Abstract

Adaptation, a change in response to a sustained stimulus, can be demonstrated in motion perception by velocity aftereffects—changes in the apparent speed of a moving pattern following adaptation. We measured changes in the apparent speed of sinusoidal gratings drifting at 4 or 7.5 deg/s during 30 s of adaptation followed by 30 s of recovery. The apparent speed of the patterns fell to approximately half the unadapted apparent speed, and the time constants of adaptation were much faster (5 s) than for recovery (22 s). Part of the loss of apparent speed (approximately 12%) was related to a loss of apparent contrast with adaptation. Sensitivity to speed increments and speed decrements increased during adaptation and was well described by a Weber fraction based on apparent speed. The results suggest that adaptation to motion, like light adaptation, may serve to improve an observer’s sensitivity to the prevailing environment.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. J. Wade, “A selective history of the study of visual motion aftereffects,” Perception 23, 1111–1134 (1994).
    [CrossRef] [PubMed]
  2. G. Mather, F. A. J. Verstraten, S. M. Anstis, The Motion Aftereffect: A Modern Perspective (MIT Press, Cambridge, Mass., 1998).
  3. A. Wohlgemuth, “On the aftereffect of seen movement,” Br. J. Psychol. 1, 1–117 (1911).
  4. P. G. Thompson, “Velocity after-effects and the perception of movement,” Ph.D. thesis (University of Cambridge, Cambridge, UK, 1976).
  5. J. J. Gibson, “Adaptation with negative aftereffect,” Psychol. Rev. 44, 222–244 (1937).
    [CrossRef]
  6. A. G. Goldstein, “Judgements of visual velocity as a function of length of observation,” J. Exp. Psychol. 54, 457–461 (1959).
    [CrossRef]
  7. J. Rapoport, “Adaptation in the perception of rotary motion,” J. Exp. Psychol. 67, 263–267 (1964).
    [CrossRef] [PubMed]
  8. P. Thompson, “Velocity after-effects: the effects of adaptation to moving stimuli on the perception of subsequently seen moving stimuli,” Vision Res. 21, 337–345 (1981).
    [CrossRef] [PubMed]
  9. A. T. Smith, “Velocity coding: evidence from perceived velocity shifts,” Vision Res. 25, 1969–1976 (1985).
    [CrossRef] [PubMed]
  10. A. T. Smith, G. K. Edgar, “Antagonistic comparison of temporal frequency filter outputs as a basis for speed perception,” Vision Res. 34, 253–265 (1994).
    [CrossRef] [PubMed]
  11. R. Muller, M. W. Greenlee, “Effect of contrast and adaptation on the perception of the direction and speed of drifting gratings,” Vision Res. 34, 2071–2092 (1994).
    [CrossRef] [PubMed]
  12. C. W. G. Clifford, K. Langley, “Psychophysics of motion adaptation parallels insect electrophysiology,” Curr. Biol. 6, 1340–1342 (1996).
    [CrossRef] [PubMed]
  13. V. R. Carlson, “Adaptation in the perception of visual velocity,” J. Exp. Psychol. 64, 192–197 (1962).
    [CrossRef] [PubMed]
  14. T. R. Scott, A. E. Jordan, D. A. Powell, “Does the visual after-effect of motion add algebraically to objective motion of the test stimulus?” J. Exp. Psychol. 66, 500–505 (1963).
    [CrossRef] [PubMed]
  15. M. G. Harris, “Velocity specificity of the flicker to pattern sensitivity ratio in human vision,” Vision Res. 20, 687–691 (1980).
    [CrossRef] [PubMed]
  16. A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
    [CrossRef] [PubMed]
  17. P. Thompson, “Discrimination of moving gratings at and above detection threshold,” Vision Res. 23, 1533–1538 (1983).
    [CrossRef] [PubMed]
  18. B. Moulden, J. Renshaw, G. Mather, “Two channels for flicker in the human visual system,” Perception 13, 387–400 (1984).
    [CrossRef] [PubMed]
  19. S. T. Hammett, A. T. Smith, “Two temporal channels or three? A re-evaluation,” Vision Res. 32, 285–291 (1992).
    [CrossRef] [PubMed]
  20. A. B. Metha, K. T. Mullen, “Temporal mechanisms underlying flicker detection and identification for red–green and achromatic stimuli,” J. Opt. Soc. Am. A 13, 1967–1980 (1996).
    [CrossRef]
  21. R. E. Fredericksen, R. F. Hess, “Estimating multiple temporal mechanisms in human vision,” Vision Res. 38, 1023–1040 (1998).
    [CrossRef] [PubMed]
  22. M. B. Mandler, W. Makous, “A three channel model of temporal frequency perception,” Vision Res. 24, 1881–1887 (1984).
    [CrossRef] [PubMed]
  23. R. F. Hess, R. J. Snowden, “Temporal properties of human visual filters: number, shapes and spatial covariation,” Vision Res. 32, 47–59 (1992).
    [CrossRef] [PubMed]
  24. M. Hershenson, “Thirty seconds of adaptation produce spiral aftereffects three days later,” Bull. Psychon. Soc. 23, 122–123 (1985).
    [CrossRef]
  25. M. M. Taylor, “Tracking the decay of the aftereffect of seen rotary movement,” Percept. Motor Skills 16, 119–129 (1963).
    [CrossRef]
  26. M. J. Keck, B. Pentz, “Recovery from adaptation to moving gratings,” Perception 6, 719–725 (1977).
    [CrossRef] [PubMed]
  27. M. Hershenson, “Duration, time constant, and decay of the linear motion aftereffect as a function of inspection duration,” Percept. Psychophys. 45, 251–257 (1989).
    [CrossRef] [PubMed]
  28. M. J. Keck, T. D. Palella, A. Pantle, “Motion aftereffect as a function of the contrast of sinusoidal gratings,” Vision Res. 16, 187–191 (1976).
    [CrossRef] [PubMed]
  29. M. Hershenson, “Visual system responds to rotational and size-change components of proximal motion patterns,” Percept. Psychophys. 42, 60–64 (1987).
    [CrossRef] [PubMed]
  30. R. G. Vautin, M. A. Berkley, “Responses of single cells in cat visual cortex to prolonged stimulus movement: neural correlates of visual aftereffects,” J. Neurophysiol. 40, 1051–1065 (1977).
    [PubMed]
  31. D. G. Albrecht, S. B. Farrar, D. B. Hamilton, “Spatial contrast adaptation characteristics of neurones recorded in the cat’s visual cortex,” J. Physiol. (London) 347, 713–739 (1984).
  32. P. Hammond, G. S. V. Mouat, A. T. Smith, “Neural correlates of motion aftereffects in cat striate cortical neurones: monocular adaptation,” Exp. Brain Res. 72, 1–20 (1988).
    [CrossRef]
  33. D. Giaschi, R. Douglas, S. Marlin, M. Cynader, “The time-course of direction-selective adaptation in simple and complex cells in cat striate cortex,” J. Neurophysiol. 70, 2024–2034 (1993).
    [PubMed]
  34. T. Maddess, S. B. Laughlin, “Adaptation of the motion sensitive neuron H1 is generated locally and governed by contrast,” Proc. R. Soc. London, Ser. B 225, 251–275 (1985).
    [CrossRef]
  35. D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vis. 10, 437–442 (1997).
    [CrossRef]
  36. D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
    [CrossRef] [PubMed]
  37. A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
    [CrossRef] [PubMed]
  38. G. W. Snedecor, W. G. Cochran, Statistical Methods (Iowa State U. Press, Ames, Iowa, 1967).
  39. W. H. Press, A. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).
  40. C. Blakemore, J. P. J. Muncey, R. M. Ridley, “Stimulus specificity in the human visual system,” Vision Res. 13, 1915–1931 (1973).
    [CrossRef] [PubMed]
  41. M. A. Georgeson, “The effect of spatial adaptation on perceived contrast,” Spatial Vis. 1, 103–112 (1985).
    [CrossRef]
  42. S. T. Hammett, R. J. Snowden, A. T. Smith, “Perceived contrast as a function of adaptation duration,” Vision Res. 34, 31–40 (1994).
    [CrossRef] [PubMed]
  43. P. G. Thompson, “Perceived rate of movement depends on contrast,” Vision Res. 22, 377–380 (1982).
    [CrossRef] [PubMed]
  44. L. S. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
    [CrossRef] [PubMed]
  45. K. Gegenfurtner, M. J. Hawken, “Perceived velocity of luminance, chromatic, and non-Fourier stimuli: influence of contrast and temporal frequency,” Vision Res. 36, 1281–1290 (1996).
    [CrossRef] [PubMed]
  46. P. J. Bex, A. B. Metha, W. Makous, “Enhanced motion aftereffect for complex motions,” Vision Res. (in press).
  47. W. A. Simpson, A. Newman, W. Aasland, “Equivalent background speed in recovery from motion adaptation,” J. Opt. Soc. Am. A 14, 13–22 (1997).
    [CrossRef]
  48. S. B. Laughlin, “The role of sensory adaptation in the retina,” J. Exp. Biol. 146, 39–62 (1989).
    [PubMed]
  49. M. W. Greenlee, F. Heitger, “The functional role of contrast adaptation,” Vision Res. 28, 791–797 (1988).
    [CrossRef] [PubMed]
  50. H. R. Wilson, R. Humanski, “Spatial frequency adaptation and contrast gain control,” Vision Res. 33, 1133–1149 (1993).
    [CrossRef] [PubMed]
  51. J. Ross, H. D. Speed, M. J. Morgan, “The effects of adaptation and masking on incremental thresholds for contrast,” Vision Res. 33, 2051–2056 (1993).
    [CrossRef] [PubMed]
  52. L. M. Maattanen, J. J. Koenderink, “Contrast adaptation and contrast gain control,” Exp. Brain Res. 87, 205–212 (1991).
    [CrossRef] [PubMed]
  53. P. J. Bex, S. Bedingham, S. T. Hammett, “Enhanced speed sensitivity during adaptation to motion,” Invest. Ophthalmol. Visual Sci. Suppl. 39, S229 (1998).

1998 (2)

R. E. Fredericksen, R. F. Hess, “Estimating multiple temporal mechanisms in human vision,” Vision Res. 38, 1023–1040 (1998).
[CrossRef] [PubMed]

P. J. Bex, S. Bedingham, S. T. Hammett, “Enhanced speed sensitivity during adaptation to motion,” Invest. Ophthalmol. Visual Sci. Suppl. 39, S229 (1998).

1997 (2)

W. A. Simpson, A. Newman, W. Aasland, “Equivalent background speed in recovery from motion adaptation,” J. Opt. Soc. Am. A 14, 13–22 (1997).
[CrossRef]

D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vis. 10, 437–442 (1997).
[CrossRef]

1996 (3)

A. B. Metha, K. T. Mullen, “Temporal mechanisms underlying flicker detection and identification for red–green and achromatic stimuli,” J. Opt. Soc. Am. A 13, 1967–1980 (1996).
[CrossRef]

C. W. G. Clifford, K. Langley, “Psychophysics of motion adaptation parallels insect electrophysiology,” Curr. Biol. 6, 1340–1342 (1996).
[CrossRef] [PubMed]

K. Gegenfurtner, M. J. Hawken, “Perceived velocity of luminance, chromatic, and non-Fourier stimuli: influence of contrast and temporal frequency,” Vision Res. 36, 1281–1290 (1996).
[CrossRef] [PubMed]

1994 (4)

S. T. Hammett, R. J. Snowden, A. T. Smith, “Perceived contrast as a function of adaptation duration,” Vision Res. 34, 31–40 (1994).
[CrossRef] [PubMed]

N. J. Wade, “A selective history of the study of visual motion aftereffects,” Perception 23, 1111–1134 (1994).
[CrossRef] [PubMed]

A. T. Smith, G. K. Edgar, “Antagonistic comparison of temporal frequency filter outputs as a basis for speed perception,” Vision Res. 34, 253–265 (1994).
[CrossRef] [PubMed]

R. Muller, M. W. Greenlee, “Effect of contrast and adaptation on the perception of the direction and speed of drifting gratings,” Vision Res. 34, 2071–2092 (1994).
[CrossRef] [PubMed]

1993 (3)

D. Giaschi, R. Douglas, S. Marlin, M. Cynader, “The time-course of direction-selective adaptation in simple and complex cells in cat striate cortex,” J. Neurophysiol. 70, 2024–2034 (1993).
[PubMed]

H. R. Wilson, R. Humanski, “Spatial frequency adaptation and contrast gain control,” Vision Res. 33, 1133–1149 (1993).
[CrossRef] [PubMed]

J. Ross, H. D. Speed, M. J. Morgan, “The effects of adaptation and masking on incremental thresholds for contrast,” Vision Res. 33, 2051–2056 (1993).
[CrossRef] [PubMed]

1992 (3)

L. S. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[CrossRef] [PubMed]

S. T. Hammett, A. T. Smith, “Two temporal channels or three? A re-evaluation,” Vision Res. 32, 285–291 (1992).
[CrossRef] [PubMed]

R. F. Hess, R. J. Snowden, “Temporal properties of human visual filters: number, shapes and spatial covariation,” Vision Res. 32, 47–59 (1992).
[CrossRef] [PubMed]

1991 (2)

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

L. M. Maattanen, J. J. Koenderink, “Contrast adaptation and contrast gain control,” Exp. Brain Res. 87, 205–212 (1991).
[CrossRef] [PubMed]

1989 (2)

S. B. Laughlin, “The role of sensory adaptation in the retina,” J. Exp. Biol. 146, 39–62 (1989).
[PubMed]

M. Hershenson, “Duration, time constant, and decay of the linear motion aftereffect as a function of inspection duration,” Percept. Psychophys. 45, 251–257 (1989).
[CrossRef] [PubMed]

1988 (2)

M. W. Greenlee, F. Heitger, “The functional role of contrast adaptation,” Vision Res. 28, 791–797 (1988).
[CrossRef] [PubMed]

P. Hammond, G. S. V. Mouat, A. T. Smith, “Neural correlates of motion aftereffects in cat striate cortical neurones: monocular adaptation,” Exp. Brain Res. 72, 1–20 (1988).
[CrossRef]

1987 (1)

M. Hershenson, “Visual system responds to rotational and size-change components of proximal motion patterns,” Percept. Psychophys. 42, 60–64 (1987).
[CrossRef] [PubMed]

1985 (4)

M. Hershenson, “Thirty seconds of adaptation produce spiral aftereffects three days later,” Bull. Psychon. Soc. 23, 122–123 (1985).
[CrossRef]

A. T. Smith, “Velocity coding: evidence from perceived velocity shifts,” Vision Res. 25, 1969–1976 (1985).
[CrossRef] [PubMed]

M. A. Georgeson, “The effect of spatial adaptation on perceived contrast,” Spatial Vis. 1, 103–112 (1985).
[CrossRef]

T. Maddess, S. B. Laughlin, “Adaptation of the motion sensitive neuron H1 is generated locally and governed by contrast,” Proc. R. Soc. London, Ser. B 225, 251–275 (1985).
[CrossRef]

1984 (3)

B. Moulden, J. Renshaw, G. Mather, “Two channels for flicker in the human visual system,” Perception 13, 387–400 (1984).
[CrossRef] [PubMed]

M. B. Mandler, W. Makous, “A three channel model of temporal frequency perception,” Vision Res. 24, 1881–1887 (1984).
[CrossRef] [PubMed]

D. G. Albrecht, S. B. Farrar, D. B. Hamilton, “Spatial contrast adaptation characteristics of neurones recorded in the cat’s visual cortex,” J. Physiol. (London) 347, 713–739 (1984).

1983 (2)

A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

P. Thompson, “Discrimination of moving gratings at and above detection threshold,” Vision Res. 23, 1533–1538 (1983).
[CrossRef] [PubMed]

1982 (1)

P. G. Thompson, “Perceived rate of movement depends on contrast,” Vision Res. 22, 377–380 (1982).
[CrossRef] [PubMed]

1981 (2)

A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
[CrossRef] [PubMed]

P. Thompson, “Velocity after-effects: the effects of adaptation to moving stimuli on the perception of subsequently seen moving stimuli,” Vision Res. 21, 337–345 (1981).
[CrossRef] [PubMed]

1980 (1)

M. G. Harris, “Velocity specificity of the flicker to pattern sensitivity ratio in human vision,” Vision Res. 20, 687–691 (1980).
[CrossRef] [PubMed]

1977 (2)

M. J. Keck, B. Pentz, “Recovery from adaptation to moving gratings,” Perception 6, 719–725 (1977).
[CrossRef] [PubMed]

R. G. Vautin, M. A. Berkley, “Responses of single cells in cat visual cortex to prolonged stimulus movement: neural correlates of visual aftereffects,” J. Neurophysiol. 40, 1051–1065 (1977).
[PubMed]

1976 (1)

M. J. Keck, T. D. Palella, A. Pantle, “Motion aftereffect as a function of the contrast of sinusoidal gratings,” Vision Res. 16, 187–191 (1976).
[CrossRef] [PubMed]

1973 (1)

C. Blakemore, J. P. J. Muncey, R. M. Ridley, “Stimulus specificity in the human visual system,” Vision Res. 13, 1915–1931 (1973).
[CrossRef] [PubMed]

1964 (1)

J. Rapoport, “Adaptation in the perception of rotary motion,” J. Exp. Psychol. 67, 263–267 (1964).
[CrossRef] [PubMed]

1963 (2)

T. R. Scott, A. E. Jordan, D. A. Powell, “Does the visual after-effect of motion add algebraically to objective motion of the test stimulus?” J. Exp. Psychol. 66, 500–505 (1963).
[CrossRef] [PubMed]

M. M. Taylor, “Tracking the decay of the aftereffect of seen rotary movement,” Percept. Motor Skills 16, 119–129 (1963).
[CrossRef]

1962 (1)

V. R. Carlson, “Adaptation in the perception of visual velocity,” J. Exp. Psychol. 64, 192–197 (1962).
[CrossRef] [PubMed]

1959 (1)

A. G. Goldstein, “Judgements of visual velocity as a function of length of observation,” J. Exp. Psychol. 54, 457–461 (1959).
[CrossRef]

1937 (1)

J. J. Gibson, “Adaptation with negative aftereffect,” Psychol. Rev. 44, 222–244 (1937).
[CrossRef]

1911 (1)

A. Wohlgemuth, “On the aftereffect of seen movement,” Br. J. Psychol. 1, 1–117 (1911).

Aasland, W.

Albrecht, D. G.

D. G. Albrecht, S. B. Farrar, D. B. Hamilton, “Spatial contrast adaptation characteristics of neurones recorded in the cat’s visual cortex,” J. Physiol. (London) 347, 713–739 (1984).

Anstis, S. M.

G. Mather, F. A. J. Verstraten, S. M. Anstis, The Motion Aftereffect: A Modern Perspective (MIT Press, Cambridge, Mass., 1998).

Bedingham, S.

P. J. Bex, S. Bedingham, S. T. Hammett, “Enhanced speed sensitivity during adaptation to motion,” Invest. Ophthalmol. Visual Sci. Suppl. 39, S229 (1998).

Berkley, M. A.

R. G. Vautin, M. A. Berkley, “Responses of single cells in cat visual cortex to prolonged stimulus movement: neural correlates of visual aftereffects,” J. Neurophysiol. 40, 1051–1065 (1977).
[PubMed]

Bex, P. J.

P. J. Bex, S. Bedingham, S. T. Hammett, “Enhanced speed sensitivity during adaptation to motion,” Invest. Ophthalmol. Visual Sci. Suppl. 39, S229 (1998).

P. J. Bex, A. B. Metha, W. Makous, “Enhanced motion aftereffect for complex motions,” Vision Res. (in press).

Blakemore, C.

C. Blakemore, J. P. J. Muncey, R. M. Ridley, “Stimulus specificity in the human visual system,” Vision Res. 13, 1915–1931 (1973).
[CrossRef] [PubMed]

Carlson, V. R.

V. R. Carlson, “Adaptation in the perception of visual velocity,” J. Exp. Psychol. 64, 192–197 (1962).
[CrossRef] [PubMed]

Clifford, C. W. G.

C. W. G. Clifford, K. Langley, “Psychophysics of motion adaptation parallels insect electrophysiology,” Curr. Biol. 6, 1340–1342 (1996).
[CrossRef] [PubMed]

Cochran, W. G.

G. W. Snedecor, W. G. Cochran, Statistical Methods (Iowa State U. Press, Ames, Iowa, 1967).

Cynader, M.

D. Giaschi, R. Douglas, S. Marlin, M. Cynader, “The time-course of direction-selective adaptation in simple and complex cells in cat striate cortex,” J. Neurophysiol. 70, 2024–2034 (1993).
[PubMed]

Douglas, R.

D. Giaschi, R. Douglas, S. Marlin, M. Cynader, “The time-course of direction-selective adaptation in simple and complex cells in cat striate cortex,” J. Neurophysiol. 70, 2024–2034 (1993).
[PubMed]

Edgar, G. K.

A. T. Smith, G. K. Edgar, “Antagonistic comparison of temporal frequency filter outputs as a basis for speed perception,” Vision Res. 34, 253–265 (1994).
[CrossRef] [PubMed]

Farrar, S. B.

D. G. Albrecht, S. B. Farrar, D. B. Hamilton, “Spatial contrast adaptation characteristics of neurones recorded in the cat’s visual cortex,” J. Physiol. (London) 347, 713–739 (1984).

Flannery, B. P.

W. H. Press, A. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).

Fredericksen, R. E.

R. E. Fredericksen, R. F. Hess, “Estimating multiple temporal mechanisms in human vision,” Vision Res. 38, 1023–1040 (1998).
[CrossRef] [PubMed]

Gegenfurtner, K.

K. Gegenfurtner, M. J. Hawken, “Perceived velocity of luminance, chromatic, and non-Fourier stimuli: influence of contrast and temporal frequency,” Vision Res. 36, 1281–1290 (1996).
[CrossRef] [PubMed]

Georgeson, M. A.

M. A. Georgeson, “The effect of spatial adaptation on perceived contrast,” Spatial Vis. 1, 103–112 (1985).
[CrossRef]

Giaschi, D.

D. Giaschi, R. Douglas, S. Marlin, M. Cynader, “The time-course of direction-selective adaptation in simple and complex cells in cat striate cortex,” J. Neurophysiol. 70, 2024–2034 (1993).
[PubMed]

Gibson, J. J.

J. J. Gibson, “Adaptation with negative aftereffect,” Psychol. Rev. 44, 222–244 (1937).
[CrossRef]

Goldstein, A. G.

A. G. Goldstein, “Judgements of visual velocity as a function of length of observation,” J. Exp. Psychol. 54, 457–461 (1959).
[CrossRef]

Greenlee, M. W.

R. Muller, M. W. Greenlee, “Effect of contrast and adaptation on the perception of the direction and speed of drifting gratings,” Vision Res. 34, 2071–2092 (1994).
[CrossRef] [PubMed]

M. W. Greenlee, F. Heitger, “The functional role of contrast adaptation,” Vision Res. 28, 791–797 (1988).
[CrossRef] [PubMed]

Hamilton, D. B.

D. G. Albrecht, S. B. Farrar, D. B. Hamilton, “Spatial contrast adaptation characteristics of neurones recorded in the cat’s visual cortex,” J. Physiol. (London) 347, 713–739 (1984).

Hammett, S. T.

P. J. Bex, S. Bedingham, S. T. Hammett, “Enhanced speed sensitivity during adaptation to motion,” Invest. Ophthalmol. Visual Sci. Suppl. 39, S229 (1998).

S. T. Hammett, R. J. Snowden, A. T. Smith, “Perceived contrast as a function of adaptation duration,” Vision Res. 34, 31–40 (1994).
[CrossRef] [PubMed]

S. T. Hammett, A. T. Smith, “Two temporal channels or three? A re-evaluation,” Vision Res. 32, 285–291 (1992).
[CrossRef] [PubMed]

Hammond, P.

P. Hammond, G. S. V. Mouat, A. T. Smith, “Neural correlates of motion aftereffects in cat striate cortical neurones: monocular adaptation,” Exp. Brain Res. 72, 1–20 (1988).
[CrossRef]

Harris, M. G.

M. G. Harris, “Velocity specificity of the flicker to pattern sensitivity ratio in human vision,” Vision Res. 20, 687–691 (1980).
[CrossRef] [PubMed]

Hawken, M. J.

K. Gegenfurtner, M. J. Hawken, “Perceived velocity of luminance, chromatic, and non-Fourier stimuli: influence of contrast and temporal frequency,” Vision Res. 36, 1281–1290 (1996).
[CrossRef] [PubMed]

Heitger, F.

M. W. Greenlee, F. Heitger, “The functional role of contrast adaptation,” Vision Res. 28, 791–797 (1988).
[CrossRef] [PubMed]

Hershenson, M.

M. Hershenson, “Duration, time constant, and decay of the linear motion aftereffect as a function of inspection duration,” Percept. Psychophys. 45, 251–257 (1989).
[CrossRef] [PubMed]

M. Hershenson, “Visual system responds to rotational and size-change components of proximal motion patterns,” Percept. Psychophys. 42, 60–64 (1987).
[CrossRef] [PubMed]

M. Hershenson, “Thirty seconds of adaptation produce spiral aftereffects three days later,” Bull. Psychon. Soc. 23, 122–123 (1985).
[CrossRef]

Hess, R. F.

R. E. Fredericksen, R. F. Hess, “Estimating multiple temporal mechanisms in human vision,” Vision Res. 38, 1023–1040 (1998).
[CrossRef] [PubMed]

R. F. Hess, R. J. Snowden, “Temporal properties of human visual filters: number, shapes and spatial covariation,” Vision Res. 32, 47–59 (1992).
[CrossRef] [PubMed]

Humanski, R.

H. R. Wilson, R. Humanski, “Spatial frequency adaptation and contrast gain control,” Vision Res. 33, 1133–1149 (1993).
[CrossRef] [PubMed]

Jordan, A. E.

T. R. Scott, A. E. Jordan, D. A. Powell, “Does the visual after-effect of motion add algebraically to objective motion of the test stimulus?” J. Exp. Psychol. 66, 500–505 (1963).
[CrossRef] [PubMed]

Keck, M. J.

M. J. Keck, B. Pentz, “Recovery from adaptation to moving gratings,” Perception 6, 719–725 (1977).
[CrossRef] [PubMed]

M. J. Keck, T. D. Palella, A. Pantle, “Motion aftereffect as a function of the contrast of sinusoidal gratings,” Vision Res. 16, 187–191 (1976).
[CrossRef] [PubMed]

Koenderink, J. J.

L. M. Maattanen, J. J. Koenderink, “Contrast adaptation and contrast gain control,” Exp. Brain Res. 87, 205–212 (1991).
[CrossRef] [PubMed]

Langley, K.

C. W. G. Clifford, K. Langley, “Psychophysics of motion adaptation parallels insect electrophysiology,” Curr. Biol. 6, 1340–1342 (1996).
[CrossRef] [PubMed]

Laughlin, S. B.

S. B. Laughlin, “The role of sensory adaptation in the retina,” J. Exp. Biol. 146, 39–62 (1989).
[PubMed]

T. Maddess, S. B. Laughlin, “Adaptation of the motion sensitive neuron H1 is generated locally and governed by contrast,” Proc. R. Soc. London, Ser. B 225, 251–275 (1985).
[CrossRef]

Maattanen, L. M.

L. M. Maattanen, J. J. Koenderink, “Contrast adaptation and contrast gain control,” Exp. Brain Res. 87, 205–212 (1991).
[CrossRef] [PubMed]

Maddess, T.

T. Maddess, S. B. Laughlin, “Adaptation of the motion sensitive neuron H1 is generated locally and governed by contrast,” Proc. R. Soc. London, Ser. B 225, 251–275 (1985).
[CrossRef]

Makous, W.

M. B. Mandler, W. Makous, “A three channel model of temporal frequency perception,” Vision Res. 24, 1881–1887 (1984).
[CrossRef] [PubMed]

P. J. Bex, A. B. Metha, W. Makous, “Enhanced motion aftereffect for complex motions,” Vision Res. (in press).

Mandler, M. B.

M. B. Mandler, W. Makous, “A three channel model of temporal frequency perception,” Vision Res. 24, 1881–1887 (1984).
[CrossRef] [PubMed]

Marlin, S.

D. Giaschi, R. Douglas, S. Marlin, M. Cynader, “The time-course of direction-selective adaptation in simple and complex cells in cat striate cortex,” J. Neurophysiol. 70, 2024–2034 (1993).
[PubMed]

Mather, G.

B. Moulden, J. Renshaw, G. Mather, “Two channels for flicker in the human visual system,” Perception 13, 387–400 (1984).
[CrossRef] [PubMed]

G. Mather, F. A. J. Verstraten, S. M. Anstis, The Motion Aftereffect: A Modern Perspective (MIT Press, Cambridge, Mass., 1998).

Metha, A. B.

A. B. Metha, K. T. Mullen, “Temporal mechanisms underlying flicker detection and identification for red–green and achromatic stimuli,” J. Opt. Soc. Am. A 13, 1967–1980 (1996).
[CrossRef]

P. J. Bex, A. B. Metha, W. Makous, “Enhanced motion aftereffect for complex motions,” Vision Res. (in press).

Morgan, M. J.

J. Ross, H. D. Speed, M. J. Morgan, “The effects of adaptation and masking on incremental thresholds for contrast,” Vision Res. 33, 2051–2056 (1993).
[CrossRef] [PubMed]

Mouat, G. S. V.

P. Hammond, G. S. V. Mouat, A. T. Smith, “Neural correlates of motion aftereffects in cat striate cortical neurones: monocular adaptation,” Exp. Brain Res. 72, 1–20 (1988).
[CrossRef]

Moulden, B.

B. Moulden, J. Renshaw, G. Mather, “Two channels for flicker in the human visual system,” Perception 13, 387–400 (1984).
[CrossRef] [PubMed]

Mullen, K. T.

A. B. Metha, K. T. Mullen, “Temporal mechanisms underlying flicker detection and identification for red–green and achromatic stimuli,” J. Opt. Soc. Am. A 13, 1967–1980 (1996).
[CrossRef]

Muller, R.

R. Muller, M. W. Greenlee, “Effect of contrast and adaptation on the perception of the direction and speed of drifting gratings,” Vision Res. 34, 2071–2092 (1994).
[CrossRef] [PubMed]

Muncey, J. P. J.

C. Blakemore, J. P. J. Muncey, R. M. Ridley, “Stimulus specificity in the human visual system,” Vision Res. 13, 1915–1931 (1973).
[CrossRef] [PubMed]

Newman, A.

Palella, T. D.

M. J. Keck, T. D. Palella, A. Pantle, “Motion aftereffect as a function of the contrast of sinusoidal gratings,” Vision Res. 16, 187–191 (1976).
[CrossRef] [PubMed]

Pantle, A.

M. J. Keck, T. D. Palella, A. Pantle, “Motion aftereffect as a function of the contrast of sinusoidal gratings,” Vision Res. 16, 187–191 (1976).
[CrossRef] [PubMed]

Pelli, D. G.

D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vis. 10, 437–442 (1997).
[CrossRef]

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

Pentz, B.

M. J. Keck, B. Pentz, “Recovery from adaptation to moving gratings,” Perception 6, 719–725 (1977).
[CrossRef] [PubMed]

Powell, D. A.

T. R. Scott, A. E. Jordan, D. A. Powell, “Does the visual after-effect of motion add algebraically to objective motion of the test stimulus?” J. Exp. Psychol. 66, 500–505 (1963).
[CrossRef] [PubMed]

Press, W. H.

W. H. Press, A. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).

Rapoport, J.

J. Rapoport, “Adaptation in the perception of rotary motion,” J. Exp. Psychol. 67, 263–267 (1964).
[CrossRef] [PubMed]

Renshaw, J.

B. Moulden, J. Renshaw, G. Mather, “Two channels for flicker in the human visual system,” Perception 13, 387–400 (1984).
[CrossRef] [PubMed]

Ridley, R. M.

C. Blakemore, J. P. J. Muncey, R. M. Ridley, “Stimulus specificity in the human visual system,” Vision Res. 13, 1915–1931 (1973).
[CrossRef] [PubMed]

Robson, J. G.

A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
[CrossRef] [PubMed]

Ross, J.

J. Ross, H. D. Speed, M. J. Morgan, “The effects of adaptation and masking on incremental thresholds for contrast,” Vision Res. 33, 2051–2056 (1993).
[CrossRef] [PubMed]

Scott, T. R.

T. R. Scott, A. E. Jordan, D. A. Powell, “Does the visual after-effect of motion add algebraically to objective motion of the test stimulus?” J. Exp. Psychol. 66, 500–505 (1963).
[CrossRef] [PubMed]

Simpson, W. A.

Smith, A. T.

S. T. Hammett, R. J. Snowden, A. T. Smith, “Perceived contrast as a function of adaptation duration,” Vision Res. 34, 31–40 (1994).
[CrossRef] [PubMed]

A. T. Smith, G. K. Edgar, “Antagonistic comparison of temporal frequency filter outputs as a basis for speed perception,” Vision Res. 34, 253–265 (1994).
[CrossRef] [PubMed]

S. T. Hammett, A. T. Smith, “Two temporal channels or three? A re-evaluation,” Vision Res. 32, 285–291 (1992).
[CrossRef] [PubMed]

P. Hammond, G. S. V. Mouat, A. T. Smith, “Neural correlates of motion aftereffects in cat striate cortical neurones: monocular adaptation,” Exp. Brain Res. 72, 1–20 (1988).
[CrossRef]

A. T. Smith, “Velocity coding: evidence from perceived velocity shifts,” Vision Res. 25, 1969–1976 (1985).
[CrossRef] [PubMed]

Snedecor, G. W.

G. W. Snedecor, W. G. Cochran, Statistical Methods (Iowa State U. Press, Ames, Iowa, 1967).

Snowden, R. J.

S. T. Hammett, R. J. Snowden, A. T. Smith, “Perceived contrast as a function of adaptation duration,” Vision Res. 34, 31–40 (1994).
[CrossRef] [PubMed]

R. F. Hess, R. J. Snowden, “Temporal properties of human visual filters: number, shapes and spatial covariation,” Vision Res. 32, 47–59 (1992).
[CrossRef] [PubMed]

Speed, H. D.

J. Ross, H. D. Speed, M. J. Morgan, “The effects of adaptation and masking on incremental thresholds for contrast,” Vision Res. 33, 2051–2056 (1993).
[CrossRef] [PubMed]

Stone, L. S.

L. S. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[CrossRef] [PubMed]

Taylor, M. M.

M. M. Taylor, “Tracking the decay of the aftereffect of seen rotary movement,” Percept. Motor Skills 16, 119–129 (1963).
[CrossRef]

Teukolsky, A. A.

W. H. Press, A. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).

Thompson, P.

L. S. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[CrossRef] [PubMed]

P. Thompson, “Discrimination of moving gratings at and above detection threshold,” Vision Res. 23, 1533–1538 (1983).
[CrossRef] [PubMed]

P. Thompson, “Velocity after-effects: the effects of adaptation to moving stimuli on the perception of subsequently seen moving stimuli,” Vision Res. 21, 337–345 (1981).
[CrossRef] [PubMed]

Thompson, P. G.

P. G. Thompson, “Perceived rate of movement depends on contrast,” Vision Res. 22, 377–380 (1982).
[CrossRef] [PubMed]

P. G. Thompson, “Velocity after-effects and the perception of movement,” Ph.D. thesis (University of Cambridge, Cambridge, UK, 1976).

Vautin, R. G.

R. G. Vautin, M. A. Berkley, “Responses of single cells in cat visual cortex to prolonged stimulus movement: neural correlates of visual aftereffects,” J. Neurophysiol. 40, 1051–1065 (1977).
[PubMed]

Verstraten, F. A. J.

G. Mather, F. A. J. Verstraten, S. M. Anstis, The Motion Aftereffect: A Modern Perspective (MIT Press, Cambridge, Mass., 1998).

Vetterling, W. T.

W. H. Press, A. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).

Wade, N. J.

N. J. Wade, “A selective history of the study of visual motion aftereffects,” Perception 23, 1111–1134 (1994).
[CrossRef] [PubMed]

Watson, A. B.

A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
[CrossRef] [PubMed]

Wilson, H. R.

H. R. Wilson, R. Humanski, “Spatial frequency adaptation and contrast gain control,” Vision Res. 33, 1133–1149 (1993).
[CrossRef] [PubMed]

Wohlgemuth, A.

A. Wohlgemuth, “On the aftereffect of seen movement,” Br. J. Psychol. 1, 1–117 (1911).

Zhang, L.

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

Br. J. Psychol. (1)

A. Wohlgemuth, “On the aftereffect of seen movement,” Br. J. Psychol. 1, 1–117 (1911).

Bull. Psychon. Soc. (1)

M. Hershenson, “Thirty seconds of adaptation produce spiral aftereffects three days later,” Bull. Psychon. Soc. 23, 122–123 (1985).
[CrossRef]

Curr. Biol. (1)

C. W. G. Clifford, K. Langley, “Psychophysics of motion adaptation parallels insect electrophysiology,” Curr. Biol. 6, 1340–1342 (1996).
[CrossRef] [PubMed]

Exp. Brain Res. (2)

P. Hammond, G. S. V. Mouat, A. T. Smith, “Neural correlates of motion aftereffects in cat striate cortical neurones: monocular adaptation,” Exp. Brain Res. 72, 1–20 (1988).
[CrossRef]

L. M. Maattanen, J. J. Koenderink, “Contrast adaptation and contrast gain control,” Exp. Brain Res. 87, 205–212 (1991).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci. Suppl. (1)

P. J. Bex, S. Bedingham, S. T. Hammett, “Enhanced speed sensitivity during adaptation to motion,” Invest. Ophthalmol. Visual Sci. Suppl. 39, S229 (1998).

J. Exp. Biol. (1)

S. B. Laughlin, “The role of sensory adaptation in the retina,” J. Exp. Biol. 146, 39–62 (1989).
[PubMed]

J. Exp. Psychol. (4)

V. R. Carlson, “Adaptation in the perception of visual velocity,” J. Exp. Psychol. 64, 192–197 (1962).
[CrossRef] [PubMed]

T. R. Scott, A. E. Jordan, D. A. Powell, “Does the visual after-effect of motion add algebraically to objective motion of the test stimulus?” J. Exp. Psychol. 66, 500–505 (1963).
[CrossRef] [PubMed]

A. G. Goldstein, “Judgements of visual velocity as a function of length of observation,” J. Exp. Psychol. 54, 457–461 (1959).
[CrossRef]

J. Rapoport, “Adaptation in the perception of rotary motion,” J. Exp. Psychol. 67, 263–267 (1964).
[CrossRef] [PubMed]

J. Neurophysiol. (2)

D. Giaschi, R. Douglas, S. Marlin, M. Cynader, “The time-course of direction-selective adaptation in simple and complex cells in cat striate cortex,” J. Neurophysiol. 70, 2024–2034 (1993).
[PubMed]

R. G. Vautin, M. A. Berkley, “Responses of single cells in cat visual cortex to prolonged stimulus movement: neural correlates of visual aftereffects,” J. Neurophysiol. 40, 1051–1065 (1977).
[PubMed]

J. Opt. Soc. Am. A (2)

A. B. Metha, K. T. Mullen, “Temporal mechanisms underlying flicker detection and identification for red–green and achromatic stimuli,” J. Opt. Soc. Am. A 13, 1967–1980 (1996).
[CrossRef]

W. A. Simpson, A. Newman, W. Aasland, “Equivalent background speed in recovery from motion adaptation,” J. Opt. Soc. Am. A 14, 13–22 (1997).
[CrossRef]

J. Physiol. (London) (1)

D. G. Albrecht, S. B. Farrar, D. B. Hamilton, “Spatial contrast adaptation characteristics of neurones recorded in the cat’s visual cortex,” J. Physiol. (London) 347, 713–739 (1984).

Percept. Motor Skills (1)

M. M. Taylor, “Tracking the decay of the aftereffect of seen rotary movement,” Percept. Motor Skills 16, 119–129 (1963).
[CrossRef]

Percept. Psychophys. (3)

M. Hershenson, “Duration, time constant, and decay of the linear motion aftereffect as a function of inspection duration,” Percept. Psychophys. 45, 251–257 (1989).
[CrossRef] [PubMed]

M. Hershenson, “Visual system responds to rotational and size-change components of proximal motion patterns,” Percept. Psychophys. 42, 60–64 (1987).
[CrossRef] [PubMed]

A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

Perception (3)

M. J. Keck, B. Pentz, “Recovery from adaptation to moving gratings,” Perception 6, 719–725 (1977).
[CrossRef] [PubMed]

B. Moulden, J. Renshaw, G. Mather, “Two channels for flicker in the human visual system,” Perception 13, 387–400 (1984).
[CrossRef] [PubMed]

N. J. Wade, “A selective history of the study of visual motion aftereffects,” Perception 23, 1111–1134 (1994).
[CrossRef] [PubMed]

Proc. R. Soc. London, Ser. B (1)

T. Maddess, S. B. Laughlin, “Adaptation of the motion sensitive neuron H1 is generated locally and governed by contrast,” Proc. R. Soc. London, Ser. B 225, 251–275 (1985).
[CrossRef]

Psychol. Rev. (1)

J. J. Gibson, “Adaptation with negative aftereffect,” Psychol. Rev. 44, 222–244 (1937).
[CrossRef]

Spatial Vis. (2)

D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vis. 10, 437–442 (1997).
[CrossRef]

M. A. Georgeson, “The effect of spatial adaptation on perceived contrast,” Spatial Vis. 1, 103–112 (1985).
[CrossRef]

Vision Res. (21)

S. T. Hammett, R. J. Snowden, A. T. Smith, “Perceived contrast as a function of adaptation duration,” Vision Res. 34, 31–40 (1994).
[CrossRef] [PubMed]

P. G. Thompson, “Perceived rate of movement depends on contrast,” Vision Res. 22, 377–380 (1982).
[CrossRef] [PubMed]

L. S. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[CrossRef] [PubMed]

K. Gegenfurtner, M. J. Hawken, “Perceived velocity of luminance, chromatic, and non-Fourier stimuli: influence of contrast and temporal frequency,” Vision Res. 36, 1281–1290 (1996).
[CrossRef] [PubMed]

M. W. Greenlee, F. Heitger, “The functional role of contrast adaptation,” Vision Res. 28, 791–797 (1988).
[CrossRef] [PubMed]

H. R. Wilson, R. Humanski, “Spatial frequency adaptation and contrast gain control,” Vision Res. 33, 1133–1149 (1993).
[CrossRef] [PubMed]

J. Ross, H. D. Speed, M. J. Morgan, “The effects of adaptation and masking on incremental thresholds for contrast,” Vision Res. 33, 2051–2056 (1993).
[CrossRef] [PubMed]

C. Blakemore, J. P. J. Muncey, R. M. Ridley, “Stimulus specificity in the human visual system,” Vision Res. 13, 1915–1931 (1973).
[CrossRef] [PubMed]

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

M. J. Keck, T. D. Palella, A. Pantle, “Motion aftereffect as a function of the contrast of sinusoidal gratings,” Vision Res. 16, 187–191 (1976).
[CrossRef] [PubMed]

S. T. Hammett, A. T. Smith, “Two temporal channels or three? A re-evaluation,” Vision Res. 32, 285–291 (1992).
[CrossRef] [PubMed]

P. Thompson, “Velocity after-effects: the effects of adaptation to moving stimuli on the perception of subsequently seen moving stimuli,” Vision Res. 21, 337–345 (1981).
[CrossRef] [PubMed]

A. T. Smith, “Velocity coding: evidence from perceived velocity shifts,” Vision Res. 25, 1969–1976 (1985).
[CrossRef] [PubMed]

A. T. Smith, G. K. Edgar, “Antagonistic comparison of temporal frequency filter outputs as a basis for speed perception,” Vision Res. 34, 253–265 (1994).
[CrossRef] [PubMed]

R. Muller, M. W. Greenlee, “Effect of contrast and adaptation on the perception of the direction and speed of drifting gratings,” Vision Res. 34, 2071–2092 (1994).
[CrossRef] [PubMed]

R. E. Fredericksen, R. F. Hess, “Estimating multiple temporal mechanisms in human vision,” Vision Res. 38, 1023–1040 (1998).
[CrossRef] [PubMed]

M. B. Mandler, W. Makous, “A three channel model of temporal frequency perception,” Vision Res. 24, 1881–1887 (1984).
[CrossRef] [PubMed]

R. F. Hess, R. J. Snowden, “Temporal properties of human visual filters: number, shapes and spatial covariation,” Vision Res. 32, 47–59 (1992).
[CrossRef] [PubMed]

M. G. Harris, “Velocity specificity of the flicker to pattern sensitivity ratio in human vision,” Vision Res. 20, 687–691 (1980).
[CrossRef] [PubMed]

A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
[CrossRef] [PubMed]

P. Thompson, “Discrimination of moving gratings at and above detection threshold,” Vision Res. 23, 1533–1538 (1983).
[CrossRef] [PubMed]

Other (5)

G. Mather, F. A. J. Verstraten, S. M. Anstis, The Motion Aftereffect: A Modern Perspective (MIT Press, Cambridge, Mass., 1998).

P. G. Thompson, “Velocity after-effects and the perception of movement,” Ph.D. thesis (University of Cambridge, Cambridge, UK, 1976).

G. W. Snedecor, W. G. Cochran, Statistical Methods (Iowa State U. Press, Ames, Iowa, 1967).

W. H. Press, A. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).

P. J. Bex, A. B. Metha, W. Makous, “Enhanced motion aftereffect for complex motions,” Vision Res. (in press).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Typical psychometric function for speed matching. The data are for the naive observer after 21 s of adaptation to a standard grating drifting at 15 Hz. The x axis shows the speed of the match pattern, and the y axis shows the proportion of observations in which the match appeared faster. Error bars show binomial standard deviations. The solid curve shows the best-fitting cumulative normal function, and the dashed curves show the upper and lower 95% confidence limits to the fit.

Fig. 2
Fig. 2

Apparent speed as a function of adaptation and recovery duration for 8-Hz (circles) and 15-Hz (squares) adapting gratings for (a) one of the authors (PB) and (b) a naive observer (RW). The physical contrast of standard and match gratings was equal (50%). The observer adapted to continuous motion for the first 30 s and then recovered for 30 s; apparent speed matches were measured at 3-s intervals throughout. Error bars show 95% confidence intervals. The data have been fitted by exponential functions: black curves for adaptation and gray curves for recovery. The time constants and the proportions of attenuation for each function are also shown.

Fig. 3
Fig. 3

Apparent contrast as a function of adaptation and recovery duration for 8-Hz (circles) and 15-Hz (squares) adapting gratings for (a) one of the authors (PB) and (b) a naive observer (RW). The speed of standard and match gratings was equal. The observer adapted to continuous motion for the first 30 s and then recovered for 30 s; apparent contrast matches were measured at 3-s intervals throughout. Error bars show 95% confidence intervals. The data have been fitted by exponential functions: black curves for adaptation and gray curves for recovery. The time constants and the proportions of attenuation for each function are also shown.

Fig. 4
Fig. 4

Apparent speed as a function of adaptation and recovery duration for 8-Hz (circles) and 15-Hz (squares) adapting gratings for (a) one of the authors (PB) and (b) a naive observer (RW). The contrast of the standard grating was 50%, and the contrast of the match grating was varied (according to the function measured in experiment 3), so that it matched the apparent contrast of the standard. The observer adapted to continuous motion of the standard for the first 30 s and then recovered for 30 s; apparent speed matches were measured at 3-s intervals throughout. The data are plotted as in Fig. 2. Dashed curves show the data replotted from Fig. 2 for comparison.

Fig. 5
Fig. 5

Typical psychometric function for speed increment detection. The data are for the naive observer after 21 s of adaptation to a standard grating drifting at 15 Hz. The x axis shows the speed increment (Δv), and the y axis shows the proportion of observations in which the match appeared faster. Error bars show binomial standard deviations. The solid curve shows the best-fitting cumulative normal function, and the dashed curves show the upper and lower 95% confidence limits to the fit.

Fig. 6
Fig. 6

Speed increment sensitivity as a function of adaptation and recovery duration for 8-Hz (circles) and 15-Hz (squares) adapting gratings for (a) one of the authors (PB) and (b) a naive observer (RW). Observers adapted to continuous motion for the first 30 s and then recovered for 30 s; speed increment sensitivity was measured at 3-s intervals throughout. Error bars show 95% confidence intervals. The data have been fitted by Weber fractions based on the apparent speed measured in experiment 2: black curves for adaptation and gray curves for recovery.

Fig. 7
Fig. 7

Speed decrement sensitivity as a function of adaptation and recovery duration for 8-Hz (circles) and 15-Hz (squares) adapting gratings for one of the authors (PB). Data are plotted as in Fig. 6: black curves for adaptation and gray curves for recovery.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

L(x, y)=L0{1+C exp[-(x2+y2)/2σ2]sin(2πx/λ)},
±(pq/n)0.5+(1/2n),
Adaptation:
(Sa)+(S-Sa)exp(-t/τ),
Recovery:
S-(S-Sa)exp(-t/τ),
Δvthresh=σ+k1Sa,
Δvthresh=σ+k1Sa+k2Sa2,

Metrics