Abstract

Modulation frequency and orientation tuning of second-order mechanisms underlying the detection of modulation in local spatial-frequency information are assessed by using an oblique-masking paradigm. Stimuli were Gabor-filtered noise patterns in which the local carrier spatial frequency was modulated about an average value of 4.7 cycles per degree (cpd) according to a sinusoidal function. Thresholds were determined for spatial-frequency modulated test patterns (0.2 and 0.8 cpd) with fixed vertical carrier and modulation orientations presented alone and in the presence of spatiotemporally superimposed masks. Mask modulation frequency (0.1, 0.2, 0.4, 0.8, or 1.6 cpd), modulation orientation (0°, 45°, or 90° relative to vertical), and carrier orientation (18.5° or 90° relative to vertical) were manipulated independently while the mask modulation amplitude remained fixed at 0.25. Manipulating the modulation frequency of the mask revealed some modulation frequency specificity, particularly at lower test modulation frequencies. Spatial-frequency modulated masks produced threshold elevations regardless of the local carrier orientation. However, there was no evidence of threshold elevation when the mask modulation orientation was orthogonal to that of the test pattern. These results suggest a second-order texture mechanism that is tuned to both modulation frequency and modulation orientation but is not selective in terms of the orientation of first-order inputs.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Cutting, R. T. Millard, “Three gradients and the perception of flat and curved surfaces,” J. Exp. Psychol. 113, 198–216 (1984).
    [CrossRef]
  2. J. T. Todd, R. A. Akerstrom, “Perception of three-dimensional form from patterns of optical texture,” J. Exp. Psychol. 13, 242–255 (1987).
  3. A. Blake, H. H. Bülthoff, D. Sheinberg, “Shape from texture: ideal observers and human psychophysics,” Vision Res. 33, 1723–1737 (1993).
    [CrossRef] [PubMed]
  4. K. Sakai, L. H. Finkel, “Characterization of the spatial-frequency spectrum in the perception of shape from texture,” J. Opt. Soc. Am. A 12, 1208–1224 (1995).
    [CrossRef]
  5. A. S. Arsenault, F. A. A. Kingdom, F. Wilkinson, “Relative salience and interaction of texture cues to surface shape,” Perception (to be published).
  6. H. R. Wilson, D. K. McFarlane, G. C. Phillips, “Spatial frequency tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983).
    [CrossRef] [PubMed]
  7. R. W. Bowen, H. R. Wilson, “A two-process analysis of pattern masking,” Vision Res. 34, 645–657 (1994).
    [CrossRef] [PubMed]
  8. M. S. Landy, J. R. Bergen, “Texture segregation and orientation gradient,” Vision Res. 31, 679–691 (1991).
    [CrossRef] [PubMed]
  9. J. R. Bergen, M. S. Landy, “Computational modeling of visual texture segregation,” in Computational Models of Visual Processing, M. S. Landy, J. A. Movshon, eds. (MIT Press, Cambridge, Mass., 1991), Chap. 10, pp. 253–271.
  10. G. C. Phillips, H. R. Wilson, “Orientation bandwidths of spatial mechanisms measured by masking,” J. Opt. Soc. Am. A 1, 226–232 (1984).
    [CrossRef] [PubMed]
  11. J. H. T. Jamar, J. C. Campagne, J. J. Koenderink, “Detectability of amplitude- and frequency-modulation of suprathreshold sine-wave gratings,” Vision Res. 22, 407–416 (1982).
    [CrossRef] [PubMed]
  12. J. H. T. Jamar, L. F. T. Kwakman, J. J. Koenderink, “The sensitivity of the peripheral visual system to amplitude-modulation and frequency-modulation of sine-wave patterns,” Vision Res. 24, 243–249 (1984).
    [CrossRef] [PubMed]
  13. F. W. Campbell, J. Nachmias, J. Jukes, “Spatial-frequency discrimination in human vision,” J. Opt. Soc. Am. 60, 555–559 (1970).
    [CrossRef] [PubMed]
  14. C. A. Burbeck, D. Regan, “Independence of orientation and size in spatial discriminations,” J. Opt. Soc. Am. 73, 1691–1694 (1983).
    [CrossRef] [PubMed]
  15. T. Caelli, H. Brettel, I. Rentschler, R. Hilz, “Discrimination thresholds in the two-dimensional spatial frequency domain,” Vision Res. 23, 129–133 (1983).
    [CrossRef] [PubMed]
  16. R. Blake, K. Holopigian, H. R. Wilson, “Spatial-frequency discrimination in cats,” J. Opt. Soc. Am. A 3, 1443–1449 (1986).
    [CrossRef] [PubMed]
  17. A. Bradley, B. C. Skottun, I. Ohzawa, G. Sclar, R. D. Freeman, “Neurophysiological evaluation of the differential response model for orientation and spatial-frequency discrimination,” J. Opt. Soc. Am. A 2, 1607–1610 (1985).
    [CrossRef] [PubMed]

1995

1994

R. W. Bowen, H. R. Wilson, “A two-process analysis of pattern masking,” Vision Res. 34, 645–657 (1994).
[CrossRef] [PubMed]

1993

A. Blake, H. H. Bülthoff, D. Sheinberg, “Shape from texture: ideal observers and human psychophysics,” Vision Res. 33, 1723–1737 (1993).
[CrossRef] [PubMed]

1991

M. S. Landy, J. R. Bergen, “Texture segregation and orientation gradient,” Vision Res. 31, 679–691 (1991).
[CrossRef] [PubMed]

1987

J. T. Todd, R. A. Akerstrom, “Perception of three-dimensional form from patterns of optical texture,” J. Exp. Psychol. 13, 242–255 (1987).

1986

1985

1984

G. C. Phillips, H. R. Wilson, “Orientation bandwidths of spatial mechanisms measured by masking,” J. Opt. Soc. Am. A 1, 226–232 (1984).
[CrossRef] [PubMed]

J. E. Cutting, R. T. Millard, “Three gradients and the perception of flat and curved surfaces,” J. Exp. Psychol. 113, 198–216 (1984).
[CrossRef]

J. H. T. Jamar, L. F. T. Kwakman, J. J. Koenderink, “The sensitivity of the peripheral visual system to amplitude-modulation and frequency-modulation of sine-wave patterns,” Vision Res. 24, 243–249 (1984).
[CrossRef] [PubMed]

1983

T. Caelli, H. Brettel, I. Rentschler, R. Hilz, “Discrimination thresholds in the two-dimensional spatial frequency domain,” Vision Res. 23, 129–133 (1983).
[CrossRef] [PubMed]

H. R. Wilson, D. K. McFarlane, G. C. Phillips, “Spatial frequency tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983).
[CrossRef] [PubMed]

C. A. Burbeck, D. Regan, “Independence of orientation and size in spatial discriminations,” J. Opt. Soc. Am. 73, 1691–1694 (1983).
[CrossRef] [PubMed]

1982

J. H. T. Jamar, J. C. Campagne, J. J. Koenderink, “Detectability of amplitude- and frequency-modulation of suprathreshold sine-wave gratings,” Vision Res. 22, 407–416 (1982).
[CrossRef] [PubMed]

1970

Akerstrom, R. A.

J. T. Todd, R. A. Akerstrom, “Perception of three-dimensional form from patterns of optical texture,” J. Exp. Psychol. 13, 242–255 (1987).

Arsenault, A. S.

A. S. Arsenault, F. A. A. Kingdom, F. Wilkinson, “Relative salience and interaction of texture cues to surface shape,” Perception (to be published).

Bergen, J. R.

M. S. Landy, J. R. Bergen, “Texture segregation and orientation gradient,” Vision Res. 31, 679–691 (1991).
[CrossRef] [PubMed]

J. R. Bergen, M. S. Landy, “Computational modeling of visual texture segregation,” in Computational Models of Visual Processing, M. S. Landy, J. A. Movshon, eds. (MIT Press, Cambridge, Mass., 1991), Chap. 10, pp. 253–271.

Blake, A.

A. Blake, H. H. Bülthoff, D. Sheinberg, “Shape from texture: ideal observers and human psychophysics,” Vision Res. 33, 1723–1737 (1993).
[CrossRef] [PubMed]

Blake, R.

Bowen, R. W.

R. W. Bowen, H. R. Wilson, “A two-process analysis of pattern masking,” Vision Res. 34, 645–657 (1994).
[CrossRef] [PubMed]

Bradley, A.

Brettel, H.

T. Caelli, H. Brettel, I. Rentschler, R. Hilz, “Discrimination thresholds in the two-dimensional spatial frequency domain,” Vision Res. 23, 129–133 (1983).
[CrossRef] [PubMed]

Bülthoff, H. H.

A. Blake, H. H. Bülthoff, D. Sheinberg, “Shape from texture: ideal observers and human psychophysics,” Vision Res. 33, 1723–1737 (1993).
[CrossRef] [PubMed]

Burbeck, C. A.

Caelli, T.

T. Caelli, H. Brettel, I. Rentschler, R. Hilz, “Discrimination thresholds in the two-dimensional spatial frequency domain,” Vision Res. 23, 129–133 (1983).
[CrossRef] [PubMed]

Campagne, J. C.

J. H. T. Jamar, J. C. Campagne, J. J. Koenderink, “Detectability of amplitude- and frequency-modulation of suprathreshold sine-wave gratings,” Vision Res. 22, 407–416 (1982).
[CrossRef] [PubMed]

Campbell, F. W.

Cutting, J. E.

J. E. Cutting, R. T. Millard, “Three gradients and the perception of flat and curved surfaces,” J. Exp. Psychol. 113, 198–216 (1984).
[CrossRef]

Finkel, L. H.

Freeman, R. D.

Hilz, R.

T. Caelli, H. Brettel, I. Rentschler, R. Hilz, “Discrimination thresholds in the two-dimensional spatial frequency domain,” Vision Res. 23, 129–133 (1983).
[CrossRef] [PubMed]

Holopigian, K.

Jamar, J. H. T.

J. H. T. Jamar, L. F. T. Kwakman, J. J. Koenderink, “The sensitivity of the peripheral visual system to amplitude-modulation and frequency-modulation of sine-wave patterns,” Vision Res. 24, 243–249 (1984).
[CrossRef] [PubMed]

J. H. T. Jamar, J. C. Campagne, J. J. Koenderink, “Detectability of amplitude- and frequency-modulation of suprathreshold sine-wave gratings,” Vision Res. 22, 407–416 (1982).
[CrossRef] [PubMed]

Jukes, J.

Kingdom, F. A. A.

A. S. Arsenault, F. A. A. Kingdom, F. Wilkinson, “Relative salience and interaction of texture cues to surface shape,” Perception (to be published).

Koenderink, J. J.

J. H. T. Jamar, L. F. T. Kwakman, J. J. Koenderink, “The sensitivity of the peripheral visual system to amplitude-modulation and frequency-modulation of sine-wave patterns,” Vision Res. 24, 243–249 (1984).
[CrossRef] [PubMed]

J. H. T. Jamar, J. C. Campagne, J. J. Koenderink, “Detectability of amplitude- and frequency-modulation of suprathreshold sine-wave gratings,” Vision Res. 22, 407–416 (1982).
[CrossRef] [PubMed]

Kwakman, L. F. T.

J. H. T. Jamar, L. F. T. Kwakman, J. J. Koenderink, “The sensitivity of the peripheral visual system to amplitude-modulation and frequency-modulation of sine-wave patterns,” Vision Res. 24, 243–249 (1984).
[CrossRef] [PubMed]

Landy, M. S.

M. S. Landy, J. R. Bergen, “Texture segregation and orientation gradient,” Vision Res. 31, 679–691 (1991).
[CrossRef] [PubMed]

J. R. Bergen, M. S. Landy, “Computational modeling of visual texture segregation,” in Computational Models of Visual Processing, M. S. Landy, J. A. Movshon, eds. (MIT Press, Cambridge, Mass., 1991), Chap. 10, pp. 253–271.

McFarlane, D. K.

H. R. Wilson, D. K. McFarlane, G. C. Phillips, “Spatial frequency tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983).
[CrossRef] [PubMed]

Millard, R. T.

J. E. Cutting, R. T. Millard, “Three gradients and the perception of flat and curved surfaces,” J. Exp. Psychol. 113, 198–216 (1984).
[CrossRef]

Nachmias, J.

Ohzawa, I.

Phillips, G. C.

G. C. Phillips, H. R. Wilson, “Orientation bandwidths of spatial mechanisms measured by masking,” J. Opt. Soc. Am. A 1, 226–232 (1984).
[CrossRef] [PubMed]

H. R. Wilson, D. K. McFarlane, G. C. Phillips, “Spatial frequency tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983).
[CrossRef] [PubMed]

Regan, D.

Rentschler, I.

T. Caelli, H. Brettel, I. Rentschler, R. Hilz, “Discrimination thresholds in the two-dimensional spatial frequency domain,” Vision Res. 23, 129–133 (1983).
[CrossRef] [PubMed]

Sakai, K.

Sclar, G.

Sheinberg, D.

A. Blake, H. H. Bülthoff, D. Sheinberg, “Shape from texture: ideal observers and human psychophysics,” Vision Res. 33, 1723–1737 (1993).
[CrossRef] [PubMed]

Skottun, B. C.

Todd, J. T.

J. T. Todd, R. A. Akerstrom, “Perception of three-dimensional form from patterns of optical texture,” J. Exp. Psychol. 13, 242–255 (1987).

Wilkinson, F.

A. S. Arsenault, F. A. A. Kingdom, F. Wilkinson, “Relative salience and interaction of texture cues to surface shape,” Perception (to be published).

Wilson, H. R.

R. W. Bowen, H. R. Wilson, “A two-process analysis of pattern masking,” Vision Res. 34, 645–657 (1994).
[CrossRef] [PubMed]

R. Blake, K. Holopigian, H. R. Wilson, “Spatial-frequency discrimination in cats,” J. Opt. Soc. Am. A 3, 1443–1449 (1986).
[CrossRef] [PubMed]

G. C. Phillips, H. R. Wilson, “Orientation bandwidths of spatial mechanisms measured by masking,” J. Opt. Soc. Am. A 1, 226–232 (1984).
[CrossRef] [PubMed]

H. R. Wilson, D. K. McFarlane, G. C. Phillips, “Spatial frequency tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983).
[CrossRef] [PubMed]

J. Exp. Psychol.

J. E. Cutting, R. T. Millard, “Three gradients and the perception of flat and curved surfaces,” J. Exp. Psychol. 113, 198–216 (1984).
[CrossRef]

J. T. Todd, R. A. Akerstrom, “Perception of three-dimensional form from patterns of optical texture,” J. Exp. Psychol. 13, 242–255 (1987).

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Vision Res.

J. H. T. Jamar, J. C. Campagne, J. J. Koenderink, “Detectability of amplitude- and frequency-modulation of suprathreshold sine-wave gratings,” Vision Res. 22, 407–416 (1982).
[CrossRef] [PubMed]

J. H. T. Jamar, L. F. T. Kwakman, J. J. Koenderink, “The sensitivity of the peripheral visual system to amplitude-modulation and frequency-modulation of sine-wave patterns,” Vision Res. 24, 243–249 (1984).
[CrossRef] [PubMed]

T. Caelli, H. Brettel, I. Rentschler, R. Hilz, “Discrimination thresholds in the two-dimensional spatial frequency domain,” Vision Res. 23, 129–133 (1983).
[CrossRef] [PubMed]

A. Blake, H. H. Bülthoff, D. Sheinberg, “Shape from texture: ideal observers and human psychophysics,” Vision Res. 33, 1723–1737 (1993).
[CrossRef] [PubMed]

H. R. Wilson, D. K. McFarlane, G. C. Phillips, “Spatial frequency tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983).
[CrossRef] [PubMed]

R. W. Bowen, H. R. Wilson, “A two-process analysis of pattern masking,” Vision Res. 34, 645–657 (1994).
[CrossRef] [PubMed]

M. S. Landy, J. R. Bergen, “Texture segregation and orientation gradient,” Vision Res. 31, 679–691 (1991).
[CrossRef] [PubMed]

Other

J. R. Bergen, M. S. Landy, “Computational modeling of visual texture segregation,” in Computational Models of Visual Processing, M. S. Landy, J. A. Movshon, eds. (MIT Press, Cambridge, Mass., 1991), Chap. 10, pp. 253–271.

A. S. Arsenault, F. A. A. Kingdom, F. Wilkinson, “Relative salience and interaction of texture cues to surface shape,” Perception (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic representation of the stimulus generation process. Filtered noise patterns are generated by convolving Gabor filters having different spatial properties with a uniform random-noise pattern. The filtered noise patterns are subsequently combined according to Eq. (1) to produce a spatial-frequency modulated texture pattern. The function at the bottom of the figure represents the modulation portrayed in the modulated pattern.

Fig. 2
Fig. 2

Example stimuli. A, Spatial-frequency modulated test pattern depicting three cycles of modulation at a modulation amplitude of 0.25. B, Spatial-frequency modulated mask pattern with a modulation orientation of 18.5° relative to vertical and a modulation amplitude and frequency similar to those of the test pattern in A. C, Combination of the test and mask patterns described in A and B. The actual patterns used in the experiment were double the heights of those depicted here.

Fig. 3
Fig. 3

Unmasked thresholds for spatial-frequency modulated test patterns plotted as a function of modulation frequency.

Fig. 4
Fig. 4

Modulation-frequency-specific masking effects. Threshold shift is plotted as a function of mask modulation frequency for two test pattern modulation frequencies. Threshold shifts represent modulated mask thresholds normalized with unmodulated mask thresholds. The vertical arrows along the abscissa correspond to the test pattern modulation frequencies.

Fig. 5
Fig. 5

Example mask patterns used to assess the orientation tuning of second-order texture mechanisms. A, Spatial-frequency modulated mask pattern with horizontal carrier. The pattern depicts three cycles with a modulation orientation of 18.5° relative to vertical and a modulation amplitude of 0.25. This mask was used to assess first-order orientation tuning properties of the second-order mechanism. B, Horizontal modulation orientation mask depicting similar modulation frequency and amplitude to those in the pattern in A but with vertical carrier. This mask was used to assess second-order orientation tuning properties. The actual mask patterns used in the experiment were double the heights of those depicted here.

Fig. 6
Fig. 6

First-order carrier-orientation-specific masking effects. Threshold shift is plotted as a function of mask carrier orientation (H=horizontal, O=oblique, V=vertical). Threshold shifts represent either modulated mask thresholds (filled circles) or unmodulated mask thresholds (open circles) normalized with base thresholds as depicted in Fig. 3. The test pattern had a vertical carrier and a vertically oriented modulation of 0.2 cpd.

Fig. 7
Fig. 7

Second-order modulation-frequency-specific masking effects for masks with orthogonal carriers. Threshold shift is plotted as a function of mask modulation frequency for a 0.2-cpd test pattern. Threshold shifts represent modulated mask thresholds normalized with unmodulated mask thresholds. The vertical arrows along the abscissa correspond to the test pattern modulation frequency.

Fig. 8
Fig. 8

Second-order orientation-specific masking effects. Threshold shift is plotted for each subject for two different mask modulation orientations (18.5° and 90° relative to vertical). Threshold shifts were calculated by normalizing modulated mask thresholds with the unmodulated mask threshold. The dotted line represents the case where the modulation does not contribute to the masking effect, and therefore the overall masking effect can be accounted for by first-order masking effects. The test pattern had a vertical carrier and a vertically oriented modulation of 0.2 cpd.

Fig. 9
Fig. 9

Schematic representations of three different second-order texture mechanisms. A, The responses of first-order luminance contrast encoding units with identical spatial-frequency and orientation selectivities are full-wave rectified and subsequently feed into a second-order unit with similar orientation tuning properties. The spatial weighting function applied to the outputs of the first-order units allows the second-order unit to encode gradients in local spatial-frequency information. B, Mechanism similar to the one in A, except that first-order inputs are pooled across all orientations following the rectification process. C, Model incorporating interaction between second-order units with different first-order oriented inputs. This interaction could be in the form of direct inhibition between second-order units or pooling of second-order responses in a higher-level mechanism.

Tables (1)

Tables Icon

Table 1 Estimated Peak Frequency and Bandwidth of Second-Order Mechanisms

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

TFM(x, y)=BL(x, y)M(x, y)+BA[1-|M(x, y)|],M(x, y)>0BH(x, y)M(x, y)+BA[1-|M(x, y)|],M(x, y)<0BA(x, y),M(x, y)=0,
Δth=thmaskedthbaseline,
y=1+a exp[-(x-f0)2/s2],

Metrics