Abstract

Using a rigorous microscopic point-dipole description of probe–sample interactions, we study imaging with a reflection scanning near-field optical microscope. Optical content, topographical artifacts, sensitivity window—i.e., the scale on which near-field optical images represent mainly optical contrast—and symmetry properties are considered for optical images obtained in constant-distance mode for different polarization configurations. We demonstrate that images obtained in cross-polarized detection mode are free of background and topographical artifacts and that the cross-circular polarization configuration is preferable to the cross-linear one, since it ensures more isotropic (in the surface plane) near-field imaging of surface features. The numerical results are supported with experimental near-field images obtained by using a reflection microscope with an uncoated fiber tip.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Pohl, D. Courjon, eds., Near Field Optics (Kluwer Academic, Dordrecht, The Netherlands, 1993).
  2. O. Marti, R. Möller, eds., Photons and Local Probes (Kluwer Academic, Dordrecht, The Netherlands, 1995).
  3. M. Nieto-Vesperinas, N. Garcı́a, eds., Optics at the Nanometer Scale (Kluwer Academic, Dordrecht, The Netherlands, 1996).
  4. E. A. Ash, G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237, 510–512 (1972).
    [CrossRef] [PubMed]
  5. U. Ch. Fischer, U. T. Dürig, D. W. Pohl, “Near-field optical scanning microscopy in reflection,” Appl. Phys. Lett. 52, 249–251 (1988).
    [CrossRef]
  6. C. Durkan, I. V. Shvets, “Reflection-mode scanning near-field optical microscopy: influence of sample type, tip shape, and polarization of light,” J. Appl. Phys. 83, 1171–1176 (1998).
    [CrossRef]
  7. D. Courjon, J.-M. Vigoureux, M. Spajer, K. Sarayeddine, S. Leblanc, “External and internal reflection near field microscopy: experiments and results,” Appl. Opt. 29, 3734–3740 (1990).
    [CrossRef] [PubMed]
  8. N. F. Van Hulst, M. H. P. Moers, B. Bölger, “Near-field optical microscopy in transmission and reflection modes in combination with force microscopy,” J. Microsc. 171, 95–105 (1993).
    [CrossRef]
  9. M. Spajer, A. Jalocha, “The reflection near field optical microscope: an alternative to STOM,” in Near Field Optics (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 87–96.
  10. S. I. Bozhevolnyi, M. Xiao, O. Keller, “External-reflection near-field optical microscope with cross-polarized detection,” Appl. Opt. 33, 876–880 (1994).
    [CrossRef] [PubMed]
  11. S. I. Bozhevolnyi, I. I. Smolyaninov, O. Keller, “Correlation between optical and topographical images from an external reflection near-field microscope with shear force feedback,” Appl. Opt. 34, 3793–3799 (1995).
    [CrossRef] [PubMed]
  12. A. Jalocha, N. F. Van Hulst, “Dielectric and fluorescent samples imaged by scanning near-field optical microscopy in reflection,” Opt. Commun. 119, 17–22 (1995).
    [CrossRef]
  13. G. Krausch, S. Wegscheider, A. Kirsch, H. Bielefeldt, J. C. Meiners, J. Mlynek, “Near field microscopy and lithography with uncoated fiber tips: a comparison,” Opt. Commun. 119, 283–288 (1995).
    [CrossRef]
  14. S. Bozhevolnyi, S. Berntsen, E. Bozhevolnaya, “Extension of the macroscopic model for reflection near-field microscopy: regularization and image formation,” J. Opt. Soc. Am. A 11, 609–617 (1994).
    [CrossRef]
  15. V. Sandoghdar, S. Wegscheider, G. Krausch, J. Mlynek, “Reflection scanning near-field optical microscopy with uncoated fiber tips: how good is the resolution really?” J. Appl. Phys. 81, 2499–2503 (1997).
    [CrossRef]
  16. S. Madsen, S. I. Bozhevolnyi, J. M. Hvam, “Sub-wavelength imaging by depolarization in a reflection near-field optical microscope using an uncoated fiber probe,” Opt. Commun. 146, 277–284 (1998).
    [CrossRef]
  17. G. von Freymann, Th. Schimmel, M. Wegener, B. Hanewinkel, A. Knorr, S. W. Koch, “Computer simulations on near-field scanning optical microscopy: can subwavelength resolution be obtained using uncoated optical fiber probes?” Appl. Phys. Lett. 73, 1170–1172 (1998).
    [CrossRef]
  18. W. Langbein, J. M. Hvam, S. Madsen, M. Hetterich, C. Klingshirn, “Room-temperature near-field reflection spectroscopy of single quantum wells,” Phys. Status Solidi A 164, 541–546 (1997).
    [CrossRef]
  19. O. Keller, M. Xiao, S. Bozhevolnyi, “Configurational resonances in optical near-field microscopy: a rigorous point-dipole approach,” Surf. Sci. 280, 217–230 (1993);M. Xiao, “Theoretical treatment for scattering scanning near-field optical microscopy,” J. Opt. Soc. Am. A 14, 2977–2984 (1997).
    [CrossRef]
  20. C. Girard, A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996).
    [CrossRef]
  21. M. Xiao, S. Bozhevolnyi, “Imaging with reflection near-field optical microscope: contributions of middle and far fields,” Opt. Commun. 130, 337–347 (1996).
    [CrossRef]
  22. M. Xiao, “Polarization effects in reflection scanning near field optical microscopy,” Opt. Commun. 136, 213–218 (1996).
    [CrossRef]
  23. S. I. Bozhevolnyi, “Topographical artifacts and optical resolution in near-field optical microscopy,” J. Opt. Soc. Am. B 14, 2254–2259 (1997).
    [CrossRef]
  24. S. I. Bozhevolnyi, W. Langbein, J. M. Hvam, “Polarization contrast in reflection near-field optical microscopy with uncoated fibre tips,” J. Microscopy 194, 500–506 (1999).
    [CrossRef]
  25. D. Van Labeke, D. Barchiesi, “Probes for scanning tunneling optical microscopy,” J. Opt. Soc. Am. A 10, 2193–2201 (1993).
    [CrossRef]
  26. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  27. B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
    [CrossRef]
  28. R. Carminati, A. Madrazo, M. Nieto-Vesperinas, J.-J. Greffet, “Optical content and resolution of near-field optical images: influence of the operating mode,” J. Appl. Phys. 82, 501–509 (1997).
    [CrossRef]
  29. Y. Martin, F. Zenhausern, H. K. Wickramasinghe, “Scattering spectroscopy of molecules at nanometer resolution,” Appl. Phys. Lett. 68, 2475–2477 (1996).
    [CrossRef]
  30. E. B. McDaniel, J. W. P. Hsu, “Direct imaging of submicron-scale defect-induced birefringence in SrTiO3 bicrystals,” J. Appl. Phys. 84, 189–193 (1998).
    [CrossRef]
  31. B. L. Petersen, A. Bauer, G. Meyer, T. Crecelius, G. Kaindl, “Kerr-rotation imaging in scanning near-field optical microscopy using a modified Sagnac interferometer,” Appl. Phys. Lett. 73, 538–540 (1998).
    [CrossRef]

1999 (1)

S. I. Bozhevolnyi, W. Langbein, J. M. Hvam, “Polarization contrast in reflection near-field optical microscopy with uncoated fibre tips,” J. Microscopy 194, 500–506 (1999).
[CrossRef]

1998 (5)

E. B. McDaniel, J. W. P. Hsu, “Direct imaging of submicron-scale defect-induced birefringence in SrTiO3 bicrystals,” J. Appl. Phys. 84, 189–193 (1998).
[CrossRef]

B. L. Petersen, A. Bauer, G. Meyer, T. Crecelius, G. Kaindl, “Kerr-rotation imaging in scanning near-field optical microscopy using a modified Sagnac interferometer,” Appl. Phys. Lett. 73, 538–540 (1998).
[CrossRef]

C. Durkan, I. V. Shvets, “Reflection-mode scanning near-field optical microscopy: influence of sample type, tip shape, and polarization of light,” J. Appl. Phys. 83, 1171–1176 (1998).
[CrossRef]

S. Madsen, S. I. Bozhevolnyi, J. M. Hvam, “Sub-wavelength imaging by depolarization in a reflection near-field optical microscope using an uncoated fiber probe,” Opt. Commun. 146, 277–284 (1998).
[CrossRef]

G. von Freymann, Th. Schimmel, M. Wegener, B. Hanewinkel, A. Knorr, S. W. Koch, “Computer simulations on near-field scanning optical microscopy: can subwavelength resolution be obtained using uncoated optical fiber probes?” Appl. Phys. Lett. 73, 1170–1172 (1998).
[CrossRef]

1997 (5)

W. Langbein, J. M. Hvam, S. Madsen, M. Hetterich, C. Klingshirn, “Room-temperature near-field reflection spectroscopy of single quantum wells,” Phys. Status Solidi A 164, 541–546 (1997).
[CrossRef]

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, J.-J. Greffet, “Optical content and resolution of near-field optical images: influence of the operating mode,” J. Appl. Phys. 82, 501–509 (1997).
[CrossRef]

S. I. Bozhevolnyi, “Topographical artifacts and optical resolution in near-field optical microscopy,” J. Opt. Soc. Am. B 14, 2254–2259 (1997).
[CrossRef]

V. Sandoghdar, S. Wegscheider, G. Krausch, J. Mlynek, “Reflection scanning near-field optical microscopy with uncoated fiber tips: how good is the resolution really?” J. Appl. Phys. 81, 2499–2503 (1997).
[CrossRef]

1996 (4)

Y. Martin, F. Zenhausern, H. K. Wickramasinghe, “Scattering spectroscopy of molecules at nanometer resolution,” Appl. Phys. Lett. 68, 2475–2477 (1996).
[CrossRef]

C. Girard, A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996).
[CrossRef]

M. Xiao, S. Bozhevolnyi, “Imaging with reflection near-field optical microscope: contributions of middle and far fields,” Opt. Commun. 130, 337–347 (1996).
[CrossRef]

M. Xiao, “Polarization effects in reflection scanning near field optical microscopy,” Opt. Commun. 136, 213–218 (1996).
[CrossRef]

1995 (3)

A. Jalocha, N. F. Van Hulst, “Dielectric and fluorescent samples imaged by scanning near-field optical microscopy in reflection,” Opt. Commun. 119, 17–22 (1995).
[CrossRef]

G. Krausch, S. Wegscheider, A. Kirsch, H. Bielefeldt, J. C. Meiners, J. Mlynek, “Near field microscopy and lithography with uncoated fiber tips: a comparison,” Opt. Commun. 119, 283–288 (1995).
[CrossRef]

S. I. Bozhevolnyi, I. I. Smolyaninov, O. Keller, “Correlation between optical and topographical images from an external reflection near-field microscope with shear force feedback,” Appl. Opt. 34, 3793–3799 (1995).
[CrossRef] [PubMed]

1994 (2)

1993 (3)

D. Van Labeke, D. Barchiesi, “Probes for scanning tunneling optical microscopy,” J. Opt. Soc. Am. A 10, 2193–2201 (1993).
[CrossRef]

O. Keller, M. Xiao, S. Bozhevolnyi, “Configurational resonances in optical near-field microscopy: a rigorous point-dipole approach,” Surf. Sci. 280, 217–230 (1993);M. Xiao, “Theoretical treatment for scattering scanning near-field optical microscopy,” J. Opt. Soc. Am. A 14, 2977–2984 (1997).
[CrossRef]

N. F. Van Hulst, M. H. P. Moers, B. Bölger, “Near-field optical microscopy in transmission and reflection modes in combination with force microscopy,” J. Microsc. 171, 95–105 (1993).
[CrossRef]

1990 (1)

1988 (1)

U. Ch. Fischer, U. T. Dürig, D. W. Pohl, “Near-field optical scanning microscopy in reflection,” Appl. Phys. Lett. 52, 249–251 (1988).
[CrossRef]

1972 (2)

E. A. Ash, G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237, 510–512 (1972).
[CrossRef] [PubMed]

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Ash, E. A.

E. A. Ash, G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237, 510–512 (1972).
[CrossRef] [PubMed]

Barchiesi, D.

Bauer, A.

B. L. Petersen, A. Bauer, G. Meyer, T. Crecelius, G. Kaindl, “Kerr-rotation imaging in scanning near-field optical microscopy using a modified Sagnac interferometer,” Appl. Phys. Lett. 73, 538–540 (1998).
[CrossRef]

Berntsen, S.

Bielefeldt, H.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

G. Krausch, S. Wegscheider, A. Kirsch, H. Bielefeldt, J. C. Meiners, J. Mlynek, “Near field microscopy and lithography with uncoated fiber tips: a comparison,” Opt. Commun. 119, 283–288 (1995).
[CrossRef]

Bölger, B.

N. F. Van Hulst, M. H. P. Moers, B. Bölger, “Near-field optical microscopy in transmission and reflection modes in combination with force microscopy,” J. Microsc. 171, 95–105 (1993).
[CrossRef]

Bozhevolnaya, E.

Bozhevolnyi, S.

M. Xiao, S. Bozhevolnyi, “Imaging with reflection near-field optical microscope: contributions of middle and far fields,” Opt. Commun. 130, 337–347 (1996).
[CrossRef]

S. Bozhevolnyi, S. Berntsen, E. Bozhevolnaya, “Extension of the macroscopic model for reflection near-field microscopy: regularization and image formation,” J. Opt. Soc. Am. A 11, 609–617 (1994).
[CrossRef]

O. Keller, M. Xiao, S. Bozhevolnyi, “Configurational resonances in optical near-field microscopy: a rigorous point-dipole approach,” Surf. Sci. 280, 217–230 (1993);M. Xiao, “Theoretical treatment for scattering scanning near-field optical microscopy,” J. Opt. Soc. Am. A 14, 2977–2984 (1997).
[CrossRef]

Bozhevolnyi, S. I.

Carminati, R.

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, J.-J. Greffet, “Optical content and resolution of near-field optical images: influence of the operating mode,” J. Appl. Phys. 82, 501–509 (1997).
[CrossRef]

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Courjon, D.

Crecelius, T.

B. L. Petersen, A. Bauer, G. Meyer, T. Crecelius, G. Kaindl, “Kerr-rotation imaging in scanning near-field optical microscopy using a modified Sagnac interferometer,” Appl. Phys. Lett. 73, 538–540 (1998).
[CrossRef]

Dereux, A.

C. Girard, A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996).
[CrossRef]

Dürig, U. T.

U. Ch. Fischer, U. T. Dürig, D. W. Pohl, “Near-field optical scanning microscopy in reflection,” Appl. Phys. Lett. 52, 249–251 (1988).
[CrossRef]

Durkan, C.

C. Durkan, I. V. Shvets, “Reflection-mode scanning near-field optical microscopy: influence of sample type, tip shape, and polarization of light,” J. Appl. Phys. 83, 1171–1176 (1998).
[CrossRef]

Fischer, U. Ch.

U. Ch. Fischer, U. T. Dürig, D. W. Pohl, “Near-field optical scanning microscopy in reflection,” Appl. Phys. Lett. 52, 249–251 (1988).
[CrossRef]

Girard, C.

C. Girard, A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996).
[CrossRef]

Greffet, J.-J.

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, J.-J. Greffet, “Optical content and resolution of near-field optical images: influence of the operating mode,” J. Appl. Phys. 82, 501–509 (1997).
[CrossRef]

Hanewinkel, B.

G. von Freymann, Th. Schimmel, M. Wegener, B. Hanewinkel, A. Knorr, S. W. Koch, “Computer simulations on near-field scanning optical microscopy: can subwavelength resolution be obtained using uncoated optical fiber probes?” Appl. Phys. Lett. 73, 1170–1172 (1998).
[CrossRef]

Hecht, B.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

Hetterich, M.

W. Langbein, J. M. Hvam, S. Madsen, M. Hetterich, C. Klingshirn, “Room-temperature near-field reflection spectroscopy of single quantum wells,” Phys. Status Solidi A 164, 541–546 (1997).
[CrossRef]

Hsu, J. W. P.

E. B. McDaniel, J. W. P. Hsu, “Direct imaging of submicron-scale defect-induced birefringence in SrTiO3 bicrystals,” J. Appl. Phys. 84, 189–193 (1998).
[CrossRef]

Hvam, J. M.

S. I. Bozhevolnyi, W. Langbein, J. M. Hvam, “Polarization contrast in reflection near-field optical microscopy with uncoated fibre tips,” J. Microscopy 194, 500–506 (1999).
[CrossRef]

S. Madsen, S. I. Bozhevolnyi, J. M. Hvam, “Sub-wavelength imaging by depolarization in a reflection near-field optical microscope using an uncoated fiber probe,” Opt. Commun. 146, 277–284 (1998).
[CrossRef]

W. Langbein, J. M. Hvam, S. Madsen, M. Hetterich, C. Klingshirn, “Room-temperature near-field reflection spectroscopy of single quantum wells,” Phys. Status Solidi A 164, 541–546 (1997).
[CrossRef]

Inouye, Y.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

Jalocha, A.

A. Jalocha, N. F. Van Hulst, “Dielectric and fluorescent samples imaged by scanning near-field optical microscopy in reflection,” Opt. Commun. 119, 17–22 (1995).
[CrossRef]

M. Spajer, A. Jalocha, “The reflection near field optical microscope: an alternative to STOM,” in Near Field Optics (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 87–96.

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kaindl, G.

B. L. Petersen, A. Bauer, G. Meyer, T. Crecelius, G. Kaindl, “Kerr-rotation imaging in scanning near-field optical microscopy using a modified Sagnac interferometer,” Appl. Phys. Lett. 73, 538–540 (1998).
[CrossRef]

Keller, O.

S. I. Bozhevolnyi, I. I. Smolyaninov, O. Keller, “Correlation between optical and topographical images from an external reflection near-field microscope with shear force feedback,” Appl. Opt. 34, 3793–3799 (1995).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, M. Xiao, O. Keller, “External-reflection near-field optical microscope with cross-polarized detection,” Appl. Opt. 33, 876–880 (1994).
[CrossRef] [PubMed]

O. Keller, M. Xiao, S. Bozhevolnyi, “Configurational resonances in optical near-field microscopy: a rigorous point-dipole approach,” Surf. Sci. 280, 217–230 (1993);M. Xiao, “Theoretical treatment for scattering scanning near-field optical microscopy,” J. Opt. Soc. Am. A 14, 2977–2984 (1997).
[CrossRef]

Kirsch, A.

G. Krausch, S. Wegscheider, A. Kirsch, H. Bielefeldt, J. C. Meiners, J. Mlynek, “Near field microscopy and lithography with uncoated fiber tips: a comparison,” Opt. Commun. 119, 283–288 (1995).
[CrossRef]

Klingshirn, C.

W. Langbein, J. M. Hvam, S. Madsen, M. Hetterich, C. Klingshirn, “Room-temperature near-field reflection spectroscopy of single quantum wells,” Phys. Status Solidi A 164, 541–546 (1997).
[CrossRef]

Knorr, A.

G. von Freymann, Th. Schimmel, M. Wegener, B. Hanewinkel, A. Knorr, S. W. Koch, “Computer simulations on near-field scanning optical microscopy: can subwavelength resolution be obtained using uncoated optical fiber probes?” Appl. Phys. Lett. 73, 1170–1172 (1998).
[CrossRef]

Koch, S. W.

G. von Freymann, Th. Schimmel, M. Wegener, B. Hanewinkel, A. Knorr, S. W. Koch, “Computer simulations on near-field scanning optical microscopy: can subwavelength resolution be obtained using uncoated optical fiber probes?” Appl. Phys. Lett. 73, 1170–1172 (1998).
[CrossRef]

Krausch, G.

V. Sandoghdar, S. Wegscheider, G. Krausch, J. Mlynek, “Reflection scanning near-field optical microscopy with uncoated fiber tips: how good is the resolution really?” J. Appl. Phys. 81, 2499–2503 (1997).
[CrossRef]

G. Krausch, S. Wegscheider, A. Kirsch, H. Bielefeldt, J. C. Meiners, J. Mlynek, “Near field microscopy and lithography with uncoated fiber tips: a comparison,” Opt. Commun. 119, 283–288 (1995).
[CrossRef]

Langbein, W.

S. I. Bozhevolnyi, W. Langbein, J. M. Hvam, “Polarization contrast in reflection near-field optical microscopy with uncoated fibre tips,” J. Microscopy 194, 500–506 (1999).
[CrossRef]

W. Langbein, J. M. Hvam, S. Madsen, M. Hetterich, C. Klingshirn, “Room-temperature near-field reflection spectroscopy of single quantum wells,” Phys. Status Solidi A 164, 541–546 (1997).
[CrossRef]

Leblanc, S.

Madrazo, A.

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, J.-J. Greffet, “Optical content and resolution of near-field optical images: influence of the operating mode,” J. Appl. Phys. 82, 501–509 (1997).
[CrossRef]

Madsen, S.

S. Madsen, S. I. Bozhevolnyi, J. M. Hvam, “Sub-wavelength imaging by depolarization in a reflection near-field optical microscope using an uncoated fiber probe,” Opt. Commun. 146, 277–284 (1998).
[CrossRef]

W. Langbein, J. M. Hvam, S. Madsen, M. Hetterich, C. Klingshirn, “Room-temperature near-field reflection spectroscopy of single quantum wells,” Phys. Status Solidi A 164, 541–546 (1997).
[CrossRef]

Martin, Y.

Y. Martin, F. Zenhausern, H. K. Wickramasinghe, “Scattering spectroscopy of molecules at nanometer resolution,” Appl. Phys. Lett. 68, 2475–2477 (1996).
[CrossRef]

McDaniel, E. B.

E. B. McDaniel, J. W. P. Hsu, “Direct imaging of submicron-scale defect-induced birefringence in SrTiO3 bicrystals,” J. Appl. Phys. 84, 189–193 (1998).
[CrossRef]

Meiners, J. C.

G. Krausch, S. Wegscheider, A. Kirsch, H. Bielefeldt, J. C. Meiners, J. Mlynek, “Near field microscopy and lithography with uncoated fiber tips: a comparison,” Opt. Commun. 119, 283–288 (1995).
[CrossRef]

Meyer, G.

B. L. Petersen, A. Bauer, G. Meyer, T. Crecelius, G. Kaindl, “Kerr-rotation imaging in scanning near-field optical microscopy using a modified Sagnac interferometer,” Appl. Phys. Lett. 73, 538–540 (1998).
[CrossRef]

Mlynek, J.

V. Sandoghdar, S. Wegscheider, G. Krausch, J. Mlynek, “Reflection scanning near-field optical microscopy with uncoated fiber tips: how good is the resolution really?” J. Appl. Phys. 81, 2499–2503 (1997).
[CrossRef]

G. Krausch, S. Wegscheider, A. Kirsch, H. Bielefeldt, J. C. Meiners, J. Mlynek, “Near field microscopy and lithography with uncoated fiber tips: a comparison,” Opt. Commun. 119, 283–288 (1995).
[CrossRef]

Moers, M. H. P.

N. F. Van Hulst, M. H. P. Moers, B. Bölger, “Near-field optical microscopy in transmission and reflection modes in combination with force microscopy,” J. Microsc. 171, 95–105 (1993).
[CrossRef]

Nicholls, G.

E. A. Ash, G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237, 510–512 (1972).
[CrossRef] [PubMed]

Nieto-Vesperinas, M.

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, J.-J. Greffet, “Optical content and resolution of near-field optical images: influence of the operating mode,” J. Appl. Phys. 82, 501–509 (1997).
[CrossRef]

Petersen, B. L.

B. L. Petersen, A. Bauer, G. Meyer, T. Crecelius, G. Kaindl, “Kerr-rotation imaging in scanning near-field optical microscopy using a modified Sagnac interferometer,” Appl. Phys. Lett. 73, 538–540 (1998).
[CrossRef]

Pohl, D. W.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

U. Ch. Fischer, U. T. Dürig, D. W. Pohl, “Near-field optical scanning microscopy in reflection,” Appl. Phys. Lett. 52, 249–251 (1988).
[CrossRef]

Sandoghdar, V.

V. Sandoghdar, S. Wegscheider, G. Krausch, J. Mlynek, “Reflection scanning near-field optical microscopy with uncoated fiber tips: how good is the resolution really?” J. Appl. Phys. 81, 2499–2503 (1997).
[CrossRef]

Sarayeddine, K.

Schimmel, Th.

G. von Freymann, Th. Schimmel, M. Wegener, B. Hanewinkel, A. Knorr, S. W. Koch, “Computer simulations on near-field scanning optical microscopy: can subwavelength resolution be obtained using uncoated optical fiber probes?” Appl. Phys. Lett. 73, 1170–1172 (1998).
[CrossRef]

Shvets, I. V.

C. Durkan, I. V. Shvets, “Reflection-mode scanning near-field optical microscopy: influence of sample type, tip shape, and polarization of light,” J. Appl. Phys. 83, 1171–1176 (1998).
[CrossRef]

Smolyaninov, I. I.

Spajer, M.

D. Courjon, J.-M. Vigoureux, M. Spajer, K. Sarayeddine, S. Leblanc, “External and internal reflection near field microscopy: experiments and results,” Appl. Opt. 29, 3734–3740 (1990).
[CrossRef] [PubMed]

M. Spajer, A. Jalocha, “The reflection near field optical microscope: an alternative to STOM,” in Near Field Optics (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 87–96.

Van Hulst, N. F.

A. Jalocha, N. F. Van Hulst, “Dielectric and fluorescent samples imaged by scanning near-field optical microscopy in reflection,” Opt. Commun. 119, 17–22 (1995).
[CrossRef]

N. F. Van Hulst, M. H. P. Moers, B. Bölger, “Near-field optical microscopy in transmission and reflection modes in combination with force microscopy,” J. Microsc. 171, 95–105 (1993).
[CrossRef]

Van Labeke, D.

Vigoureux, J.-M.

von Freymann, G.

G. von Freymann, Th. Schimmel, M. Wegener, B. Hanewinkel, A. Knorr, S. W. Koch, “Computer simulations on near-field scanning optical microscopy: can subwavelength resolution be obtained using uncoated optical fiber probes?” Appl. Phys. Lett. 73, 1170–1172 (1998).
[CrossRef]

Wegener, M.

G. von Freymann, Th. Schimmel, M. Wegener, B. Hanewinkel, A. Knorr, S. W. Koch, “Computer simulations on near-field scanning optical microscopy: can subwavelength resolution be obtained using uncoated optical fiber probes?” Appl. Phys. Lett. 73, 1170–1172 (1998).
[CrossRef]

Wegscheider, S.

V. Sandoghdar, S. Wegscheider, G. Krausch, J. Mlynek, “Reflection scanning near-field optical microscopy with uncoated fiber tips: how good is the resolution really?” J. Appl. Phys. 81, 2499–2503 (1997).
[CrossRef]

G. Krausch, S. Wegscheider, A. Kirsch, H. Bielefeldt, J. C. Meiners, J. Mlynek, “Near field microscopy and lithography with uncoated fiber tips: a comparison,” Opt. Commun. 119, 283–288 (1995).
[CrossRef]

Wickramasinghe, H. K.

Y. Martin, F. Zenhausern, H. K. Wickramasinghe, “Scattering spectroscopy of molecules at nanometer resolution,” Appl. Phys. Lett. 68, 2475–2477 (1996).
[CrossRef]

Xiao, M.

M. Xiao, S. Bozhevolnyi, “Imaging with reflection near-field optical microscope: contributions of middle and far fields,” Opt. Commun. 130, 337–347 (1996).
[CrossRef]

M. Xiao, “Polarization effects in reflection scanning near field optical microscopy,” Opt. Commun. 136, 213–218 (1996).
[CrossRef]

S. I. Bozhevolnyi, M. Xiao, O. Keller, “External-reflection near-field optical microscope with cross-polarized detection,” Appl. Opt. 33, 876–880 (1994).
[CrossRef] [PubMed]

O. Keller, M. Xiao, S. Bozhevolnyi, “Configurational resonances in optical near-field microscopy: a rigorous point-dipole approach,” Surf. Sci. 280, 217–230 (1993);M. Xiao, “Theoretical treatment for scattering scanning near-field optical microscopy,” J. Opt. Soc. Am. A 14, 2977–2984 (1997).
[CrossRef]

Zenhausern, F.

Y. Martin, F. Zenhausern, H. K. Wickramasinghe, “Scattering spectroscopy of molecules at nanometer resolution,” Appl. Phys. Lett. 68, 2475–2477 (1996).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (4)

Y. Martin, F. Zenhausern, H. K. Wickramasinghe, “Scattering spectroscopy of molecules at nanometer resolution,” Appl. Phys. Lett. 68, 2475–2477 (1996).
[CrossRef]

B. L. Petersen, A. Bauer, G. Meyer, T. Crecelius, G. Kaindl, “Kerr-rotation imaging in scanning near-field optical microscopy using a modified Sagnac interferometer,” Appl. Phys. Lett. 73, 538–540 (1998).
[CrossRef]

U. Ch. Fischer, U. T. Dürig, D. W. Pohl, “Near-field optical scanning microscopy in reflection,” Appl. Phys. Lett. 52, 249–251 (1988).
[CrossRef]

G. von Freymann, Th. Schimmel, M. Wegener, B. Hanewinkel, A. Knorr, S. W. Koch, “Computer simulations on near-field scanning optical microscopy: can subwavelength resolution be obtained using uncoated optical fiber probes?” Appl. Phys. Lett. 73, 1170–1172 (1998).
[CrossRef]

J. Appl. Phys. (5)

C. Durkan, I. V. Shvets, “Reflection-mode scanning near-field optical microscopy: influence of sample type, tip shape, and polarization of light,” J. Appl. Phys. 83, 1171–1176 (1998).
[CrossRef]

V. Sandoghdar, S. Wegscheider, G. Krausch, J. Mlynek, “Reflection scanning near-field optical microscopy with uncoated fiber tips: how good is the resolution really?” J. Appl. Phys. 81, 2499–2503 (1997).
[CrossRef]

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, J.-J. Greffet, “Optical content and resolution of near-field optical images: influence of the operating mode,” J. Appl. Phys. 82, 501–509 (1997).
[CrossRef]

E. B. McDaniel, J. W. P. Hsu, “Direct imaging of submicron-scale defect-induced birefringence in SrTiO3 bicrystals,” J. Appl. Phys. 84, 189–193 (1998).
[CrossRef]

J. Microsc. (1)

N. F. Van Hulst, M. H. P. Moers, B. Bölger, “Near-field optical microscopy in transmission and reflection modes in combination with force microscopy,” J. Microsc. 171, 95–105 (1993).
[CrossRef]

J. Microscopy (1)

S. I. Bozhevolnyi, W. Langbein, J. M. Hvam, “Polarization contrast in reflection near-field optical microscopy with uncoated fibre tips,” J. Microscopy 194, 500–506 (1999).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Nature (1)

E. A. Ash, G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237, 510–512 (1972).
[CrossRef] [PubMed]

Opt. Commun. (5)

M. Xiao, S. Bozhevolnyi, “Imaging with reflection near-field optical microscope: contributions of middle and far fields,” Opt. Commun. 130, 337–347 (1996).
[CrossRef]

M. Xiao, “Polarization effects in reflection scanning near field optical microscopy,” Opt. Commun. 136, 213–218 (1996).
[CrossRef]

A. Jalocha, N. F. Van Hulst, “Dielectric and fluorescent samples imaged by scanning near-field optical microscopy in reflection,” Opt. Commun. 119, 17–22 (1995).
[CrossRef]

G. Krausch, S. Wegscheider, A. Kirsch, H. Bielefeldt, J. C. Meiners, J. Mlynek, “Near field microscopy and lithography with uncoated fiber tips: a comparison,” Opt. Commun. 119, 283–288 (1995).
[CrossRef]

S. Madsen, S. I. Bozhevolnyi, J. M. Hvam, “Sub-wavelength imaging by depolarization in a reflection near-field optical microscope using an uncoated fiber probe,” Opt. Commun. 146, 277–284 (1998).
[CrossRef]

Phys. Rev. B (1)

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Status Solidi A (1)

W. Langbein, J. M. Hvam, S. Madsen, M. Hetterich, C. Klingshirn, “Room-temperature near-field reflection spectroscopy of single quantum wells,” Phys. Status Solidi A 164, 541–546 (1997).
[CrossRef]

Rep. Prog. Phys. (1)

C. Girard, A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996).
[CrossRef]

Surf. Sci. (1)

O. Keller, M. Xiao, S. Bozhevolnyi, “Configurational resonances in optical near-field microscopy: a rigorous point-dipole approach,” Surf. Sci. 280, 217–230 (1993);M. Xiao, “Theoretical treatment for scattering scanning near-field optical microscopy,” J. Opt. Soc. Am. A 14, 2977–2984 (1997).
[CrossRef]

Other (4)

D. W. Pohl, D. Courjon, eds., Near Field Optics (Kluwer Academic, Dordrecht, The Netherlands, 1993).

O. Marti, R. Möller, eds., Photons and Local Probes (Kluwer Academic, Dordrecht, The Netherlands, 1995).

M. Nieto-Vesperinas, N. Garcı́a, eds., Optics at the Nanometer Scale (Kluwer Academic, Dordrecht, The Netherlands, 1996).

M. Spajer, A. Jalocha, “The reflection near field optical microscope: an alternative to STOM,” in Near Field Optics (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 87–96.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic representation of a reflection near-field optical microscope: P, polarizer; BS, beam splitter; A, analyzer.

Fig. 2
Fig. 2

Linear gray-scale representations (400×200 nm2) of the square magnitude of self-consistent field components (a, horizontal; b, circular right-hand; c, vertical; d, circular left-hand) at the site of a 30-nm-radius glass probe sphere, which is scanned in a constant-height plane (71 nm away from the surface) over a 20-nm-radius silver object sphere placed on a silver substrate, for the unit incident field polarized linearly (a, c) in the horizontal direction and right-hand circularly (b, d).

Fig. 3
Fig. 3

Linear gray-scale representations (400×200 nm2) of the square magnitude of self-consistent field components (b, horizontal; c, circular right-hand; d, vertical; e, circular left-hand) at the site of the probe scanned in constant-distance mode for the unit incident field polarized linearly (b, d) in the horizontal direction and right-hand circularly (c, e). The distance between the probe and the substrate surface plane as a function of scanning coordinate results in the corresponding topographical image (a). Other parameters are as in Fig. 2.

Fig. 4
Fig. 4

Linear gray-scale representations (600×600 nm2) of the square magnitude of the circular right-hand component of the self-consistent field at the site of a 30-nm-radius (b, d) or a 60-nm-radius probe (c), which is illuminated by the right-hand circularly polarized unit field and scanned in constant-distance mode over a cluster of 20-nm-radius silver (b, c) or glass (d) spheres placed on a silver substrate. The distance between the 30-nm-radius probe and the substrate plane as a function of the scanning coordinate results in the corresponding topographical image (a).

Fig. 5
Fig. 5

Linear gray-scale representations (600×600 nm2) of the square magnitude of self-consistent field components (a, vertical; b, 45° to horizontal; c, d, circular left-hand) at the site of a 30-nm-radius probe, which is scanned in constant-distance mode over a cluster of 30-nm-radius glass (a, b, c) or silver (d) spheres placed on a silver substrate for the unit incident field, whose polarization is chosen so as to realize cross-polarization configurations in all the above cases.

Fig. 6
Fig. 6

Linear gray-scale representations (600×600 nm2) of the square magnitude of self-consistent field components (a, b, vertical; c, d, circular left-hand) at the site of a 60-nm-radius probe, which is scanned in constant-distance mode over a cluster of 30-nm-radius glass (a, c) or silver (b, d) spheres placed on a silver substrate for the unit incident field, whose polarization is chosen so as to realize cross-polarization configurations in all the above cases.

Fig. 7
Fig. 7

Linear gray-scale topographical (a) and near-field optical (b, c, d) images (1.8×1.8 μm2) of a 20-nm-thick, 600-nm-wide circular gold pad on a GaAs substrate obtained in co-circular (b), cross-linear (c), and cross-circular (d) polarization configurations for a light wavelength of 514 nm. The maximum depth of the topographical image is ∼40 nm. Contrast of the optical images, i.e., the relative difference between the maximum and the minimum detected optical signal, is ∼45% (b) ∼97% (c, d).

Fig. 8
Fig. 8

Linear gray-scale topographical (a) and near-field optical (b) images (3×3 μm2) of a 20-nm-thick, 900-nm-wide circular gold pad on a GaAs substrate. The near-field optical image was obtained in cross-circular polarization configuration. Light wavelength, 488 nm; maximum depth of the topographical image, ∼35 nm; contrast of the optical image, ∼98%.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E(rp, ω)=Ein(rp, ω)-μ0ω2j=1Nαj(ω)×G(rp, rj, ω)E(rj, ω),
α(ω)=4π0a3 (ω)-1(ω)+2.
αs(d, ω)=α(ω)(1-x)-1000(1-x)-1000(1-2x)-1,
x=α(ω)rp(ω)4π0(2d)3,

Metrics