Abstract

With the use of an approach that is equivalent to Heisenberg’s uncertainty principle, it is possible to derive the axial and lateral gain factors of optical systems consisting of rotationally symmetric pupil plane filters with a large solid angle. We discuss the two- and three-dimensional cases. In contrast to previously published approaches, our results are valid for solid angles as large as 4π. The annular circular aperture is discussed as an example. Resolution gains for annular binary filters consisting of s transmitting rings are calculated, allowing the discussion of the optical properties of all rotationally symmetric binary filters in terms of gain factors. Optical systems with binary two-ring apertures are discussed; a special case is the 4Pi setup. Our novel method yields simple analytical formulas that are functions of the various aperture parameters.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (47)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription