Abstract

A so-called elliptical cylinder localized approximation theory allowing one to speed up the evaluation of beam shape distributions in generalized Lorenz–Mie theory for infinitely long cylinders with elliptical cross sections has been previously introduced and, in the case of Gaussian beams, rigorously justified. The validity of this approximation for arbitrary shaped beams is examined.

© 1999 Optical Society of America

Full Article  |  PDF Article
Related Articles
Scattering of Obliquely Incident Light Waves by Elliptical Fibers*

C. Yeh
J. Opt. Soc. Am. 54(10) 1227-1231 (1964)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (176)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription