Abstract

We study the effect on the reflected intensity of morphology-dependent resonances of an object buried beneath either a flat or a randomly rough surface. Rigorous two-dimensional numerical calculations of electromagnetic scattering are put forward to explain the relationship between the size of the object and the consequent scattered intensity by the system–object interface. Different cases have been investigated to clarify the dependence of the results on the interface profile and permittivity, as well as on the width of the incident beam.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
    [CrossRef] [PubMed]
  2. S. K. Gayen, R. R. Alfano, “Emerging optical biomedical imaging techniques,” Opt. Photon. News 7, 17 (1996).
    [CrossRef]
  3. L. Tsang, J. A. Kong, R. T. Shin, Theory of Microwave Remote Sensing (Wiley, New York, 1985).
  4. L. Tsang, G. Zhang, K. Pak, “Detection of a buried object under a single random rough surface with angular correlation function in EM wave scattering,” Microwave Opt. Technol. Lett. 11, 300–304 (1996).
    [CrossRef]
  5. K. O’Neill, R. F. Lussky, K. D. Paulsen, “Scattering from a metallic object embedded near the randomly rough surface of a lossy dielectric,” IEEE Trans. Geosci. Remote Sens. 34, 367–376 (1996).
    [CrossRef]
  6. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  7. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  8. B. Schlicht, K. F. Wall, R. K. Chang, P. W. Barber, “Light scattering by two parallel glass fibers,” J. Opt. Soc. Am. A 4, 800–809 (1987).
    [CrossRef]
  9. S. Arnold, C. T. Liu, W. B. Whitten, J. M. Ramsey, “Room-temperature microparticle-based persistent spectral hole-burning memory,” Opt. Lett. 16, 420–422 (1991).
    [CrossRef] [PubMed]
  10. S. Arnold, J. Communale, W. B. Whitten, J. M. Ramsey, K. A. Fuller, “Room-temperature microparticle-based persistent hole-burning spectroscopy,” J. Opt. Soc. Am. B 9, 819–824 (1992).
    [CrossRef]
  11. B. R. Johnson, “Morphology-dependent resonances of a dielectric sphere on a conducting plane,” J. Opt. Soc. Am. A 11, 2055–2064 (1994).
    [CrossRef]
  12. A. Madrazo, M. Nieto-Vesperinas, “Scattering of electromagnetic waves from a cylinder in front of a conducting plane,” J. Opt. Soc. Am. A 12, 1298–1309 (1995).
    [CrossRef]
  13. T. Baer, “Continuous-wave laser oscillation in a Nd:YAG sphere,” Opt. Lett. 12, 392–394 (1987).
    [CrossRef] [PubMed]
  14. J.-Z. Zhang, D. H. Leach, R. K. Chang, “Photon lifetime within a droplet: temporal determination of elastic and stimulated Raman scattering,” Opt. Lett. 13, 270–272 (1988).
    [CrossRef] [PubMed]
  15. B. Maheu, G. Gréhan, G. Gouesbet, “Ray localization in Gaussian beams,” Opt. Commun. 70, 259–262 (1989).
    [CrossRef]
  16. J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).
    [CrossRef]
  17. E. E. M. Khaled, S. C. Hill, P. W. Barber, D. Q. Chowdhury, “Near-resonance excitation of dielectric spheres with plane waves and off-axis Gaussian beams,” Appl. Opt. 31, 1166–1169 (1992).
    [CrossRef] [PubMed]
  18. E. E. M. Khaled, S. C. Hill, P. W. Barber, “Internal electric energy in a spherical particle illuminated with a plane wave or off-axis Gaussian beam,” Appl. Opt. 33, 524–532 (1994).
    [CrossRef] [PubMed]
  19. J. A. Lock, “Improved Gaussian beam-scattering algorithm,” Appl. Opt. 34, 559–570 (1995).
    [CrossRef] [PubMed]
  20. G. Gouesbet, G. Gréhan, B. Maheu, “Localized interpretation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).
    [CrossRef]
  21. J. A. Lock, “Excitation efficiency of a morphology-dependent resonance by a focused Gaussian beam,” J. Opt. Soc. Am. A 15, 2986–2994 (1998).
    [CrossRef]
  22. R. Carminati, A. Madrazo, M. Nieto-Vesperinas, “Electromagnetic wave scattering from a cylinder in front of a conducting surface-relief grating,” Opt. Commun. 111, 26–33 (1994).
    [CrossRef]
  23. A. Madrazo, M. Nieto-Vesperinas, “Surface structure and polariton interactions in the scattering of electromagnetic waves from a cylinder in front of a conducting grating: theory for the reflection photon scanning tunneling microscope,” J. Opt. Soc. Am. A 13, 785–795 (1996);“Reconstruction of corrugated dielectric surfaces with a model of a photon scanning tunneling microscope: influence of the tip in the near field,” J. Opt. Soc. Am. A 14, 618–628 (1997).
    [CrossRef]
  24. A. Madrazo, M. Nieto-Vesperinas, “Scattering of light and other electromagnetic waves from a body buried beneath a highly rough random surface,” J. Opt. Soc. Am. A 14, 1859–1866 (1997).
    [CrossRef]
  25. P. W. Barber, J. F. Owen, R. K. Chang, “Resonant scattering for characterization of axisymmetric dielectric objects,” IEEE Trans. Antennas Propag. 30, 168–172 (1982).
    [CrossRef]
  26. P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990), Chap. 2.
  27. J. A. Sanchez-Gil, M. Nieto-Vesperinas, “Light scattering from random rough dielectric surfaces,” J. Opt. Soc. Am. A 8, 1270–1286 (1991).
    [CrossRef]

1998 (1)

1997 (1)

1996 (4)

A. Madrazo, M. Nieto-Vesperinas, “Surface structure and polariton interactions in the scattering of electromagnetic waves from a cylinder in front of a conducting grating: theory for the reflection photon scanning tunneling microscope,” J. Opt. Soc. Am. A 13, 785–795 (1996);“Reconstruction of corrugated dielectric surfaces with a model of a photon scanning tunneling microscope: influence of the tip in the near field,” J. Opt. Soc. Am. A 14, 618–628 (1997).
[CrossRef]

S. K. Gayen, R. R. Alfano, “Emerging optical biomedical imaging techniques,” Opt. Photon. News 7, 17 (1996).
[CrossRef]

L. Tsang, G. Zhang, K. Pak, “Detection of a buried object under a single random rough surface with angular correlation function in EM wave scattering,” Microwave Opt. Technol. Lett. 11, 300–304 (1996).
[CrossRef]

K. O’Neill, R. F. Lussky, K. D. Paulsen, “Scattering from a metallic object embedded near the randomly rough surface of a lossy dielectric,” IEEE Trans. Geosci. Remote Sens. 34, 367–376 (1996).
[CrossRef]

1995 (2)

1994 (3)

1992 (2)

1991 (3)

1990 (1)

1989 (2)

B. Maheu, G. Gréhan, G. Gouesbet, “Ray localization in Gaussian beams,” Opt. Commun. 70, 259–262 (1989).
[CrossRef]

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).
[CrossRef]

1988 (1)

1987 (2)

1982 (1)

P. W. Barber, J. F. Owen, R. K. Chang, “Resonant scattering for characterization of axisymmetric dielectric objects,” IEEE Trans. Antennas Propag. 30, 168–172 (1982).
[CrossRef]

Alexander, D. R.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).
[CrossRef]

Alfano, R. R.

S. K. Gayen, R. R. Alfano, “Emerging optical biomedical imaging techniques,” Opt. Photon. News 7, 17 (1996).
[CrossRef]

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Arnold, S.

Baer, T.

Barber, P. W.

Barton, J. P.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).
[CrossRef]

Carminati, R.

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, “Electromagnetic wave scattering from a cylinder in front of a conducting surface-relief grating,” Opt. Commun. 111, 26–33 (1994).
[CrossRef]

Chang, R. K.

Chowdhury, D. Q.

Communale, J.

Fuller, K. A.

Gayen, S. K.

S. K. Gayen, R. R. Alfano, “Emerging optical biomedical imaging techniques,” Opt. Photon. News 7, 17 (1996).
[CrossRef]

Gouesbet, G.

Gréhan, G.

Hill, S. C.

Ho, P. P.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Johnson, B. R.

Kerker, M.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

Khaled, E. E. M.

Kong, J. A.

L. Tsang, J. A. Kong, R. T. Shin, Theory of Microwave Remote Sensing (Wiley, New York, 1985).

Leach, D. H.

Liu, C.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Liu, C. T.

Lock, J. A.

Lussky, R. F.

K. O’Neill, R. F. Lussky, K. D. Paulsen, “Scattering from a metallic object embedded near the randomly rough surface of a lossy dielectric,” IEEE Trans. Geosci. Remote Sens. 34, 367–376 (1996).
[CrossRef]

Madrazo, A.

Maheu, B.

Nieto-Vesperinas, M.

O’Neill, K.

K. O’Neill, R. F. Lussky, K. D. Paulsen, “Scattering from a metallic object embedded near the randomly rough surface of a lossy dielectric,” IEEE Trans. Geosci. Remote Sens. 34, 367–376 (1996).
[CrossRef]

Owen, J. F.

P. W. Barber, J. F. Owen, R. K. Chang, “Resonant scattering for characterization of axisymmetric dielectric objects,” IEEE Trans. Antennas Propag. 30, 168–172 (1982).
[CrossRef]

Pak, K.

L. Tsang, G. Zhang, K. Pak, “Detection of a buried object under a single random rough surface with angular correlation function in EM wave scattering,” Microwave Opt. Technol. Lett. 11, 300–304 (1996).
[CrossRef]

Paulsen, K. D.

K. O’Neill, R. F. Lussky, K. D. Paulsen, “Scattering from a metallic object embedded near the randomly rough surface of a lossy dielectric,” IEEE Trans. Geosci. Remote Sens. 34, 367–376 (1996).
[CrossRef]

Ramsey, J. M.

Sanchez-Gil, J. A.

Schaub, S. A.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).
[CrossRef]

Schlicht, B.

Shin, R. T.

L. Tsang, J. A. Kong, R. T. Shin, Theory of Microwave Remote Sensing (Wiley, New York, 1985).

Tsang, L.

L. Tsang, G. Zhang, K. Pak, “Detection of a buried object under a single random rough surface with angular correlation function in EM wave scattering,” Microwave Opt. Technol. Lett. 11, 300–304 (1996).
[CrossRef]

L. Tsang, J. A. Kong, R. T. Shin, Theory of Microwave Remote Sensing (Wiley, New York, 1985).

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

Wall, K. F.

Wang, L.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Whitten, W. B.

Zhang, G.

L. Tsang, G. Zhang, K. Pak, “Detection of a buried object under a single random rough surface with angular correlation function in EM wave scattering,” Microwave Opt. Technol. Lett. 11, 300–304 (1996).
[CrossRef]

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Zhang, J.-Z.

Appl. Opt. (3)

IEEE Trans. Antennas Propag. (1)

P. W. Barber, J. F. Owen, R. K. Chang, “Resonant scattering for characterization of axisymmetric dielectric objects,” IEEE Trans. Antennas Propag. 30, 168–172 (1982).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

K. O’Neill, R. F. Lussky, K. D. Paulsen, “Scattering from a metallic object embedded near the randomly rough surface of a lossy dielectric,” IEEE Trans. Geosci. Remote Sens. 34, 367–376 (1996).
[CrossRef]

J. Appl. Phys. (1)

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).
[CrossRef]

J. Opt. Soc. Am. A (8)

A. Madrazo, M. Nieto-Vesperinas, “Surface structure and polariton interactions in the scattering of electromagnetic waves from a cylinder in front of a conducting grating: theory for the reflection photon scanning tunneling microscope,” J. Opt. Soc. Am. A 13, 785–795 (1996);“Reconstruction of corrugated dielectric surfaces with a model of a photon scanning tunneling microscope: influence of the tip in the near field,” J. Opt. Soc. Am. A 14, 618–628 (1997).
[CrossRef]

A. Madrazo, M. Nieto-Vesperinas, “Scattering of electromagnetic waves from a cylinder in front of a conducting plane,” J. Opt. Soc. Am. A 12, 1298–1309 (1995).
[CrossRef]

B. R. Johnson, “Morphology-dependent resonances of a dielectric sphere on a conducting plane,” J. Opt. Soc. Am. A 11, 2055–2064 (1994).
[CrossRef]

A. Madrazo, M. Nieto-Vesperinas, “Scattering of light and other electromagnetic waves from a body buried beneath a highly rough random surface,” J. Opt. Soc. Am. A 14, 1859–1866 (1997).
[CrossRef]

B. Schlicht, K. F. Wall, R. K. Chang, P. W. Barber, “Light scattering by two parallel glass fibers,” J. Opt. Soc. Am. A 4, 800–809 (1987).
[CrossRef]

G. Gouesbet, G. Gréhan, B. Maheu, “Localized interpretation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).
[CrossRef]

J. A. Sanchez-Gil, M. Nieto-Vesperinas, “Light scattering from random rough dielectric surfaces,” J. Opt. Soc. Am. A 8, 1270–1286 (1991).
[CrossRef]

J. A. Lock, “Excitation efficiency of a morphology-dependent resonance by a focused Gaussian beam,” J. Opt. Soc. Am. A 15, 2986–2994 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Microwave Opt. Technol. Lett. (1)

L. Tsang, G. Zhang, K. Pak, “Detection of a buried object under a single random rough surface with angular correlation function in EM wave scattering,” Microwave Opt. Technol. Lett. 11, 300–304 (1996).
[CrossRef]

Opt. Commun. (2)

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, “Electromagnetic wave scattering from a cylinder in front of a conducting surface-relief grating,” Opt. Commun. 111, 26–33 (1994).
[CrossRef]

B. Maheu, G. Gréhan, G. Gouesbet, “Ray localization in Gaussian beams,” Opt. Commun. 70, 259–262 (1989).
[CrossRef]

Opt. Lett. (3)

Opt. Photon. News (1)

S. K. Gayen, R. R. Alfano, “Emerging optical biomedical imaging techniques,” Opt. Photon. News 7, 17 (1996).
[CrossRef]

Science (1)

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Other (4)

L. Tsang, J. A. Kong, R. T. Shin, Theory of Microwave Remote Sensing (Wiley, New York, 1985).

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scattering geometry.

Fig. 2
Fig. 2

Scattering efficiency versus size parameter x=2πa/λ of an isolated cylinder with permittivity 2=36 either in vacuum (=1) or in a dielectric of permittivity =2. Incident plane wave. λ is the wavelength in vacuum.

Fig. 3
Fig. 3

Variation of the resonance at x within [0.3, 0.5] for waves reflected at angle θr from a cylinder buried beneath a realization of an interface either flat or rough with T=3.16λ. d=5λ except for a flat interface where d=λ. Permittivities: 0=1, 1=2, 2=36. Gaussian incident beam of HWHM W=5λ at incidence angle θ0=0°. (a) θr=30° (s wave). (b) θr=-30° (s wave). (c) θr=30° (p wave). (d) θr=-30° (p wave). The average for σ=1.9λ and θr=-30° is over ten realizations.

Fig. 4
Fig. 4

Variation of the resonance at x within [0.3, 0.5] for waves transmitted at angle θt from a cylinder buried beneath a realization of an interface either flat or rough with T=3.16λ. d=5λ except for the flat interface where d=λ. Permittivities: 0=1, 1=2, 2=36. Gaussian incident beam of HWHM W=5λ at incidence angle θ0=0°. (a) θt=30° (s wave). (b) θt=45° (s wave). (c) θt=30° (p wave). (d) θt=45° (p wave).

Fig. 5
Fig. 5

Mean reflected intensity averaged over N=800 realizations when the size parameter is near the resonance at x in [0.3, 0.5]. W=5λ, 2=36. Left-side cases: angular distribution, θ0=10°, d=5λ, T=3.16λ, σ=1.9λ, 0=1, 1=2; (a) s wave, (b) p wave. Right-side cases: backscattered intensity versus size parameter, θ0=-θr=10°, d=λ. Solid curves, cylinder buried beneath a plane, 0=1, 1=2; dashed curves, cylinder isolated in vacuum (0=1=1); dotted curves, cylinder isolated in a dielectric (0=1=2). (c) s wave, (d) p wave.

Fig. 6
Fig. 6

Same as Fig. 5 for the resonance at x in [0.5, 0.7].

Fig. 7
Fig. 7

(a) Same as Fig. 5(a) for W=1.5λ (s wave). (b) θ0=-θr=10°, d=λ (s wave); solid curves, cylinder buried beneath a plane (0=1, 1=2), W=1.5λ; dashed curves, cylinder isolated in vacuum, W=1.5λ; dotted curves, cylinder isolated in vacuum, plane incident wave.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E(inc)(r, t)=[0, Φs(inc)(r), 0]exp(-iωt),
H(inc)(r, t)=[0, Φp(inc)(r), 0]exp(-iωt),
Φα(inc)(r)=exp[ik0(x sin θ0-z cos θ0)g(x, z)]×exp[-(x cos θ0+z sin θ0)2/W2],
g(x, z)=1+1k02W2 2W2 (x cos θ0+z sin θ0)2-1,
Ix=2πaλ, θs, θ0=|A(x, θs, θ0)|2,
Qsca(x)=1πx 02πdθs|A(x, θs)|2=σ(x)2a.

Metrics