Abstract

Chromaticity coordinates of monochromatic lights were obtained 8 deg extrafoveally at a retinal illumination of 50 photopic td during the cone-plateau period and also with the subject in a dark-adapted state, while size and exposure time of the test field were varied. Unexpectedly, we found that for the dark-adapted condition the points representing the chromaticity matches of the spectral lights generally moved away from the achromatic point in the chromaticity diagram when size or exposure time of the test stimulus was increased. Furthermore, the chromaticity shift toward the achromatic point, obtained between the cone-plateau period and the dark-adapted state (i.e., with rod intrusion), tended to decrease with these two test parameters. In fact, when size and exposure time both were at the maximum level investigated (7 deg, 500 ms), there was no measurable shift in chromaticity with rod intrusion. Our results suggest that the cone system may become progressively more effective in suppressing the rod system as an effect of both size and exposure time.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Lie, “Dark adaptation and the photochromatic interval,” Doc. Ophthalmol. 17, 411–510 (1963).
    [CrossRef] [PubMed]
  2. L. Loeser, “Über den Einfluss der Dunkeladaptation auf die spezifische Farbenschwelle,” Z. Psychol. Physiol. Sinnesorg. 36, 1–18 (1904).
  3. P. Saugstad, A. Saugstad, “The duplicity theory. An evaluation,” Adv. Ophthalmol. 9, 1–51 (1959).
  4. L. Spillmann, J. E. Conlon, “Photochromatic interval during dark adaptation and as a function of background luminance,” J. Opt. Soc. Am. 62, 182–185 (1972).
    [CrossRef] [PubMed]
  5. B. Stabell, U. Stabell, “Rod and cone contributions to peripheral colour vision,” Vision Res. 16, 1099–1104 (1976).
    [CrossRef]
  6. B. Stabell, U. Stabell, “Peripheral colour vision: effects of rod intrusion at different eccentricities,” Vision Res. 36, 3407–3414 (1996).
    [CrossRef] [PubMed]
  7. M. Tessier-Lavigne, “Phototransduction and information processing in the retina,” in Principles of Neural Science, E. R. Kandel, J. H. Schwartz, T. M. Jessell, eds. (Elsevier, New York, 1991), pp. 400–418.
  8. W. D. Wright, Researches on Normal and Defective Colour Vision (Kimpton, London, 1946).
  9. J. D. Moreland, A. Cruz, “Colour perception with the peripheral retina,” Opt. Acta 6, 117–151 (1959).
    [CrossRef]
  10. G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).
  11. R. L. De Valois, J. Walraven, “Monocular and binocular aftereffects of chromatic adaptation,” Science 155, 463–464 (1967).
    [CrossRef] [PubMed]
  12. S. K. Shevell, I. Holliday, P. Whittle, “Two separate neural mechanisms of brightness induction,” Vision Res. 32, 2331–2340 (1992).
    [CrossRef] [PubMed]
  13. B. Stabell, U. Stabell, “Absolute spectral sensitivity at different eccentricities,” J. Opt. Soc. Am. 71, 836–840 (1981).
    [CrossRef] [PubMed]
  14. P. Gouras, K. Link, “Rod and cone interaction in dark adapted monkey ganglion cells,” J. Physiol. (London) 184, 499–510 (1966).
  15. P. Gouras, “Electrophysiological aspects of colour vision deficiencies,” in Vision and Visual Dysfunction, J. Cronly-Dillon, ed. (Macmillan, Boston, Mass., 1991), pp. 64–71.

1996 (1)

B. Stabell, U. Stabell, “Peripheral colour vision: effects of rod intrusion at different eccentricities,” Vision Res. 36, 3407–3414 (1996).
[CrossRef] [PubMed]

1992 (1)

S. K. Shevell, I. Holliday, P. Whittle, “Two separate neural mechanisms of brightness induction,” Vision Res. 32, 2331–2340 (1992).
[CrossRef] [PubMed]

1981 (1)

1976 (1)

B. Stabell, U. Stabell, “Rod and cone contributions to peripheral colour vision,” Vision Res. 16, 1099–1104 (1976).
[CrossRef]

1972 (1)

1967 (1)

R. L. De Valois, J. Walraven, “Monocular and binocular aftereffects of chromatic adaptation,” Science 155, 463–464 (1967).
[CrossRef] [PubMed]

1966 (1)

P. Gouras, K. Link, “Rod and cone interaction in dark adapted monkey ganglion cells,” J. Physiol. (London) 184, 499–510 (1966).

1963 (1)

I. Lie, “Dark adaptation and the photochromatic interval,” Doc. Ophthalmol. 17, 411–510 (1963).
[CrossRef] [PubMed]

1959 (2)

P. Saugstad, A. Saugstad, “The duplicity theory. An evaluation,” Adv. Ophthalmol. 9, 1–51 (1959).

J. D. Moreland, A. Cruz, “Colour perception with the peripheral retina,” Opt. Acta 6, 117–151 (1959).
[CrossRef]

1904 (1)

L. Loeser, “Über den Einfluss der Dunkeladaptation auf die spezifische Farbenschwelle,” Z. Psychol. Physiol. Sinnesorg. 36, 1–18 (1904).

Conlon, J. E.

Cruz, A.

J. D. Moreland, A. Cruz, “Colour perception with the peripheral retina,” Opt. Acta 6, 117–151 (1959).
[CrossRef]

De Valois, R. L.

R. L. De Valois, J. Walraven, “Monocular and binocular aftereffects of chromatic adaptation,” Science 155, 463–464 (1967).
[CrossRef] [PubMed]

Gouras, P.

P. Gouras, K. Link, “Rod and cone interaction in dark adapted monkey ganglion cells,” J. Physiol. (London) 184, 499–510 (1966).

P. Gouras, “Electrophysiological aspects of colour vision deficiencies,” in Vision and Visual Dysfunction, J. Cronly-Dillon, ed. (Macmillan, Boston, Mass., 1991), pp. 64–71.

Holliday, I.

S. K. Shevell, I. Holliday, P. Whittle, “Two separate neural mechanisms of brightness induction,” Vision Res. 32, 2331–2340 (1992).
[CrossRef] [PubMed]

Lie, I.

I. Lie, “Dark adaptation and the photochromatic interval,” Doc. Ophthalmol. 17, 411–510 (1963).
[CrossRef] [PubMed]

Link, K.

P. Gouras, K. Link, “Rod and cone interaction in dark adapted monkey ganglion cells,” J. Physiol. (London) 184, 499–510 (1966).

Loeser, L.

L. Loeser, “Über den Einfluss der Dunkeladaptation auf die spezifische Farbenschwelle,” Z. Psychol. Physiol. Sinnesorg. 36, 1–18 (1904).

Moreland, J. D.

J. D. Moreland, A. Cruz, “Colour perception with the peripheral retina,” Opt. Acta 6, 117–151 (1959).
[CrossRef]

Saugstad, A.

P. Saugstad, A. Saugstad, “The duplicity theory. An evaluation,” Adv. Ophthalmol. 9, 1–51 (1959).

Saugstad, P.

P. Saugstad, A. Saugstad, “The duplicity theory. An evaluation,” Adv. Ophthalmol. 9, 1–51 (1959).

Shevell, S. K.

S. K. Shevell, I. Holliday, P. Whittle, “Two separate neural mechanisms of brightness induction,” Vision Res. 32, 2331–2340 (1992).
[CrossRef] [PubMed]

Spillmann, L.

Stabell, B.

B. Stabell, U. Stabell, “Peripheral colour vision: effects of rod intrusion at different eccentricities,” Vision Res. 36, 3407–3414 (1996).
[CrossRef] [PubMed]

B. Stabell, U. Stabell, “Absolute spectral sensitivity at different eccentricities,” J. Opt. Soc. Am. 71, 836–840 (1981).
[CrossRef] [PubMed]

B. Stabell, U. Stabell, “Rod and cone contributions to peripheral colour vision,” Vision Res. 16, 1099–1104 (1976).
[CrossRef]

Stabell, U.

B. Stabell, U. Stabell, “Peripheral colour vision: effects of rod intrusion at different eccentricities,” Vision Res. 36, 3407–3414 (1996).
[CrossRef] [PubMed]

B. Stabell, U. Stabell, “Absolute spectral sensitivity at different eccentricities,” J. Opt. Soc. Am. 71, 836–840 (1981).
[CrossRef] [PubMed]

B. Stabell, U. Stabell, “Rod and cone contributions to peripheral colour vision,” Vision Res. 16, 1099–1104 (1976).
[CrossRef]

Stiles, W. S.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).

Tessier-Lavigne, M.

M. Tessier-Lavigne, “Phototransduction and information processing in the retina,” in Principles of Neural Science, E. R. Kandel, J. H. Schwartz, T. M. Jessell, eds. (Elsevier, New York, 1991), pp. 400–418.

Walraven, J.

R. L. De Valois, J. Walraven, “Monocular and binocular aftereffects of chromatic adaptation,” Science 155, 463–464 (1967).
[CrossRef] [PubMed]

Whittle, P.

S. K. Shevell, I. Holliday, P. Whittle, “Two separate neural mechanisms of brightness induction,” Vision Res. 32, 2331–2340 (1992).
[CrossRef] [PubMed]

Wright, W. D.

W. D. Wright, Researches on Normal and Defective Colour Vision (Kimpton, London, 1946).

Wyszecki, G.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).

Adv. Ophthalmol. (1)

P. Saugstad, A. Saugstad, “The duplicity theory. An evaluation,” Adv. Ophthalmol. 9, 1–51 (1959).

Doc. Ophthalmol. (1)

I. Lie, “Dark adaptation and the photochromatic interval,” Doc. Ophthalmol. 17, 411–510 (1963).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (2)

J. Physiol. (London) (1)

P. Gouras, K. Link, “Rod and cone interaction in dark adapted monkey ganglion cells,” J. Physiol. (London) 184, 499–510 (1966).

Opt. Acta (1)

J. D. Moreland, A. Cruz, “Colour perception with the peripheral retina,” Opt. Acta 6, 117–151 (1959).
[CrossRef]

Science (1)

R. L. De Valois, J. Walraven, “Monocular and binocular aftereffects of chromatic adaptation,” Science 155, 463–464 (1967).
[CrossRef] [PubMed]

Vision Res. (3)

S. K. Shevell, I. Holliday, P. Whittle, “Two separate neural mechanisms of brightness induction,” Vision Res. 32, 2331–2340 (1992).
[CrossRef] [PubMed]

B. Stabell, U. Stabell, “Rod and cone contributions to peripheral colour vision,” Vision Res. 16, 1099–1104 (1976).
[CrossRef]

B. Stabell, U. Stabell, “Peripheral colour vision: effects of rod intrusion at different eccentricities,” Vision Res. 36, 3407–3414 (1996).
[CrossRef] [PubMed]

Z. Psychol. Physiol. Sinnesorg. (1)

L. Loeser, “Über den Einfluss der Dunkeladaptation auf die spezifische Farbenschwelle,” Z. Psychol. Physiol. Sinnesorg. 36, 1–18 (1904).

Other (4)

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).

M. Tessier-Lavigne, “Phototransduction and information processing in the retina,” in Principles of Neural Science, E. R. Kandel, J. H. Schwartz, T. M. Jessell, eds. (Elsevier, New York, 1991), pp. 400–418.

W. D. Wright, Researches on Normal and Defective Colour Vision (Kimpton, London, 1946).

P. Gouras, “Electrophysiological aspects of colour vision deficiencies,” in Vision and Visual Dysfunction, J. Cronly-Dillon, ed. (Macmillan, Boston, Mass., 1991), pp. 64–71.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Spectrum locus and chromaticity coordinates of unique hues of yellow (Y), green (G), and blue (B), and achromatic, neutral point (A)—all measured at the central fovea in a dark-adapted state and expressed in the foveal WDW diagram—are shown together with the additive opponent colors of 650, 600, and 575 nm.

Fig. 2
Fig. 2

Cromaticity coordinates of spectral lights for subject US (a,b) and subject BS (c,d) obtained in a dark-adapted state 8 deg in the nasal field of view at 50 ph td when size (a,c) and exposure time (b,d) were varied. Triangles, 8 ms or 0.05 deg; squares, 33 ms or 0.25 deg; diamonds 125 ms or 1 deg; circles, 500 ms or 7 deg. In a and c the exposure time was held constant at 125 ms, and in b and d the size was held constant at 1 deg.

Fig. 3
Fig. 3

Chromaticity coordinates of spectral lights for subject US, measured 8 deg in the nasal field of view at 50 ph td during the cone-plateau period (open circles) and in a dark-adapted state (filled circles). The exposure time was 125 ms and the size of the field was 0.05, 0.25, 1, or 7 deg.

Fig. 4
Fig. 4

Conditions as in Fig. 3, except that the size of the test field was held constant at 1 deg and the exposure time was 8, 33, 125, or 500 ms.

Fig. 5
Fig. 5

Conditions as in Fig. 4, except that the size of the test field was 7 deg and the exposure time was 500 ms.

Metrics