Abstract

The theory of hybrid surface plasma modes in metal-coated dielectric cylinders has been developed in recent years. We demonstrate that tapered fibers with a uniform waist and a circular metal coating can be designed for an efficient excitation of the fundamental hybrid surface plasma mode. Our experimental results are in good agreement with the theory and give the basis for the development of a novel type of all-fiber polarization-independent refractive-index sensor and tunable broadband wavelength filter.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Al-Bader, M. Imtaar, “Optical fiber hybrid-surface plasmon polaritons,” J. Opt. Soc. Am. B 10, 83–88 (1993).
    [CrossRef]
  2. S. J. Al-Bader, M. Imtaar, “Azimuthally uniform surface-plasma modes in thin metallic cylindrical shells,” IEEE J. Quantum Electron. 28, 525–533 (1992).
    [CrossRef]
  3. S. J. Al-Bader, M. Imtaar, “TM-polarized surface-plasma modes on metal-coated dielectric cylinders,” J. Lightwave Technol. 10, 865–872 (1992).
    [CrossRef]
  4. J. J. Burke, G. I. Stegeman, T. Tamir, “Surface polariton-like waves guided by lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
    [CrossRef]
  5. B. Prade, J. Y. Vinet, A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991).
    [CrossRef]
  6. A. Díez, M. V. Andrés, D. O. Culverhouse, T. A. Birks, “Cylindrical metal-coated optical fibres for filters and sensors,” Electron. Lett. 32, 1390–1392 (1996).
    [CrossRef]
  7. A. Díez, M. V. Andrés, J. L. Cruz, D. O. Culverhouse, “Novel in-line fiber-optic filters and polarizers” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997).
  8. A. Díez, M. V. Andrés, D. O. Culverhouse, “In-line polarizers and filters made of metal-coated tapered fibers: resonant excitation of hybrid surface plasma modes,” IEEE Photon. Technol. Lett. 10, 833–835 (1998).
    [CrossRef]
  9. R. K. Kenny, T. A. Birks, K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 77, 1654–1656 (1991).
    [CrossRef]
  10. P. B. Johnson, R. W. Cristy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  11. J. D. Love, W. M. Henry, “Quantifying loss minimisation in single-mode fibre tapers,” Electron. Lett. 22, 912–914 (1986).
    [CrossRef]
  12. M. J. Adams, An Introduction to Optical Waveguides (Academic, New York, 1974), pp. 244–245.
  13. A. W. Snyder, J. D. Love, Optical Waveguides Theory (Chapman & Hall, New York, 1983), pp. 601–605.

1998 (1)

A. Díez, M. V. Andrés, D. O. Culverhouse, “In-line polarizers and filters made of metal-coated tapered fibers: resonant excitation of hybrid surface plasma modes,” IEEE Photon. Technol. Lett. 10, 833–835 (1998).
[CrossRef]

1996 (1)

A. Díez, M. V. Andrés, D. O. Culverhouse, T. A. Birks, “Cylindrical metal-coated optical fibres for filters and sensors,” Electron. Lett. 32, 1390–1392 (1996).
[CrossRef]

1993 (1)

1992 (2)

S. J. Al-Bader, M. Imtaar, “Azimuthally uniform surface-plasma modes in thin metallic cylindrical shells,” IEEE J. Quantum Electron. 28, 525–533 (1992).
[CrossRef]

S. J. Al-Bader, M. Imtaar, “TM-polarized surface-plasma modes on metal-coated dielectric cylinders,” J. Lightwave Technol. 10, 865–872 (1992).
[CrossRef]

1991 (2)

B. Prade, J. Y. Vinet, A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

R. K. Kenny, T. A. Birks, K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 77, 1654–1656 (1991).
[CrossRef]

1986 (2)

J. J. Burke, G. I. Stegeman, T. Tamir, “Surface polariton-like waves guided by lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

J. D. Love, W. M. Henry, “Quantifying loss minimisation in single-mode fibre tapers,” Electron. Lett. 22, 912–914 (1986).
[CrossRef]

1972 (1)

P. B. Johnson, R. W. Cristy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Adams, M. J.

M. J. Adams, An Introduction to Optical Waveguides (Academic, New York, 1974), pp. 244–245.

Al-Bader, S. J.

S. J. Al-Bader, M. Imtaar, “Optical fiber hybrid-surface plasmon polaritons,” J. Opt. Soc. Am. B 10, 83–88 (1993).
[CrossRef]

S. J. Al-Bader, M. Imtaar, “Azimuthally uniform surface-plasma modes in thin metallic cylindrical shells,” IEEE J. Quantum Electron. 28, 525–533 (1992).
[CrossRef]

S. J. Al-Bader, M. Imtaar, “TM-polarized surface-plasma modes on metal-coated dielectric cylinders,” J. Lightwave Technol. 10, 865–872 (1992).
[CrossRef]

Andrés, M. V.

A. Díez, M. V. Andrés, D. O. Culverhouse, “In-line polarizers and filters made of metal-coated tapered fibers: resonant excitation of hybrid surface plasma modes,” IEEE Photon. Technol. Lett. 10, 833–835 (1998).
[CrossRef]

A. Díez, M. V. Andrés, D. O. Culverhouse, T. A. Birks, “Cylindrical metal-coated optical fibres for filters and sensors,” Electron. Lett. 32, 1390–1392 (1996).
[CrossRef]

A. Díez, M. V. Andrés, J. L. Cruz, D. O. Culverhouse, “Novel in-line fiber-optic filters and polarizers” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997).

Birks, T. A.

A. Díez, M. V. Andrés, D. O. Culverhouse, T. A. Birks, “Cylindrical metal-coated optical fibres for filters and sensors,” Electron. Lett. 32, 1390–1392 (1996).
[CrossRef]

R. K. Kenny, T. A. Birks, K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 77, 1654–1656 (1991).
[CrossRef]

Burke, J. J.

J. J. Burke, G. I. Stegeman, T. Tamir, “Surface polariton-like waves guided by lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Cristy, R. W.

P. B. Johnson, R. W. Cristy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Cruz, J. L.

A. Díez, M. V. Andrés, J. L. Cruz, D. O. Culverhouse, “Novel in-line fiber-optic filters and polarizers” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997).

Culverhouse, D. O.

A. Díez, M. V. Andrés, D. O. Culverhouse, “In-line polarizers and filters made of metal-coated tapered fibers: resonant excitation of hybrid surface plasma modes,” IEEE Photon. Technol. Lett. 10, 833–835 (1998).
[CrossRef]

A. Díez, M. V. Andrés, D. O. Culverhouse, T. A. Birks, “Cylindrical metal-coated optical fibres for filters and sensors,” Electron. Lett. 32, 1390–1392 (1996).
[CrossRef]

A. Díez, M. V. Andrés, J. L. Cruz, D. O. Culverhouse, “Novel in-line fiber-optic filters and polarizers” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997).

Díez, A.

A. Díez, M. V. Andrés, D. O. Culverhouse, “In-line polarizers and filters made of metal-coated tapered fibers: resonant excitation of hybrid surface plasma modes,” IEEE Photon. Technol. Lett. 10, 833–835 (1998).
[CrossRef]

A. Díez, M. V. Andrés, D. O. Culverhouse, T. A. Birks, “Cylindrical metal-coated optical fibres for filters and sensors,” Electron. Lett. 32, 1390–1392 (1996).
[CrossRef]

A. Díez, M. V. Andrés, J. L. Cruz, D. O. Culverhouse, “Novel in-line fiber-optic filters and polarizers” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997).

Henry, W. M.

J. D. Love, W. M. Henry, “Quantifying loss minimisation in single-mode fibre tapers,” Electron. Lett. 22, 912–914 (1986).
[CrossRef]

Imtaar, M.

S. J. Al-Bader, M. Imtaar, “Optical fiber hybrid-surface plasmon polaritons,” J. Opt. Soc. Am. B 10, 83–88 (1993).
[CrossRef]

S. J. Al-Bader, M. Imtaar, “Azimuthally uniform surface-plasma modes in thin metallic cylindrical shells,” IEEE J. Quantum Electron. 28, 525–533 (1992).
[CrossRef]

S. J. Al-Bader, M. Imtaar, “TM-polarized surface-plasma modes on metal-coated dielectric cylinders,” J. Lightwave Technol. 10, 865–872 (1992).
[CrossRef]

Johnson, P. B.

P. B. Johnson, R. W. Cristy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kenny, R. K.

R. K. Kenny, T. A. Birks, K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 77, 1654–1656 (1991).
[CrossRef]

Love, J. D.

J. D. Love, W. M. Henry, “Quantifying loss minimisation in single-mode fibre tapers,” Electron. Lett. 22, 912–914 (1986).
[CrossRef]

A. W. Snyder, J. D. Love, Optical Waveguides Theory (Chapman & Hall, New York, 1983), pp. 601–605.

Mysyrowicz, A.

B. Prade, J. Y. Vinet, A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

Oakley, K. P.

R. K. Kenny, T. A. Birks, K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 77, 1654–1656 (1991).
[CrossRef]

Prade, B.

B. Prade, J. Y. Vinet, A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguides Theory (Chapman & Hall, New York, 1983), pp. 601–605.

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, T. Tamir, “Surface polariton-like waves guided by lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Tamir, T.

J. J. Burke, G. I. Stegeman, T. Tamir, “Surface polariton-like waves guided by lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Vinet, J. Y.

B. Prade, J. Y. Vinet, A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

Electron. Lett. (3)

A. Díez, M. V. Andrés, D. O. Culverhouse, T. A. Birks, “Cylindrical metal-coated optical fibres for filters and sensors,” Electron. Lett. 32, 1390–1392 (1996).
[CrossRef]

R. K. Kenny, T. A. Birks, K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 77, 1654–1656 (1991).
[CrossRef]

J. D. Love, W. M. Henry, “Quantifying loss minimisation in single-mode fibre tapers,” Electron. Lett. 22, 912–914 (1986).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. J. Al-Bader, M. Imtaar, “Azimuthally uniform surface-plasma modes in thin metallic cylindrical shells,” IEEE J. Quantum Electron. 28, 525–533 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Díez, M. V. Andrés, D. O. Culverhouse, “In-line polarizers and filters made of metal-coated tapered fibers: resonant excitation of hybrid surface plasma modes,” IEEE Photon. Technol. Lett. 10, 833–835 (1998).
[CrossRef]

J. Lightwave Technol. (1)

S. J. Al-Bader, M. Imtaar, “TM-polarized surface-plasma modes on metal-coated dielectric cylinders,” J. Lightwave Technol. 10, 865–872 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

Phys. Rev. B (3)

J. J. Burke, G. I. Stegeman, T. Tamir, “Surface polariton-like waves guided by lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

B. Prade, J. Y. Vinet, A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

P. B. Johnson, R. W. Cristy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Other (3)

M. J. Adams, An Introduction to Optical Waveguides (Academic, New York, 1974), pp. 244–245.

A. W. Snyder, J. D. Love, Optical Waveguides Theory (Chapman & Hall, New York, 1983), pp. 601–605.

A. Díez, M. V. Andrés, J. L. Cruz, D. O. Culverhouse, “Novel in-line fiber-optic filters and polarizers” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Transverse cross section of a device, i.e., a tapered fiber with quasi-circular metal coating (left), and a plot of the gold-coating thickness as a function of the azimuthal angle φ (right). (b) Longitudinal cross section of a device, where i and v are the original optical fiber, ii and iv are the taper transitions, and iii is the metal-coated waist.

Fig. 2
Fig. 2

Scheme of experimental measurement setup. H, halogen lamp; L1 and L2, lenses; Di, diaphragm; M, microscope objective; D, device under test; O.S.A., optical spectrum analyzer.

Fig. 3
Fig. 3

(a) Dispersion curves for the lower-branch plasma modes and the fiber mode of a gold-coated tapered fiber. We plot the difference between the real part of the modal index n and the modal index of the fiber mode when no metal coating is present, n0. Solid curves, coupled modes of azimuthal order m=1; dashed curves, plasma modes of azimuthal order m=0, 2, 3, 4; arrow, wavelength of minimum separation between coupled modes. (b) Theoretical transmission spectrum; parameters are dw=30 μm, Δ=27 nm, next=1.444 (nominal value), and L=4 mm.

Fig. 4
Fig. 4

(a) Transmission spectra for three external refractive indices, whose nominal values are specified in the figure. (b) Theoretical transmission spectra. Parameters are dw=25 μm, Δ=26 nm, and L=4 mm.

Fig. 5
Fig. 5

(a) Transmitted power for three devices with different metal thickness, Δ=23, 26, and 32 nm, and lengths L=3, 4, and 5 mm, respectively, as a function of the external refractive index (nominal value). (b) Theoretical power transmission; parameters are dw=25 μm, λ=1.3 μm.

Fig. 6
Fig. 6

Solid curve, experimental transmission spectrum of a device with Δ=33 nm, dw=25 μm, L=5 mm, and next=1.442 (nominal value); dashed curves, theoretical transmission spectra for two devices with Δ=33 nm and Δ=29 nm.

Fig. 7
Fig. 7

Attenuation peak wavelength λp as a function of the external refractive index (nominal value) for three devices with different gold thickness, as specified in the figure. Symbols represent experimental values; solid curves represent theoretical values.

Fig. 8
Fig. 8

Attenuation peak wavelength λp as a function of gold thickness for three different external refractive indices (nominal values), as specified in the figure. Symbols represent experimental values; solid curves represent theoretical values.

Metrics