Abstract

We have investigated, both theoretically and experimentally, the intensity of p-polarized light diffracted by a metallized diffraction grating when surface plasmons are excited and when they are not. Experiments were made on modulated silver surfaces, and light in the near and far fields was detected by a sharpened optical fiber. Good agreement between experiment and theory (based on the differential method) was found for the intensity collected by the fiber for several angles of incidence in near and far fields. These angles of incidence were chosen to produce amplitudes of the electromagnetic field that displayed many differences in the near-field and far-field zones. The near-field study, both experimental and theoretical, gave us extra information about the sample. Indeed, the near field is composed of evanescent waves, which describe the high spatial frequencies of the surface and thus its subwavelength structures. Analysis of the electromagnetic fields diffracted in far and near fields by the grating permits refinement of the parameters of the sample (thickness of silver) and of its environment (thickness and refractive index of a mixed air–water layer deposited on the sample). Finally, we present and analyze the electromagnetic field diffused by the grating when the surface was oxided after a long period in ambient air.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Heitmann, H. Raether, “Light emission of nonradiative surface plasmons from sinusoidally modulated silver surfaces,” Surf. Sci. 59, 17–22 (1976).H. Raether, Surface Plasmons in Smooth and Rough Surfaces and on Gratings , Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1998), Chap. 6, pp. 91–116.
    [CrossRef]
  2. R. C. Reddick, R. J. Warmack, T. L. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
    [CrossRef]
  3. P. M. Adam, L. Salomon, F. de Fornel, J. P. Goudonnet, “Determination of the spatial extension of the surface-plasmon evanescent field of a silver film with a photon scanning tunneling microscope,” Phys. Rev. B 48, 2680–2683 (1993).
    [CrossRef]
  4. O. Marti, H. Bielefeldt, B. Hecht, S. Herminghaus, P. Leiderer, J. Mlynek, “Near-field optical measurement of the surface plasmon field,” Opt. Commun. 96, 225–228 (1993).
    [CrossRef]
  5. R. B. G. de Hollander, N. F. van Hulst, R. P. H. Kooyman, “Near-field plasmon and force microscopy,” Ultramicroscopy 57, 263–269 (1995).
    [CrossRef]
  6. P. Dawson, F. de Fornel, “Image of surface plasmon propagating and edge interaction using a photon scanning tunneling microscope,” Phys. Rev. Lett. 72, 2927–2930 (1994).
    [CrossRef] [PubMed]
  7. J. R. Krenn, W. Gotschy, P. Somitsch, A. Leitner, F. R. Aussenegg, “Near-field optical investigations on nanometric silver particles,” Appl. Phys. A: Mater. Sci. Process. 61, 541–547 (1995).
    [CrossRef]
  8. D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalvev, J. S. Suh, R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
    [CrossRef] [PubMed]
  9. S. I. Bolzhevolnyi, B. Vohnsen, I. I. Smolyaninov, A. V. Zayats, “Direct observation of surface polariton localization caused by surface roughness,” Opt. Commun. 117, 417–423 (1995).
    [CrossRef]
  10. S. I. Bolzhevolnyi, I. I. Smolyaninov, A. V. Zayats, “Near-field microscopy of surface-plasmon polaritons: localization and internal interface imaging,” Phys. Rev. B 51, 17916–17924 (1995).
    [CrossRef]
  11. M. Nieto-Vesperinas, N. Garcia, NATO Workshop on Near-Field Microscopy (Kluwer Academic, Dordrecht, The Netherlands, 1996); F. de Fornel, Les Ondes Évanescentes en Optique et en Optoélectronique, Collection Technique et Scientifique des Télécommunications, Centre National d’Etudes des Télécommunications–Ecole Nationale Supérieure des Télécommunications, Eyrolles edition (Springer-Verlag, Berlin, 1999), Chaps. X–XII, pp. 195–275.
  12. M. Nevière, P. Vincent, R. Petit, “Sur la théorie du réseau conducteur et ses applications à l’optique,” Nouv. Rev. Opti. 5, 65–77 (1974); P. Vincent, Electromagnetic Theory of Gratings , Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980), Chap. 4, pp. 101–121.
    [CrossRef]
  13. L. Salomon, F. de Fornel, J. P. Goudonnet, “Sample-tip coupling efficiencies of the photon scanning tunneling microscope,” J. Opt. Soc. Am. A 8, 2009–2015 (1991).
    [CrossRef]
  14. R. C. Mac Phedran, G. H. Derrick, M. Nevière, D. Maystre, “Metallic crossed grating,” J. Opt. (Paris) 29, 209–218 (1982);R. C. Mac Phedran, Electromagnetic Theory of Gratings , Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980), Chap. 7,pp.227–276.
    [CrossRef]
  15. D. Van Labeke, D. Barchiesi, “Probes for a scanning tunneling optical microscope: a theoretical comparison,” J. Opt. Soc. Am. A 10, 2193–2201 (1993).
    [CrossRef]
  16. R. Carminati, J. J. Greffet, “Two dimensional dimension numerical simulation of the photon scanning tunneling microscope: concept of transfer function,” Opt. Commun. 116, 316–321 (1995).
    [CrossRef]
  17. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4380–4379 (1972).
    [CrossRef]
  18. F. de Fornel, L. Salomon, P. M. Adam, E. Bourillot, J. P. Goudonnet, M. Nevière, “Resolution of the photon scanning tunneling microscope: influence of physical parameters,” Ultramicroscopy 42, 422–429 (1992).
    [CrossRef]
  19. N. F. van Hulst, F. B. Segerink, B. Bolger, “High resolution imaging of dielectric surfaces with an evanescent field optical microscope,” Opt. Commun. 87, 212–218 (1992).
    [CrossRef]
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).
  21. G. J. Kovacs, “Sulphide formation on evaporated Ag films,” Surf. Sci. 78, 245–250 (1978).
    [CrossRef]

1995

R. B. G. de Hollander, N. F. van Hulst, R. P. H. Kooyman, “Near-field plasmon and force microscopy,” Ultramicroscopy 57, 263–269 (1995).
[CrossRef]

J. R. Krenn, W. Gotschy, P. Somitsch, A. Leitner, F. R. Aussenegg, “Near-field optical investigations on nanometric silver particles,” Appl. Phys. A: Mater. Sci. Process. 61, 541–547 (1995).
[CrossRef]

S. I. Bolzhevolnyi, B. Vohnsen, I. I. Smolyaninov, A. V. Zayats, “Direct observation of surface polariton localization caused by surface roughness,” Opt. Commun. 117, 417–423 (1995).
[CrossRef]

S. I. Bolzhevolnyi, I. I. Smolyaninov, A. V. Zayats, “Near-field microscopy of surface-plasmon polaritons: localization and internal interface imaging,” Phys. Rev. B 51, 17916–17924 (1995).
[CrossRef]

R. Carminati, J. J. Greffet, “Two dimensional dimension numerical simulation of the photon scanning tunneling microscope: concept of transfer function,” Opt. Commun. 116, 316–321 (1995).
[CrossRef]

1994

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalvev, J. S. Suh, R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[CrossRef] [PubMed]

P. Dawson, F. de Fornel, “Image of surface plasmon propagating and edge interaction using a photon scanning tunneling microscope,” Phys. Rev. Lett. 72, 2927–2930 (1994).
[CrossRef] [PubMed]

1993

P. M. Adam, L. Salomon, F. de Fornel, J. P. Goudonnet, “Determination of the spatial extension of the surface-plasmon evanescent field of a silver film with a photon scanning tunneling microscope,” Phys. Rev. B 48, 2680–2683 (1993).
[CrossRef]

O. Marti, H. Bielefeldt, B. Hecht, S. Herminghaus, P. Leiderer, J. Mlynek, “Near-field optical measurement of the surface plasmon field,” Opt. Commun. 96, 225–228 (1993).
[CrossRef]

D. Van Labeke, D. Barchiesi, “Probes for a scanning tunneling optical microscope: a theoretical comparison,” J. Opt. Soc. Am. A 10, 2193–2201 (1993).
[CrossRef]

1992

F. de Fornel, L. Salomon, P. M. Adam, E. Bourillot, J. P. Goudonnet, M. Nevière, “Resolution of the photon scanning tunneling microscope: influence of physical parameters,” Ultramicroscopy 42, 422–429 (1992).
[CrossRef]

N. F. van Hulst, F. B. Segerink, B. Bolger, “High resolution imaging of dielectric surfaces with an evanescent field optical microscope,” Opt. Commun. 87, 212–218 (1992).
[CrossRef]

1991

1989

R. C. Reddick, R. J. Warmack, T. L. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

1982

R. C. Mac Phedran, G. H. Derrick, M. Nevière, D. Maystre, “Metallic crossed grating,” J. Opt. (Paris) 29, 209–218 (1982);R. C. Mac Phedran, Electromagnetic Theory of Gratings , Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980), Chap. 7,pp.227–276.
[CrossRef]

1978

G. J. Kovacs, “Sulphide formation on evaporated Ag films,” Surf. Sci. 78, 245–250 (1978).
[CrossRef]

1976

D. Heitmann, H. Raether, “Light emission of nonradiative surface plasmons from sinusoidally modulated silver surfaces,” Surf. Sci. 59, 17–22 (1976).H. Raether, Surface Plasmons in Smooth and Rough Surfaces and on Gratings , Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1998), Chap. 6, pp. 91–116.
[CrossRef]

1974

M. Nevière, P. Vincent, R. Petit, “Sur la théorie du réseau conducteur et ses applications à l’optique,” Nouv. Rev. Opti. 5, 65–77 (1974); P. Vincent, Electromagnetic Theory of Gratings , Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980), Chap. 4, pp. 101–121.
[CrossRef]

1972

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4380–4379 (1972).
[CrossRef]

Adam, P. M.

P. M. Adam, L. Salomon, F. de Fornel, J. P. Goudonnet, “Determination of the spatial extension of the surface-plasmon evanescent field of a silver film with a photon scanning tunneling microscope,” Phys. Rev. B 48, 2680–2683 (1993).
[CrossRef]

F. de Fornel, L. Salomon, P. M. Adam, E. Bourillot, J. P. Goudonnet, M. Nevière, “Resolution of the photon scanning tunneling microscope: influence of physical parameters,” Ultramicroscopy 42, 422–429 (1992).
[CrossRef]

Aussenegg, F. R.

J. R. Krenn, W. Gotschy, P. Somitsch, A. Leitner, F. R. Aussenegg, “Near-field optical investigations on nanometric silver particles,” Appl. Phys. A: Mater. Sci. Process. 61, 541–547 (1995).
[CrossRef]

Barchiesi, D.

Bielefeldt, H.

O. Marti, H. Bielefeldt, B. Hecht, S. Herminghaus, P. Leiderer, J. Mlynek, “Near-field optical measurement of the surface plasmon field,” Opt. Commun. 96, 225–228 (1993).
[CrossRef]

Bolger, B.

N. F. van Hulst, F. B. Segerink, B. Bolger, “High resolution imaging of dielectric surfaces with an evanescent field optical microscope,” Opt. Commun. 87, 212–218 (1992).
[CrossRef]

Bolzhevolnyi, S. I.

S. I. Bolzhevolnyi, I. I. Smolyaninov, A. V. Zayats, “Near-field microscopy of surface-plasmon polaritons: localization and internal interface imaging,” Phys. Rev. B 51, 17916–17924 (1995).
[CrossRef]

S. I. Bolzhevolnyi, B. Vohnsen, I. I. Smolyaninov, A. V. Zayats, “Direct observation of surface polariton localization caused by surface roughness,” Opt. Commun. 117, 417–423 (1995).
[CrossRef]

Botet, R.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalvev, J. S. Suh, R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[CrossRef] [PubMed]

Bourillot, E.

F. de Fornel, L. Salomon, P. M. Adam, E. Bourillot, J. P. Goudonnet, M. Nevière, “Resolution of the photon scanning tunneling microscope: influence of physical parameters,” Ultramicroscopy 42, 422–429 (1992).
[CrossRef]

Carminati, R.

R. Carminati, J. J. Greffet, “Two dimensional dimension numerical simulation of the photon scanning tunneling microscope: concept of transfer function,” Opt. Commun. 116, 316–321 (1995).
[CrossRef]

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4380–4379 (1972).
[CrossRef]

Dawson, P.

P. Dawson, F. de Fornel, “Image of surface plasmon propagating and edge interaction using a photon scanning tunneling microscope,” Phys. Rev. Lett. 72, 2927–2930 (1994).
[CrossRef] [PubMed]

de Fornel, F.

P. Dawson, F. de Fornel, “Image of surface plasmon propagating and edge interaction using a photon scanning tunneling microscope,” Phys. Rev. Lett. 72, 2927–2930 (1994).
[CrossRef] [PubMed]

P. M. Adam, L. Salomon, F. de Fornel, J. P. Goudonnet, “Determination of the spatial extension of the surface-plasmon evanescent field of a silver film with a photon scanning tunneling microscope,” Phys. Rev. B 48, 2680–2683 (1993).
[CrossRef]

F. de Fornel, L. Salomon, P. M. Adam, E. Bourillot, J. P. Goudonnet, M. Nevière, “Resolution of the photon scanning tunneling microscope: influence of physical parameters,” Ultramicroscopy 42, 422–429 (1992).
[CrossRef]

L. Salomon, F. de Fornel, J. P. Goudonnet, “Sample-tip coupling efficiencies of the photon scanning tunneling microscope,” J. Opt. Soc. Am. A 8, 2009–2015 (1991).
[CrossRef]

de Hollander, R. B. G.

R. B. G. de Hollander, N. F. van Hulst, R. P. H. Kooyman, “Near-field plasmon and force microscopy,” Ultramicroscopy 57, 263–269 (1995).
[CrossRef]

Derrick, G. H.

R. C. Mac Phedran, G. H. Derrick, M. Nevière, D. Maystre, “Metallic crossed grating,” J. Opt. (Paris) 29, 209–218 (1982);R. C. Mac Phedran, Electromagnetic Theory of Gratings , Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980), Chap. 7,pp.227–276.
[CrossRef]

Ferrell, T. L.

R. C. Reddick, R. J. Warmack, T. L. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Garcia, N.

M. Nieto-Vesperinas, N. Garcia, NATO Workshop on Near-Field Microscopy (Kluwer Academic, Dordrecht, The Netherlands, 1996); F. de Fornel, Les Ondes Évanescentes en Optique et en Optoélectronique, Collection Technique et Scientifique des Télécommunications, Centre National d’Etudes des Télécommunications–Ecole Nationale Supérieure des Télécommunications, Eyrolles edition (Springer-Verlag, Berlin, 1999), Chaps. X–XII, pp. 195–275.

Gotschy, W.

J. R. Krenn, W. Gotschy, P. Somitsch, A. Leitner, F. R. Aussenegg, “Near-field optical investigations on nanometric silver particles,” Appl. Phys. A: Mater. Sci. Process. 61, 541–547 (1995).
[CrossRef]

Goudonnet, J. P.

P. M. Adam, L. Salomon, F. de Fornel, J. P. Goudonnet, “Determination of the spatial extension of the surface-plasmon evanescent field of a silver film with a photon scanning tunneling microscope,” Phys. Rev. B 48, 2680–2683 (1993).
[CrossRef]

F. de Fornel, L. Salomon, P. M. Adam, E. Bourillot, J. P. Goudonnet, M. Nevière, “Resolution of the photon scanning tunneling microscope: influence of physical parameters,” Ultramicroscopy 42, 422–429 (1992).
[CrossRef]

L. Salomon, F. de Fornel, J. P. Goudonnet, “Sample-tip coupling efficiencies of the photon scanning tunneling microscope,” J. Opt. Soc. Am. A 8, 2009–2015 (1991).
[CrossRef]

Greffet, J. J.

R. Carminati, J. J. Greffet, “Two dimensional dimension numerical simulation of the photon scanning tunneling microscope: concept of transfer function,” Opt. Commun. 116, 316–321 (1995).
[CrossRef]

Hecht, B.

O. Marti, H. Bielefeldt, B. Hecht, S. Herminghaus, P. Leiderer, J. Mlynek, “Near-field optical measurement of the surface plasmon field,” Opt. Commun. 96, 225–228 (1993).
[CrossRef]

Heitmann, D.

D. Heitmann, H. Raether, “Light emission of nonradiative surface plasmons from sinusoidally modulated silver surfaces,” Surf. Sci. 59, 17–22 (1976).H. Raether, Surface Plasmons in Smooth and Rough Surfaces and on Gratings , Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1998), Chap. 6, pp. 91–116.
[CrossRef]

Herminghaus, S.

O. Marti, H. Bielefeldt, B. Hecht, S. Herminghaus, P. Leiderer, J. Mlynek, “Near-field optical measurement of the surface plasmon field,” Opt. Commun. 96, 225–228 (1993).
[CrossRef]

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4380–4379 (1972).
[CrossRef]

Kooyman, R. P. H.

R. B. G. de Hollander, N. F. van Hulst, R. P. H. Kooyman, “Near-field plasmon and force microscopy,” Ultramicroscopy 57, 263–269 (1995).
[CrossRef]

Kovacs, G. J.

G. J. Kovacs, “Sulphide formation on evaporated Ag films,” Surf. Sci. 78, 245–250 (1978).
[CrossRef]

Kovacs, J.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalvev, J. S. Suh, R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[CrossRef] [PubMed]

Krenn, J. R.

J. R. Krenn, W. Gotschy, P. Somitsch, A. Leitner, F. R. Aussenegg, “Near-field optical investigations on nanometric silver particles,” Appl. Phys. A: Mater. Sci. Process. 61, 541–547 (1995).
[CrossRef]

Leiderer, P.

O. Marti, H. Bielefeldt, B. Hecht, S. Herminghaus, P. Leiderer, J. Mlynek, “Near-field optical measurement of the surface plasmon field,” Opt. Commun. 96, 225–228 (1993).
[CrossRef]

Leitner, A.

J. R. Krenn, W. Gotschy, P. Somitsch, A. Leitner, F. R. Aussenegg, “Near-field optical investigations on nanometric silver particles,” Appl. Phys. A: Mater. Sci. Process. 61, 541–547 (1995).
[CrossRef]

Mac Phedran, R. C.

R. C. Mac Phedran, G. H. Derrick, M. Nevière, D. Maystre, “Metallic crossed grating,” J. Opt. (Paris) 29, 209–218 (1982);R. C. Mac Phedran, Electromagnetic Theory of Gratings , Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980), Chap. 7,pp.227–276.
[CrossRef]

Marti, O.

O. Marti, H. Bielefeldt, B. Hecht, S. Herminghaus, P. Leiderer, J. Mlynek, “Near-field optical measurement of the surface plasmon field,” Opt. Commun. 96, 225–228 (1993).
[CrossRef]

Maystre, D.

R. C. Mac Phedran, G. H. Derrick, M. Nevière, D. Maystre, “Metallic crossed grating,” J. Opt. (Paris) 29, 209–218 (1982);R. C. Mac Phedran, Electromagnetic Theory of Gratings , Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980), Chap. 7,pp.227–276.
[CrossRef]

Mlynek, J.

O. Marti, H. Bielefeldt, B. Hecht, S. Herminghaus, P. Leiderer, J. Mlynek, “Near-field optical measurement of the surface plasmon field,” Opt. Commun. 96, 225–228 (1993).
[CrossRef]

Moskovits, M.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalvev, J. S. Suh, R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[CrossRef] [PubMed]

Nevière, M.

F. de Fornel, L. Salomon, P. M. Adam, E. Bourillot, J. P. Goudonnet, M. Nevière, “Resolution of the photon scanning tunneling microscope: influence of physical parameters,” Ultramicroscopy 42, 422–429 (1992).
[CrossRef]

R. C. Mac Phedran, G. H. Derrick, M. Nevière, D. Maystre, “Metallic crossed grating,” J. Opt. (Paris) 29, 209–218 (1982);R. C. Mac Phedran, Electromagnetic Theory of Gratings , Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980), Chap. 7,pp.227–276.
[CrossRef]

M. Nevière, P. Vincent, R. Petit, “Sur la théorie du réseau conducteur et ses applications à l’optique,” Nouv. Rev. Opti. 5, 65–77 (1974); P. Vincent, Electromagnetic Theory of Gratings , Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980), Chap. 4, pp. 101–121.
[CrossRef]

Nieto-Vesperinas, M.

M. Nieto-Vesperinas, N. Garcia, NATO Workshop on Near-Field Microscopy (Kluwer Academic, Dordrecht, The Netherlands, 1996); F. de Fornel, Les Ondes Évanescentes en Optique et en Optoélectronique, Collection Technique et Scientifique des Télécommunications, Centre National d’Etudes des Télécommunications–Ecole Nationale Supérieure des Télécommunications, Eyrolles edition (Springer-Verlag, Berlin, 1999), Chaps. X–XII, pp. 195–275.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).

Petit, R.

M. Nevière, P. Vincent, R. Petit, “Sur la théorie du réseau conducteur et ses applications à l’optique,” Nouv. Rev. Opti. 5, 65–77 (1974); P. Vincent, Electromagnetic Theory of Gratings , Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980), Chap. 4, pp. 101–121.
[CrossRef]

Raether, H.

D. Heitmann, H. Raether, “Light emission of nonradiative surface plasmons from sinusoidally modulated silver surfaces,” Surf. Sci. 59, 17–22 (1976).H. Raether, Surface Plasmons in Smooth and Rough Surfaces and on Gratings , Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1998), Chap. 6, pp. 91–116.
[CrossRef]

Reddick, R. C.

R. C. Reddick, R. J. Warmack, T. L. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Salomon, L.

P. M. Adam, L. Salomon, F. de Fornel, J. P. Goudonnet, “Determination of the spatial extension of the surface-plasmon evanescent field of a silver film with a photon scanning tunneling microscope,” Phys. Rev. B 48, 2680–2683 (1993).
[CrossRef]

F. de Fornel, L. Salomon, P. M. Adam, E. Bourillot, J. P. Goudonnet, M. Nevière, “Resolution of the photon scanning tunneling microscope: influence of physical parameters,” Ultramicroscopy 42, 422–429 (1992).
[CrossRef]

L. Salomon, F. de Fornel, J. P. Goudonnet, “Sample-tip coupling efficiencies of the photon scanning tunneling microscope,” J. Opt. Soc. Am. A 8, 2009–2015 (1991).
[CrossRef]

Segerink, F. B.

N. F. van Hulst, F. B. Segerink, B. Bolger, “High resolution imaging of dielectric surfaces with an evanescent field optical microscope,” Opt. Commun. 87, 212–218 (1992).
[CrossRef]

Shalvev, V. M.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalvev, J. S. Suh, R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[CrossRef] [PubMed]

Smolyaninov, I. I.

S. I. Bolzhevolnyi, B. Vohnsen, I. I. Smolyaninov, A. V. Zayats, “Direct observation of surface polariton localization caused by surface roughness,” Opt. Commun. 117, 417–423 (1995).
[CrossRef]

S. I. Bolzhevolnyi, I. I. Smolyaninov, A. V. Zayats, “Near-field microscopy of surface-plasmon polaritons: localization and internal interface imaging,” Phys. Rev. B 51, 17916–17924 (1995).
[CrossRef]

Somitsch, P.

J. R. Krenn, W. Gotschy, P. Somitsch, A. Leitner, F. R. Aussenegg, “Near-field optical investigations on nanometric silver particles,” Appl. Phys. A: Mater. Sci. Process. 61, 541–547 (1995).
[CrossRef]

Suh, J. S.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalvev, J. S. Suh, R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[CrossRef] [PubMed]

Tsai, D. P.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalvev, J. S. Suh, R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[CrossRef] [PubMed]

van Hulst, N. F.

R. B. G. de Hollander, N. F. van Hulst, R. P. H. Kooyman, “Near-field plasmon and force microscopy,” Ultramicroscopy 57, 263–269 (1995).
[CrossRef]

N. F. van Hulst, F. B. Segerink, B. Bolger, “High resolution imaging of dielectric surfaces with an evanescent field optical microscope,” Opt. Commun. 87, 212–218 (1992).
[CrossRef]

Van Labeke, D.

Vincent, P.

M. Nevière, P. Vincent, R. Petit, “Sur la théorie du réseau conducteur et ses applications à l’optique,” Nouv. Rev. Opti. 5, 65–77 (1974); P. Vincent, Electromagnetic Theory of Gratings , Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980), Chap. 4, pp. 101–121.
[CrossRef]

Vohnsen, B.

S. I. Bolzhevolnyi, B. Vohnsen, I. I. Smolyaninov, A. V. Zayats, “Direct observation of surface polariton localization caused by surface roughness,” Opt. Commun. 117, 417–423 (1995).
[CrossRef]

Wang, Z.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalvev, J. S. Suh, R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[CrossRef] [PubMed]

Warmack, R. J.

R. C. Reddick, R. J. Warmack, T. L. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Zayats, A. V.

S. I. Bolzhevolnyi, B. Vohnsen, I. I. Smolyaninov, A. V. Zayats, “Direct observation of surface polariton localization caused by surface roughness,” Opt. Commun. 117, 417–423 (1995).
[CrossRef]

S. I. Bolzhevolnyi, I. I. Smolyaninov, A. V. Zayats, “Near-field microscopy of surface-plasmon polaritons: localization and internal interface imaging,” Phys. Rev. B 51, 17916–17924 (1995).
[CrossRef]

Appl. Phys. A: Mater. Sci. Process.

J. R. Krenn, W. Gotschy, P. Somitsch, A. Leitner, F. R. Aussenegg, “Near-field optical investigations on nanometric silver particles,” Appl. Phys. A: Mater. Sci. Process. 61, 541–547 (1995).
[CrossRef]

J. Opt. (Paris)

R. C. Mac Phedran, G. H. Derrick, M. Nevière, D. Maystre, “Metallic crossed grating,” J. Opt. (Paris) 29, 209–218 (1982);R. C. Mac Phedran, Electromagnetic Theory of Gratings , Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980), Chap. 7,pp.227–276.
[CrossRef]

J. Opt. Soc. Am. A

Nouv. Rev. Opti.

M. Nevière, P. Vincent, R. Petit, “Sur la théorie du réseau conducteur et ses applications à l’optique,” Nouv. Rev. Opti. 5, 65–77 (1974); P. Vincent, Electromagnetic Theory of Gratings , Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980), Chap. 4, pp. 101–121.
[CrossRef]

Opt. Commun.

S. I. Bolzhevolnyi, B. Vohnsen, I. I. Smolyaninov, A. V. Zayats, “Direct observation of surface polariton localization caused by surface roughness,” Opt. Commun. 117, 417–423 (1995).
[CrossRef]

R. Carminati, J. J. Greffet, “Two dimensional dimension numerical simulation of the photon scanning tunneling microscope: concept of transfer function,” Opt. Commun. 116, 316–321 (1995).
[CrossRef]

O. Marti, H. Bielefeldt, B. Hecht, S. Herminghaus, P. Leiderer, J. Mlynek, “Near-field optical measurement of the surface plasmon field,” Opt. Commun. 96, 225–228 (1993).
[CrossRef]

N. F. van Hulst, F. B. Segerink, B. Bolger, “High resolution imaging of dielectric surfaces with an evanescent field optical microscope,” Opt. Commun. 87, 212–218 (1992).
[CrossRef]

Phys. Rev. B

R. C. Reddick, R. J. Warmack, T. L. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

P. M. Adam, L. Salomon, F. de Fornel, J. P. Goudonnet, “Determination of the spatial extension of the surface-plasmon evanescent field of a silver film with a photon scanning tunneling microscope,” Phys. Rev. B 48, 2680–2683 (1993).
[CrossRef]

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4380–4379 (1972).
[CrossRef]

S. I. Bolzhevolnyi, I. I. Smolyaninov, A. V. Zayats, “Near-field microscopy of surface-plasmon polaritons: localization and internal interface imaging,” Phys. Rev. B 51, 17916–17924 (1995).
[CrossRef]

Phys. Rev. Lett.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalvev, J. S. Suh, R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[CrossRef] [PubMed]

P. Dawson, F. de Fornel, “Image of surface plasmon propagating and edge interaction using a photon scanning tunneling microscope,” Phys. Rev. Lett. 72, 2927–2930 (1994).
[CrossRef] [PubMed]

Surf. Sci.

D. Heitmann, H. Raether, “Light emission of nonradiative surface plasmons from sinusoidally modulated silver surfaces,” Surf. Sci. 59, 17–22 (1976).H. Raether, Surface Plasmons in Smooth and Rough Surfaces and on Gratings , Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1998), Chap. 6, pp. 91–116.
[CrossRef]

G. J. Kovacs, “Sulphide formation on evaporated Ag films,” Surf. Sci. 78, 245–250 (1978).
[CrossRef]

Ultramicroscopy

R. B. G. de Hollander, N. F. van Hulst, R. P. H. Kooyman, “Near-field plasmon and force microscopy,” Ultramicroscopy 57, 263–269 (1995).
[CrossRef]

F. de Fornel, L. Salomon, P. M. Adam, E. Bourillot, J. P. Goudonnet, M. Nevière, “Resolution of the photon scanning tunneling microscope: influence of physical parameters,” Ultramicroscopy 42, 422–429 (1992).
[CrossRef]

Other

M. Nieto-Vesperinas, N. Garcia, NATO Workshop on Near-Field Microscopy (Kluwer Academic, Dordrecht, The Netherlands, 1996); F. de Fornel, Les Ondes Évanescentes en Optique et en Optoélectronique, Collection Technique et Scientifique des Télécommunications, Centre National d’Etudes des Télécommunications–Ecole Nationale Supérieure des Télécommunications, Eyrolles edition (Springer-Verlag, Berlin, 1999), Chaps. X–XII, pp. 195–275.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

AFM image of (a) the silver-coated grating and (b) its profile. The size of the image is 2 μm×2 μm.

Fig. 2
Fig. 2

Schematic of the experimental setup of the PSTM. PM, photomultiplier; PC, personal computer.

Fig. 3
Fig. 3

Intensity collected by the optical fiber as a function of the distance between the silver surface and the fiber tip for three angles of incidence. Note that in curve (a) the actual intensity is divided by ten.

Fig. 4
Fig. 4

Geometry of the problem. C1 and C2 are the two surface profiles of the grating, and x1=0, x2=d/4, x3=d/2, and x4=3d/4 are the paths followed by the fiber to record the intensity diffracted by the grating.

Fig. 5
Fig. 5

Intensity (square of the electrical field) in front of the silver surface and for three angles of incidence θ. a3=115 nm corresponds to 55 nm of silver.

Fig. 6
Fig. 6

2 μm×2 μm gray-scale image obtained with the PSTM in a constant intensity mode with the metallic grating illuminated in p polarization (θp=45.1°, λ=632.8 nm).

Fig. 7
Fig. 7

Intensity (square of the electrical field) in the front of the silver surface as a function of three thicknesses of the silver film for θ=45.1°.

Fig. 8
Fig. 8

Intensity (square of the electrical field) in front of the silver surface as a function of the thickness of the water adsorbed for 55 nm of silver.

Fig. 9
Fig. 9

Intensity collected by the optical fiber as a function of the distance between the sulfurized silver surface and the fiber tip for the angle of incidence shown.

Tables (2)

Tables Icon

Table 1 Diffraction Angles θ-1, θ-2, and θ-3 and Efficiencies in Transmission T-1, T-2, and T-3 of Each Order for the Three Angles of Incidence θi

Tables Icon

Table 2 Ratios of Intensities in the Near Field (z0=20 nm) and the Far Field for Experimental and Theoretical Resultsa

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ify<0,Hz(x, y)=n=-+An exp[ j(αnx-χny)],
αn=k0n1 sin θ1+n2π/d,
χn=(k02n22-αn2)1/2ifk0n2αn,=j(αn2-k02n22)1/2ifk0n2αn.
div1a(x, y) gradHz(x, y)+Hz(x, y)=0,
E=1jω curlH,
y1=a1/2[cos(2πx/d)-1]+a3,
y2=-afx2+a2x[0, a2/af[[d-a2/af, d[,
y2=0x[a2/af, d-a2/af],

Metrics