequency,” J. Physiol. 485, 23 (1995).

1996

P. Martini, P. Girard, M. C. Morrone, D. C. Burr, “Sensitivity to spatial phase at equiluminance,” Vision Res. 36, 1153–1162 (1996).
[CrossRef] [PubMed]

T. Reisbeck, K. R. Gegenfurtner, “Orientation perception for luminance and isoluminant stimuli,” Invest. Ophthalmol. Visual Sci. (Suppl.) 37, 1073 (1996).

1995

S. M. Wuerger, M. J. Morgan, “Orientation discrimination in humans as a function of chromatic content and spatial frequency,” J. Physiol. 485, 23 (1995).

1991

J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991).
[CrossRef] [PubMed]

F. L. Kooi, R. L. De Valois, E. Switkes, “Spatial localisation across channels,” Vision Res. 31, 1627–1631 (1991).
[CrossRef]

D. C. Burr, S.-A. Wijesundra, “Orientation discrimination depends on spatial frequency,” Vision Res. 31, 1449–1452 (1991).
[CrossRef] [PubMed]

1990

M. A. Webster, K. K. De Valois, E. Switkes, “Orientation and spatial frequency discrimination for luminance and chromatic gratings,” J. Opt. Soc. Am. A 7, 1034–1048 (1990).
[CrossRef] [PubMed]

P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990);D. Y. Ts’O, C. Gilbert, “The organisation of chromatic and spatial interactions in the primate visual cortex,” J. Neurosci. 8, 1712–1727 (1988).
[PubMed]

1988

A. Bradley, E. Switkes, K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28, 841–856 (1988).
[CrossRef] [PubMed]

1984

M. S. Livingstone, D. H. Hubel, “Anatomy and physiology of a color system in the primate visual cortex,” J. Neurosci. 4, 309–356 (1984).
[PubMed]

1981

R. J. Watt, D. P. Andrews, “APE: adaptive probit estimation of the psychometric function,” Curr. Psychol. Rev. 1, 205–214 (1981).
[CrossRef]

1967

Andrews, D. P.

R. J. Watt, D. P. Andrews, “APE: adaptive probit estimation of the psychometric function,” Curr. Psychol. Rev. 1, 205–214 (1981).
[CrossRef]

Bouman, M. A.

Bradley, A.

A. Bradley, E. Switkes, K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28, 841–856 (1988).
[CrossRef] [PubMed]

Burr, D. C.

P. Martini, P. Girard, M. C. Morrone, D. C. Burr, “Sensitivity to spatial phase at equiluminance,” Vision Res. 36, 1153–1162 (1996).
[CrossRef] [PubMed]

D. C. Burr, S.-A. Wijesundra, “Orientation discrimination depends on spatial frequency,” Vision Res. 31, 1449–1452 (1991).
[CrossRef] [PubMed]

De Valois, K.

A. Bradley, E. Switkes, K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28, 841–856 (1988).
[CrossRef] [PubMed]

De Valois, K. K.

De Valois, R. L.

F. L. Kooi, R. L. De Valois, E. Switkes, “Spatial localisation across channels,” Vision Res. 31, 1627–1631 (1991).
[CrossRef]

Farell, B.

J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991).
[CrossRef] [PubMed]

Gegenfurtner, K. R.

T. Reisbeck, K. R. Gegenfurtner, “Orientation perception for luminance and isoluminant stimuli,” Invest. Ophthalmol. Visual Sci. (Suppl.) 37, 1073 (1996).

Girard, P.

P. Martini, P. Girard, M. C. Morrone, D. C. Burr, “Sensitivity to spatial phase at equiluminance,” Vision Res. 36, 1153–1162 (1996).
[CrossRef] [PubMed]

Hubel, D. H.

M. S. Livingstone, D. H. Hubel, “Anatomy and physiology of a color system in the primate visual cortex,” J. Neurosci. 4, 309–356 (1984).
[PubMed]

Kooi, F. L.

F. L. Kooi, R. L. De Valois, E. Switkes, “Spatial localisation across channels,” Vision Res. 31, 1627–1631 (1991).
[CrossRef]

Krauskopf, J.

J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991).
[CrossRef] [PubMed]

P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990);D. Y. Ts’O, C. Gilbert, “The organisation of chromatic and spatial interactions in the primate visual cortex,” J. Neurosci. 8, 1712–1727 (1988).
[PubMed]

Lennie, P.

P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990);D. Y. Ts’O, C. Gilbert, “The organisation of chromatic and spatial interactions in the primate visual cortex,” J. Neurosci. 8, 1712–1727 (1988).
[PubMed]

Livingstone, M. S.

M. S. Livingstone, D. H. Hubel, “Anatomy and physiology of a color system in the primate visual cortex,” J. Neurosci. 4, 309–356 (1984).
[PubMed]

Martini, P.

P. Martini, P. Girard, M. C. Morrone, D. C. Burr, “Sensitivity to spatial phase at equiluminance,” Vision Res. 36, 1153–1162 (1996).
[CrossRef] [PubMed]

Morgan, M. J.

S. M. Wuerger, M. J. Morgan, “Orientation discrimination in humans as a function of chromatic content and spatial frequency,” J. Physiol. 485, 23 (1995).

M. J. Morgan, “Hyperacuity,” in Spatial Vision, D. Regan, ed. (Macmillan, London, 1991).

Morrone, M. C.

P. Martini, P. Girard, M. C. Morrone, D. C. Burr, “Sensitivity to spatial phase at equiluminance,” Vision Res. 36, 1153–1162 (1996).
[CrossRef] [PubMed]

Reisbeck, T.

T. Reisbeck, K. R. Gegenfurtner, “Orientation perception for luminance and isoluminant stimuli,” Invest. Ophthalmol. Visual Sci. (Suppl.) 37, 1073 (1996).

Sclar, G.

P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990);D. Y. Ts’O, C. Gilbert, “The organisation of chromatic and spatial interactions in the primate visual cortex,” J. Neurosci. 8, 1712–1727 (1988).
[PubMed]

Stiles, W. S.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982), p. 615. Since this transformation matrix is not quite correct for the CIE tristimulus values given by the Minolta chromameter, we also took spectroradiometric measurements (Photo Research SpectroScan 650) and computed the L-, M-, S-cone signals by multiplying the spectral energy distribution with the tabulated Smith–Pokorny fundamentals. The cone excitations based on these two methods differ slightly from each other; however, the differences are significant only in the short-wavelength range. For the purpose of our experiment these deviations are negligible, since we do not investigate S-cone contributions.

Switkes, E.

F. L. Kooi, R. L. De Valois, E. Switkes, “Spatial localisation across channels,” Vision Res. 31, 1627–1631 (1991).
[CrossRef]

M. A. Webster, K. K. De Valois, E. Switkes, “Orientation and spatial frequency discrimination for luminance and chromatic gratings,” J. Opt. Soc. Am. A 7, 1034–1048 (1990).
[CrossRef] [PubMed]

A. Bradley, E. Switkes, K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28, 841–856 (1988).
[CrossRef] [PubMed]

van der Horst, G. J. C.

Watt, R. J.

R. J. Watt, D. P. Andrews, “APE: adaptive probit estimation of the psychometric function,” Curr. Psychol. Rev. 1, 205–214 (1981).
[CrossRef]

Webster, M. A.

Wijesundra, S.-A.

D. C. Burr, S.-A. Wijesundra, “Orientation discrimination depends on spatial frequency,” Vision Res. 31, 1449–1452 (1991).
[CrossRef] [PubMed]

Wuerger, S. M.

S. M. Wuerger, M. J. Morgan, “Orientation discrimination in humans as a function of chromatic content and spatial frequency,” J. Physiol. 485, 23 (1995).

Wyszecki, G.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982), p. 615. Since this transformation matrix is not quite correct for the CIE tristimulus values given by the Minolta chromameter, we also took spectroradiometric measurements (Photo Research SpectroScan 650) and computed the L-, M-, S-cone signals by multiplying the spectral energy distribution with the tabulated Smith–Pokorny fundamentals. The cone excitations based on these two methods differ slightly from each other; however, the differences are significant only in the short-wavelength range. For the purpose of our experiment these deviations are negligible, since we do not investigate S-cone contributions.

Curr. Psychol. Rev.

R. J. Watt, D. P. Andrews, “APE: adaptive probit estimation of the psychometric function,” Curr. Psychol. Rev. 1, 205–214 (1981).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (Suppl.)

T. Reisbeck, K. R. Gegenfurtner, “Orientation perception for luminance and isoluminant stimuli,” Invest. Ophthalmol. Visual Sci. (Suppl.) 37, 1073 (1996).

J. Neurosci.

M. S. Livingstone, D. H. Hubel, “Anatomy and physiology of a color system in the primate visual cortex,” J. Neurosci. 4, 309–356 (1984).
[PubMed]

P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990);D. Y. Ts’O, C. Gilbert, “The organisation of chromatic and spatial interactions in the primate visual cortex,” J. Neurosci. 8, 1712–1727 (1988).
[PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Physiol.

S. M. Wuerger, M. J. Morgan, “Orientation discrimination in humans as a function of chromatic content and spatial frequency,” J. Physiol. 485, 23 (1995).

Vision Res.

D. C. Burr, S.-A. Wijesundra, “Orientation discrimination depends on spatial frequency,” Vision Res. 31, 1449–1452 (1991).
[CrossRef] [PubMed]

A. Bradley, E. Switkes, K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28, 841–856 (1988).
[CrossRef] [PubMed]

P. Martini, P. Girard, M. C. Morrone, D. C. Burr, “Sensitivity to spatial phase at equiluminance,” Vision Res. 36, 1153–1162 (1996).
[CrossRef] [PubMed]

J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991).
[CrossRef] [PubMed]

F. L. Kooi, R. L. De Valois, E. Switkes, “Spatial localisation across channels,” Vision Res. 31, 1627–1631 (1991).
[CrossRef]

Other

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982), p. 615. Since this transformation matrix is not quite correct for the CIE tristimulus values given by the Minolta chromameter, we also took spectroradiometric measurements (Photo Research SpectroScan 650) and computed the L-, M-, S-cone signals by multiplying the spectral energy distribution with the tabulated Smith–Pokorny fundamentals. The cone excitations based on these two methods differ slightly from each other; however, the differences are significant only in the short-wavelength range. For the purpose of our experiment these deviations are negligible, since we do not investigate S-cone contributions.

M. J. Morgan, “Hyperacuity,” in Spatial Vision, D. Regan, ed. (Macmillan, London, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

On the x axis the L-cone contrast and on the y axis the M-cone contrast is plotted. Cone contrast is defined as the incremental cone excitation divided by the cone excitation of the background. When plotted in this plane spanned by the L- and M-cone contrast, stimuli of equivalent overall cone contrast lie on a diamond-shaped contour.

Fig. 2
Fig. 2

Orientation discrimination thresholds for all contrast levels and all three spatial frequencies are plotted in a polar coordinate system. The stimulus is an even-symmetric Gabor patch. The angle in the LM-contrast plane indicates the color direction, and the length of the vector that originates at zero denotes orientation discrimination threshold in degrees of visual angle. Each row shows discrimination thresholds for both observers for a particular overall cone contrast ranging from 1% to 11%.

Fig. 3
Fig. 3

Data for even-symmetric (E, columns 1 and 2) and odd-symmetric (O, columns 3 and 4) Gabor stimuli. The orientation discrimination thresholds (in degrees of visual angle) for the equiluminant (open symbols; equiluminance is defined by heterochromatic flicker photometry for each observer individually) and luminance-defined (filled symbols) stimuli are plotted as a function of the overall L- and M-cone contrast for all three spatial frequencies. The top row (row 1) shows the thresholds for the lowest spatial frequency (0.6), the second row for 1-cpd carrier frequency, the third row for 2-cpd carrier frequency, and the bottom row for 4-cpd carrier frequency. Error bars indicate 2 standard errors of the mean. The arrow just above the cone-contrast axis indicates the detection thresholds for the equiluminant red/green (R/G) and the achromatic (LUM) pattern.

Fig. 4
Fig. 4

Data for even-symmetric (E, columns 1 and 2) and odd-symmetric (O, columns 3 and 4) Gabor stimuli. The orientation discrimination thresholds for the equiluminant (open symbols) and luminance-defined stimuli (filled symbols) are replotted as a function of contrast when expressed as multiples of detection threshold.

Tables (2)

Tables Icon

Table 1 Detection Thresholds for Observer MJM for All Three Spatial Frequencies in Terms of L- and M-Cone Contrastsa

Tables Icon

Table 2 Detection Thresholds for Observer SMW for All Three Spatial Frequencies in Terms of L- and M-Cone Contrastsb

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

conecontrast  (|ΔL/LBG|+|ΔM/MBG|)/2.

Metrics