Abstract

Synthetic aperture imaging is treated as a confocal process. The point-spread function of the synthetic aperture process is narrower than that of conventional imaging by a factor of 0.5, whereas the conventional confocal process offers resolution improvement of a factor of 0.72. The resolution in the regime between conventional confocal and conventional synthetic aperture is explored by computer simulation. Also, experimental results are given.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).
  2. J. M. Burch, J. W. Gates, R. G. N. Hill, L. H. Tanner, “Holography with a scatter-plate as beam splitter and a pulse ruby laser as light source,” Nature 212, 1347–1348 (1966).
    [CrossRef]
  3. R. E. Brooks, L. O. Heflinger, R. F. Wuerker, “Pulse laser holograms,” IEEE J. Quantum Electron. QE-2, 275–279 (1966).
    [CrossRef]
  4. L. Rosen, “Focused-image holography with extended source,” Appl. Phys. Lett. 9, 337–339 (1966).
    [CrossRef]
  5. O. Bryngdahl, A. W. Lohmann, “Modified holographic image formation,” J. Opt. Soc. Am. 57, 1412A (1967).
  6. E. N. Leith, G. C. Yang, “Inteferometric spatial carrier formation with an extended source,” Appl. Opt. 20, 3819–3821 (1981).
    [CrossRef] [PubMed]
  7. E. N. Leith, G. J. Swanson, “Recording of phase-amplitude images,” Appl. Opt. 20, 3081–3084 (1981).
    [CrossRef] [PubMed]
  8. P. C. Sun, E. N. Leith, “Broad-source image plane holography as a confocal imaging process,” Appl. Opt. 33, 597–602 (1994).
    [CrossRef] [PubMed]
  9. P. C. Sun, E. Arons, “Nonscanning confocal ranging system,” Appl. Opt. 34, 1254–1261 (1995).
    [CrossRef] [PubMed]
  10. M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monohan, ed., Proc. SPIE775, 233–247 (1987).
    [CrossRef]
  11. C. W. Sherwin, J. P. Ruina, R. D. Rawcliffe, “Some early developments in synthetic aperture radar systems,” IRE Trans. Mil. Electron. MIL-6, 111–115 (1962).
    [CrossRef]
  12. L. J. Cutrona, W. E. Vivian, E. N. Leith, G. O. Hall, “A high-resolution radar combat–surveillance system,” IRE Trans. Mil. Electron. MIL-5, 127–131 (1961).
    [CrossRef]
  13. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996) p. 264.
  14. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1964), Sec. 8.8.

1995 (1)

1994 (1)

1981 (2)

1967 (1)

O. Bryngdahl, A. W. Lohmann, “Modified holographic image formation,” J. Opt. Soc. Am. 57, 1412A (1967).

1966 (3)

J. M. Burch, J. W. Gates, R. G. N. Hill, L. H. Tanner, “Holography with a scatter-plate as beam splitter and a pulse ruby laser as light source,” Nature 212, 1347–1348 (1966).
[CrossRef]

R. E. Brooks, L. O. Heflinger, R. F. Wuerker, “Pulse laser holograms,” IEEE J. Quantum Electron. QE-2, 275–279 (1966).
[CrossRef]

L. Rosen, “Focused-image holography with extended source,” Appl. Phys. Lett. 9, 337–339 (1966).
[CrossRef]

1962 (1)

C. W. Sherwin, J. P. Ruina, R. D. Rawcliffe, “Some early developments in synthetic aperture radar systems,” IRE Trans. Mil. Electron. MIL-6, 111–115 (1962).
[CrossRef]

1961 (1)

L. J. Cutrona, W. E. Vivian, E. N. Leith, G. O. Hall, “A high-resolution radar combat–surveillance system,” IRE Trans. Mil. Electron. MIL-5, 127–131 (1961).
[CrossRef]

Arons, E.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1964), Sec. 8.8.

Brooks, R. E.

R. E. Brooks, L. O. Heflinger, R. F. Wuerker, “Pulse laser holograms,” IEEE J. Quantum Electron. QE-2, 275–279 (1966).
[CrossRef]

Bryngdahl, O.

O. Bryngdahl, A. W. Lohmann, “Modified holographic image formation,” J. Opt. Soc. Am. 57, 1412A (1967).

Burch, J. M.

J. M. Burch, J. W. Gates, R. G. N. Hill, L. H. Tanner, “Holography with a scatter-plate as beam splitter and a pulse ruby laser as light source,” Nature 212, 1347–1348 (1966).
[CrossRef]

Cohen, F.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monohan, ed., Proc. SPIE775, 233–247 (1987).
[CrossRef]

Cutrona, L. J.

L. J. Cutrona, W. E. Vivian, E. N. Leith, G. O. Hall, “A high-resolution radar combat–surveillance system,” IRE Trans. Mil. Electron. MIL-5, 127–131 (1961).
[CrossRef]

Davidson, M.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monohan, ed., Proc. SPIE775, 233–247 (1987).
[CrossRef]

Gates, J. W.

J. M. Burch, J. W. Gates, R. G. N. Hill, L. H. Tanner, “Holography with a scatter-plate as beam splitter and a pulse ruby laser as light source,” Nature 212, 1347–1348 (1966).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996) p. 264.

Hall, G. O.

L. J. Cutrona, W. E. Vivian, E. N. Leith, G. O. Hall, “A high-resolution radar combat–surveillance system,” IRE Trans. Mil. Electron. MIL-5, 127–131 (1961).
[CrossRef]

Heflinger, L. O.

R. E. Brooks, L. O. Heflinger, R. F. Wuerker, “Pulse laser holograms,” IEEE J. Quantum Electron. QE-2, 275–279 (1966).
[CrossRef]

Hill, R. G. N.

J. M. Burch, J. W. Gates, R. G. N. Hill, L. H. Tanner, “Holography with a scatter-plate as beam splitter and a pulse ruby laser as light source,” Nature 212, 1347–1348 (1966).
[CrossRef]

Kaufman, K.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monohan, ed., Proc. SPIE775, 233–247 (1987).
[CrossRef]

Leith, E. N.

Lohmann, A. W.

O. Bryngdahl, A. W. Lohmann, “Modified holographic image formation,” J. Opt. Soc. Am. 57, 1412A (1967).

Mazor, I.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monohan, ed., Proc. SPIE775, 233–247 (1987).
[CrossRef]

Rawcliffe, R. D.

C. W. Sherwin, J. P. Ruina, R. D. Rawcliffe, “Some early developments in synthetic aperture radar systems,” IRE Trans. Mil. Electron. MIL-6, 111–115 (1962).
[CrossRef]

Rosen, L.

L. Rosen, “Focused-image holography with extended source,” Appl. Phys. Lett. 9, 337–339 (1966).
[CrossRef]

Ruina, J. P.

C. W. Sherwin, J. P. Ruina, R. D. Rawcliffe, “Some early developments in synthetic aperture radar systems,” IRE Trans. Mil. Electron. MIL-6, 111–115 (1962).
[CrossRef]

Sheppard, C. J. R.

T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

Sherwin, C. W.

C. W. Sherwin, J. P. Ruina, R. D. Rawcliffe, “Some early developments in synthetic aperture radar systems,” IRE Trans. Mil. Electron. MIL-6, 111–115 (1962).
[CrossRef]

Sun, P. C.

Swanson, G. J.

Tanner, L. H.

J. M. Burch, J. W. Gates, R. G. N. Hill, L. H. Tanner, “Holography with a scatter-plate as beam splitter and a pulse ruby laser as light source,” Nature 212, 1347–1348 (1966).
[CrossRef]

Vivian, W. E.

L. J. Cutrona, W. E. Vivian, E. N. Leith, G. O. Hall, “A high-resolution radar combat–surveillance system,” IRE Trans. Mil. Electron. MIL-5, 127–131 (1961).
[CrossRef]

Wilson, T.

T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1964), Sec. 8.8.

Wuerker, R. F.

R. E. Brooks, L. O. Heflinger, R. F. Wuerker, “Pulse laser holograms,” IEEE J. Quantum Electron. QE-2, 275–279 (1966).
[CrossRef]

Yang, G. C.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

L. Rosen, “Focused-image holography with extended source,” Appl. Phys. Lett. 9, 337–339 (1966).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. E. Brooks, L. O. Heflinger, R. F. Wuerker, “Pulse laser holograms,” IEEE J. Quantum Electron. QE-2, 275–279 (1966).
[CrossRef]

IRE Trans. Mil. Electron. (2)

C. W. Sherwin, J. P. Ruina, R. D. Rawcliffe, “Some early developments in synthetic aperture radar systems,” IRE Trans. Mil. Electron. MIL-6, 111–115 (1962).
[CrossRef]

L. J. Cutrona, W. E. Vivian, E. N. Leith, G. O. Hall, “A high-resolution radar combat–surveillance system,” IRE Trans. Mil. Electron. MIL-5, 127–131 (1961).
[CrossRef]

J. Opt. Soc. Am. (1)

O. Bryngdahl, A. W. Lohmann, “Modified holographic image formation,” J. Opt. Soc. Am. 57, 1412A (1967).

Nature (1)

J. M. Burch, J. W. Gates, R. G. N. Hill, L. H. Tanner, “Holography with a scatter-plate as beam splitter and a pulse ruby laser as light source,” Nature 212, 1347–1348 (1966).
[CrossRef]

Other (4)

T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monohan, ed., Proc. SPIE775, 233–247 (1987).
[CrossRef]

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996) p. 264.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1964), Sec. 8.8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Basic confocal system.

Fig. 2
Fig. 2

Basic SAR system. An airplane carries an antenna along a flight path, while pulses are radiated and received.

Fig. 3
Fig. 3

Generalized confocal–SA system. (a) Basic SA system, (b) generalized system, (c) alternative generalized system. The object plane may be in front of the focal plane, as in (b), or after the focal plane, as in (c).

Fig. 4
Fig. 4

PSF |h| for various d. Solid curve, d=0 mm; dotted curve, d=20 mm; dotted–dashed curve, d=40 mm; dashed curve, d=100 mm.

Fig. 5
Fig. 5

PSF as in Fig. 4; the curves have been taken in d increments of 10 mm, from d=0 mm to d=100 mm.

Fig. 6
Fig. 6

PSF |h| at the position d of best focus, which is taken to be the plane at which the first minimum goes to 0. Solid curve, d=0 mm; dotted curve, d=20 mm; dotted–dashed curve, d=40 mm; dashed curve, d=100 mm.

Fig. 7
Fig. 7

PSF at best focus, where the curves have been taken in d increments of 10 mm, from d=0 to d=100 mm.

Fig. 8
Fig. 8

Resolution for various values of d, for d=d/2 (solid curve) and d=best focus (dotted curve). The two curves differ significantly only in the region near focus (d between 0 and 10 mm).

Fig. 9
Fig. 9

Plot showing the difference between the planes d=d/2 and d for best focus.

Fig. 10
Fig. 10

Fresnel diffraction pattern (field) at different positions near focus. The straight line at unity height is the distribution at the aperture.

Fig. 11
Fig. 11

Experimental results for various values of d.

Fig. 12
Fig. 12

Experimental difference between the planes d=d/2 and d for best focus.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

u2=s(x-x)h1(x)h2(α-x)dx,
u2=s*h1h2=s*h,
u(x, y)=(z/jλ) u(ξ, η)exp(jkr01/r01)dξdη,
u(x)=(z/jλ)1/2u(ξ)exp(jkr01/r01)dξ.

Metrics