Abstract

We characterize the refractive-index profiles of Z-cut and X-cut Zn-diffused LiNbO3 substrates from the vapor phase. We obtained these profiles by reflectivity measurements of the samples, using the prism coupling technique at each step of a systematic polishing, and then fitting the data with a program that models a multilayer optical structure. For diffusions performed at 800 °C, four different layers were clearly distinguished in the LiNbO3:Zn diffused samples, the first one being a very thin layer of polycrystalline ZnO. Two step-index layers were also detected: One was isotropic, and the other showed birefringence depending on the crystal cut. These two layers were correlated with Zn-rich phases previously detected in Zn-diffused LiNbO3 by x-ray techniques. The fourth layer detected presents a graded-index profile and corresponds to the formation of a Zn-containing solid solution with a LiNbO3-likestructure. These results are discussed and compared with the phases reported for Ti-diffused LiNbO3.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. de la Rue, “Waveguide optoelectronics,” in NATO Series E, Applied Science, Vol. 226, J. H. Marsh, R. M. de la Rue, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1992), pp. 1–19.
  2. R. V. Schmidt, I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25, 458–460 (1974).
    [CrossRef]
  3. M. Digonnet, M. Fejer, R. Byer, “Photorefractive-damage-resistant Zn-diffused waveguides in MgO:LiNbO3,” Opt. Lett. 10, 235–237 (1985).
    [CrossRef] [PubMed]
  4. L. Zhang, P. J. Chandler, P. D. Townsend, “Optical analysis of damaged profiles in ion implanted LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 59/60, 1147–1152 (1991).
    [CrossRef]
  5. W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, R. S. Feigelson, “Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:Lithium Niobate,” J. Lightwave Technol. 10, 1238–1246 (1992).
    [CrossRef]
  6. B. Herreros, G. Lifante, “LiNbO3 optical waveguides by Zn diffusion from the vapor phase,” Appl. Phys. Lett. 66, 1449–1451 (1995).
    [CrossRef]
  7. W. M. Young, R. S. Feigelson, M. M. Fejer, M. J. F. Digonnet, H. J. Shaw, “Photorefractive-damage-resistant Zn-diffused waveguides in MgO:LiNbO3,” Opt. Lett. 16, 995–997 (1991).
    [CrossRef] [PubMed]
  8. T. Tamir, ed., Guided-Wave Optoelectronics (Springer-Verlag, Berlin, 1990), Chap. 2.
  9. F. Schiller, B. Herreros, G. Lifante, “Optical characterization of vapor Zn-diffused waveguides in lithium niobate,” J. Opt. Soc. Am. A 14, 425–429 (1997).
    [CrossRef]
  10. L. Arizmendi, J. M. Cabrera, F. Agulló-López, “Defects induced in pure and doped LiNbO3 by irradiation and thermal reduction,” J. Phys. C 17, 515–529 (1984).
    [CrossRef]
  11. V. A. Fedorov, Y. N. Korkishko, F. Vereda, G. Lifante, F. Cussó, “Structural characterization of vapor Zn-diffused waveguides in lithium niobate,” J. Cryst. Growth 194, 94–100 (1998).
    [CrossRef]
  12. Y. S. Park, I. J. R. Schneider, “Index of refraction of ZnO,” J. Appl. Phys. 39, 3019–3052 (1968).
    [CrossRef]
  13. M. N. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, G. Celotti, “Characterization of(Ti0.65Nb0.35)O2 compound as a source for Ti diffusion during Ti:LiNbO3 optical waveguide fabrication,” J. Appl. Phys. 54, 62–70 (1983).
    [CrossRef]
  14. M. N. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, G. Celotti, “Characterization of TiO2,LiNb3O8, and (Ti0.65Nb0.35)O2 compound growth observed during Ti:LiNbO3 optical waveguide fabrication,” J. Appl. Phys. 54, 6223–6231 (1983).
    [CrossRef]
  15. V. B. Nalbandyan, B. S. Medvedev, V. I. Nalbandyan, A. V. Chinenova, “Ternary system of niobium, zinc, and lithium oxides,” Inorg. Mater.830–833 (1988) (translated from Russian).
  16. E. Zolotayabko, Y. Avrahami, W. Sauer, T. H. Metzger, J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 10, 1352–1354 (1998).
    [CrossRef]
  17. R. Nevado, G. Lifante, G. A. Torchia, J. A. Sanz-Garcı́a, F. Jaque, “Concentration dependence of refractive index in Zn-doped LiNbO3 crystals,” Opt. Mater. 11, 35–40 (1998).
    [CrossRef]

1998 (3)

V. A. Fedorov, Y. N. Korkishko, F. Vereda, G. Lifante, F. Cussó, “Structural characterization of vapor Zn-diffused waveguides in lithium niobate,” J. Cryst. Growth 194, 94–100 (1998).
[CrossRef]

E. Zolotayabko, Y. Avrahami, W. Sauer, T. H. Metzger, J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 10, 1352–1354 (1998).
[CrossRef]

R. Nevado, G. Lifante, G. A. Torchia, J. A. Sanz-Garcı́a, F. Jaque, “Concentration dependence of refractive index in Zn-doped LiNbO3 crystals,” Opt. Mater. 11, 35–40 (1998).
[CrossRef]

1997 (1)

1995 (1)

B. Herreros, G. Lifante, “LiNbO3 optical waveguides by Zn diffusion from the vapor phase,” Appl. Phys. Lett. 66, 1449–1451 (1995).
[CrossRef]

1992 (1)

W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, R. S. Feigelson, “Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:Lithium Niobate,” J. Lightwave Technol. 10, 1238–1246 (1992).
[CrossRef]

1991 (2)

W. M. Young, R. S. Feigelson, M. M. Fejer, M. J. F. Digonnet, H. J. Shaw, “Photorefractive-damage-resistant Zn-diffused waveguides in MgO:LiNbO3,” Opt. Lett. 16, 995–997 (1991).
[CrossRef] [PubMed]

L. Zhang, P. J. Chandler, P. D. Townsend, “Optical analysis of damaged profiles in ion implanted LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 59/60, 1147–1152 (1991).
[CrossRef]

1988 (1)

V. B. Nalbandyan, B. S. Medvedev, V. I. Nalbandyan, A. V. Chinenova, “Ternary system of niobium, zinc, and lithium oxides,” Inorg. Mater.830–833 (1988) (translated from Russian).

1985 (1)

1984 (1)

L. Arizmendi, J. M. Cabrera, F. Agulló-López, “Defects induced in pure and doped LiNbO3 by irradiation and thermal reduction,” J. Phys. C 17, 515–529 (1984).
[CrossRef]

1983 (2)

M. N. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, G. Celotti, “Characterization of(Ti0.65Nb0.35)O2 compound as a source for Ti diffusion during Ti:LiNbO3 optical waveguide fabrication,” J. Appl. Phys. 54, 62–70 (1983).
[CrossRef]

M. N. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, G. Celotti, “Characterization of TiO2,LiNb3O8, and (Ti0.65Nb0.35)O2 compound growth observed during Ti:LiNbO3 optical waveguide fabrication,” J. Appl. Phys. 54, 6223–6231 (1983).
[CrossRef]

1974 (1)

R. V. Schmidt, I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25, 458–460 (1974).
[CrossRef]

1968 (1)

Y. S. Park, I. J. R. Schneider, “Index of refraction of ZnO,” J. Appl. Phys. 39, 3019–3052 (1968).
[CrossRef]

Agulló-López, F.

L. Arizmendi, J. M. Cabrera, F. Agulló-López, “Defects induced in pure and doped LiNbO3 by irradiation and thermal reduction,” J. Phys. C 17, 515–529 (1984).
[CrossRef]

Arizmendi, L.

L. Arizmendi, J. M. Cabrera, F. Agulló-López, “Defects induced in pure and doped LiNbO3 by irradiation and thermal reduction,” J. Phys. C 17, 515–529 (1984).
[CrossRef]

Armenise, M. N.

M. N. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, G. Celotti, “Characterization of(Ti0.65Nb0.35)O2 compound as a source for Ti diffusion during Ti:LiNbO3 optical waveguide fabrication,” J. Appl. Phys. 54, 62–70 (1983).
[CrossRef]

M. N. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, G. Celotti, “Characterization of TiO2,LiNb3O8, and (Ti0.65Nb0.35)O2 compound growth observed during Ti:LiNbO3 optical waveguide fabrication,” J. Appl. Phys. 54, 6223–6231 (1983).
[CrossRef]

Avrahami, Y.

E. Zolotayabko, Y. Avrahami, W. Sauer, T. H. Metzger, J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 10, 1352–1354 (1998).
[CrossRef]

Byer, R.

Cabrera, J. M.

L. Arizmendi, J. M. Cabrera, F. Agulló-López, “Defects induced in pure and doped LiNbO3 by irradiation and thermal reduction,” J. Phys. C 17, 515–529 (1984).
[CrossRef]

Canali, C.

M. N. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, G. Celotti, “Characterization of TiO2,LiNb3O8, and (Ti0.65Nb0.35)O2 compound growth observed during Ti:LiNbO3 optical waveguide fabrication,” J. Appl. Phys. 54, 6223–6231 (1983).
[CrossRef]

M. N. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, G. Celotti, “Characterization of(Ti0.65Nb0.35)O2 compound as a source for Ti diffusion during Ti:LiNbO3 optical waveguide fabrication,” J. Appl. Phys. 54, 62–70 (1983).
[CrossRef]

Carnera, A.

M. N. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, G. Celotti, “Characterization of(Ti0.65Nb0.35)O2 compound as a source for Ti diffusion during Ti:LiNbO3 optical waveguide fabrication,” J. Appl. Phys. 54, 62–70 (1983).
[CrossRef]

M. N. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, G. Celotti, “Characterization of TiO2,LiNb3O8, and (Ti0.65Nb0.35)O2 compound growth observed during Ti:LiNbO3 optical waveguide fabrication,” J. Appl. Phys. 54, 6223–6231 (1983).
[CrossRef]

Celotti, G.

M. N. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, G. Celotti, “Characterization of(Ti0.65Nb0.35)O2 compound as a source for Ti diffusion during Ti:LiNbO3 optical waveguide fabrication,” J. Appl. Phys. 54, 62–70 (1983).
[CrossRef]

M. N. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, G. Celotti, “Characterization of TiO2,LiNb3O8, and (Ti0.65Nb0.35)O2 compound growth observed during Ti:LiNbO3 optical waveguide fabrication,” J. Appl. Phys. 54, 6223–6231 (1983).
[CrossRef]

Chandler, P. J.

L. Zhang, P. J. Chandler, P. D. Townsend, “Optical analysis of damaged profiles in ion implanted LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 59/60, 1147–1152 (1991).
[CrossRef]

Chinenova, A. V.

V. B. Nalbandyan, B. S. Medvedev, V. I. Nalbandyan, A. V. Chinenova, “Ternary system of niobium, zinc, and lithium oxides,” Inorg. Mater.830–833 (1988) (translated from Russian).

Cussó, F.

V. A. Fedorov, Y. N. Korkishko, F. Vereda, G. Lifante, F. Cussó, “Structural characterization of vapor Zn-diffused waveguides in lithium niobate,” J. Cryst. Growth 194, 94–100 (1998).
[CrossRef]

de la Rue, R. M.

R. M. de la Rue, “Waveguide optoelectronics,” in NATO Series E, Applied Science, Vol. 226, J. H. Marsh, R. M. de la Rue, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1992), pp. 1–19.

De Sario, M.

M. N. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, G. Celotti, “Characterization of TiO2,LiNb3O8, and (Ti0.65Nb0.35)O2 compound growth observed during Ti:LiNbO3 optical waveguide fabrication,” J. Appl. Phys. 54, 6223–6231 (1983).
[CrossRef]

M. N. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, G. Celotti, “Characterization of(Ti0.65Nb0.35)O2 compound as a source for Ti diffusion during Ti:LiNbO3 optical waveguide fabrication,” J. Appl. Phys. 54, 62–70 (1983).
[CrossRef]

Digonnet, M.

Digonnet, M. J. F.

W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, R. S. Feigelson, “Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:Lithium Niobate,” J. Lightwave Technol. 10, 1238–1246 (1992).
[CrossRef]

W. M. Young, R. S. Feigelson, M. M. Fejer, M. J. F. Digonnet, H. J. Shaw, “Photorefractive-damage-resistant Zn-diffused waveguides in MgO:LiNbO3,” Opt. Lett. 16, 995–997 (1991).
[CrossRef] [PubMed]

Fedorov, V. A.

V. A. Fedorov, Y. N. Korkishko, F. Vereda, G. Lifante, F. Cussó, “Structural characterization of vapor Zn-diffused waveguides in lithium niobate,” J. Cryst. Growth 194, 94–100 (1998).
[CrossRef]

Feigelson, R. S.

W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, R. S. Feigelson, “Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:Lithium Niobate,” J. Lightwave Technol. 10, 1238–1246 (1992).
[CrossRef]

W. M. Young, R. S. Feigelson, M. M. Fejer, M. J. F. Digonnet, H. J. Shaw, “Photorefractive-damage-resistant Zn-diffused waveguides in MgO:LiNbO3,” Opt. Lett. 16, 995–997 (1991).
[CrossRef] [PubMed]

Fejer, M.

Fejer, M. M.

W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, R. S. Feigelson, “Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:Lithium Niobate,” J. Lightwave Technol. 10, 1238–1246 (1992).
[CrossRef]

W. M. Young, R. S. Feigelson, M. M. Fejer, M. J. F. Digonnet, H. J. Shaw, “Photorefractive-damage-resistant Zn-diffused waveguides in MgO:LiNbO3,” Opt. Lett. 16, 995–997 (1991).
[CrossRef] [PubMed]

Herreros, B.

F. Schiller, B. Herreros, G. Lifante, “Optical characterization of vapor Zn-diffused waveguides in lithium niobate,” J. Opt. Soc. Am. A 14, 425–429 (1997).
[CrossRef]

B. Herreros, G. Lifante, “LiNbO3 optical waveguides by Zn diffusion from the vapor phase,” Appl. Phys. Lett. 66, 1449–1451 (1995).
[CrossRef]

Jaque, F.

R. Nevado, G. Lifante, G. A. Torchia, J. A. Sanz-Garcı́a, F. Jaque, “Concentration dependence of refractive index in Zn-doped LiNbO3 crystals,” Opt. Mater. 11, 35–40 (1998).
[CrossRef]

Kaminow, I. P.

R. V. Schmidt, I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25, 458–460 (1974).
[CrossRef]

Korkishko, Y. N.

V. A. Fedorov, Y. N. Korkishko, F. Vereda, G. Lifante, F. Cussó, “Structural characterization of vapor Zn-diffused waveguides in lithium niobate,” J. Cryst. Growth 194, 94–100 (1998).
[CrossRef]

Lifante, G.

V. A. Fedorov, Y. N. Korkishko, F. Vereda, G. Lifante, F. Cussó, “Structural characterization of vapor Zn-diffused waveguides in lithium niobate,” J. Cryst. Growth 194, 94–100 (1998).
[CrossRef]

R. Nevado, G. Lifante, G. A. Torchia, J. A. Sanz-Garcı́a, F. Jaque, “Concentration dependence of refractive index in Zn-doped LiNbO3 crystals,” Opt. Mater. 11, 35–40 (1998).
[CrossRef]

F. Schiller, B. Herreros, G. Lifante, “Optical characterization of vapor Zn-diffused waveguides in lithium niobate,” J. Opt. Soc. Am. A 14, 425–429 (1997).
[CrossRef]

B. Herreros, G. Lifante, “LiNbO3 optical waveguides by Zn diffusion from the vapor phase,” Appl. Phys. Lett. 66, 1449–1451 (1995).
[CrossRef]

Marshall, A. F.

W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, R. S. Feigelson, “Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:Lithium Niobate,” J. Lightwave Technol. 10, 1238–1246 (1992).
[CrossRef]

Mazzoldi, P.

M. N. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, G. Celotti, “Characterization of(Ti0.65Nb0.35)O2 compound as a source for Ti diffusion during Ti:LiNbO3 optical waveguide fabrication,” J. Appl. Phys. 54, 62–70 (1983).
[CrossRef]

M. N. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, G. Celotti, “Characterization of TiO2,LiNb3O8, and (Ti0.65Nb0.35)O2 compound growth observed during Ti:LiNbO3 optical waveguide fabrication,” J. Appl. Phys. 54, 6223–6231 (1983).
[CrossRef]

Medvedev, B. S.

V. B. Nalbandyan, B. S. Medvedev, V. I. Nalbandyan, A. V. Chinenova, “Ternary system of niobium, zinc, and lithium oxides,” Inorg. Mater.830–833 (1988) (translated from Russian).

Metzger, T. H.

E. Zolotayabko, Y. Avrahami, W. Sauer, T. H. Metzger, J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 10, 1352–1354 (1998).
[CrossRef]

Nalbandyan, V. B.

V. B. Nalbandyan, B. S. Medvedev, V. I. Nalbandyan, A. V. Chinenova, “Ternary system of niobium, zinc, and lithium oxides,” Inorg. Mater.830–833 (1988) (translated from Russian).

Nalbandyan, V. I.

V. B. Nalbandyan, B. S. Medvedev, V. I. Nalbandyan, A. V. Chinenova, “Ternary system of niobium, zinc, and lithium oxides,” Inorg. Mater.830–833 (1988) (translated from Russian).

Nevado, R.

R. Nevado, G. Lifante, G. A. Torchia, J. A. Sanz-Garcı́a, F. Jaque, “Concentration dependence of refractive index in Zn-doped LiNbO3 crystals,” Opt. Mater. 11, 35–40 (1998).
[CrossRef]

Park, Y. S.

Y. S. Park, I. J. R. Schneider, “Index of refraction of ZnO,” J. Appl. Phys. 39, 3019–3052 (1968).
[CrossRef]

Peisl, J.

E. Zolotayabko, Y. Avrahami, W. Sauer, T. H. Metzger, J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 10, 1352–1354 (1998).
[CrossRef]

Sanz-Garci´a, J. A.

R. Nevado, G. Lifante, G. A. Torchia, J. A. Sanz-Garcı́a, F. Jaque, “Concentration dependence of refractive index in Zn-doped LiNbO3 crystals,” Opt. Mater. 11, 35–40 (1998).
[CrossRef]

Sauer, W.

E. Zolotayabko, Y. Avrahami, W. Sauer, T. H. Metzger, J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 10, 1352–1354 (1998).
[CrossRef]

Schiller, F.

Schmidt, R. V.

R. V. Schmidt, I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25, 458–460 (1974).
[CrossRef]

Schneider, I. J. R.

Y. S. Park, I. J. R. Schneider, “Index of refraction of ZnO,” J. Appl. Phys. 39, 3019–3052 (1968).
[CrossRef]

Shaw, H. J.

Torchia, G. A.

R. Nevado, G. Lifante, G. A. Torchia, J. A. Sanz-Garcı́a, F. Jaque, “Concentration dependence of refractive index in Zn-doped LiNbO3 crystals,” Opt. Mater. 11, 35–40 (1998).
[CrossRef]

Townsend, P. D.

L. Zhang, P. J. Chandler, P. D. Townsend, “Optical analysis of damaged profiles in ion implanted LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 59/60, 1147–1152 (1991).
[CrossRef]

Vereda, F.

V. A. Fedorov, Y. N. Korkishko, F. Vereda, G. Lifante, F. Cussó, “Structural characterization of vapor Zn-diffused waveguides in lithium niobate,” J. Cryst. Growth 194, 94–100 (1998).
[CrossRef]

Young, W. M.

W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, R. S. Feigelson, “Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:Lithium Niobate,” J. Lightwave Technol. 10, 1238–1246 (1992).
[CrossRef]

W. M. Young, R. S. Feigelson, M. M. Fejer, M. J. F. Digonnet, H. J. Shaw, “Photorefractive-damage-resistant Zn-diffused waveguides in MgO:LiNbO3,” Opt. Lett. 16, 995–997 (1991).
[CrossRef] [PubMed]

Zhang, L.

L. Zhang, P. J. Chandler, P. D. Townsend, “Optical analysis of damaged profiles in ion implanted LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 59/60, 1147–1152 (1991).
[CrossRef]

Zolotayabko, E.

E. Zolotayabko, Y. Avrahami, W. Sauer, T. H. Metzger, J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 10, 1352–1354 (1998).
[CrossRef]

Appl. Phys. Lett. (3)

B. Herreros, G. Lifante, “LiNbO3 optical waveguides by Zn diffusion from the vapor phase,” Appl. Phys. Lett. 66, 1449–1451 (1995).
[CrossRef]

R. V. Schmidt, I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25, 458–460 (1974).
[CrossRef]

E. Zolotayabko, Y. Avrahami, W. Sauer, T. H. Metzger, J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 10, 1352–1354 (1998).
[CrossRef]

Inorg. Mater. (1)

V. B. Nalbandyan, B. S. Medvedev, V. I. Nalbandyan, A. V. Chinenova, “Ternary system of niobium, zinc, and lithium oxides,” Inorg. Mater.830–833 (1988) (translated from Russian).

J. Appl. Phys. (3)

Y. S. Park, I. J. R. Schneider, “Index of refraction of ZnO,” J. Appl. Phys. 39, 3019–3052 (1968).
[CrossRef]

M. N. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, G. Celotti, “Characterization of(Ti0.65Nb0.35)O2 compound as a source for Ti diffusion during Ti:LiNbO3 optical waveguide fabrication,” J. Appl. Phys. 54, 62–70 (1983).
[CrossRef]

M. N. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, G. Celotti, “Characterization of TiO2,LiNb3O8, and (Ti0.65Nb0.35)O2 compound growth observed during Ti:LiNbO3 optical waveguide fabrication,” J. Appl. Phys. 54, 6223–6231 (1983).
[CrossRef]

J. Cryst. Growth (1)

V. A. Fedorov, Y. N. Korkishko, F. Vereda, G. Lifante, F. Cussó, “Structural characterization of vapor Zn-diffused waveguides in lithium niobate,” J. Cryst. Growth 194, 94–100 (1998).
[CrossRef]

J. Lightwave Technol. (1)

W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, R. S. Feigelson, “Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:Lithium Niobate,” J. Lightwave Technol. 10, 1238–1246 (1992).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. C (1)

L. Arizmendi, J. M. Cabrera, F. Agulló-López, “Defects induced in pure and doped LiNbO3 by irradiation and thermal reduction,” J. Phys. C 17, 515–529 (1984).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

L. Zhang, P. J. Chandler, P. D. Townsend, “Optical analysis of damaged profiles in ion implanted LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 59/60, 1147–1152 (1991).
[CrossRef]

Opt. Lett. (2)

Opt. Mater. (1)

R. Nevado, G. Lifante, G. A. Torchia, J. A. Sanz-Garcı́a, F. Jaque, “Concentration dependence of refractive index in Zn-doped LiNbO3 crystals,” Opt. Mater. 11, 35–40 (1998).
[CrossRef]

Other (2)

R. M. de la Rue, “Waveguide optoelectronics,” in NATO Series E, Applied Science, Vol. 226, J. H. Marsh, R. M. de la Rue, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1992), pp. 1–19.

T. Tamir, ed., Guided-Wave Optoelectronics (Springer-Verlag, Berlin, 1990), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup for reflectivity measurements. The effective refractive indices are calculated from the incident angle θ, with use of the values of the refractive indices and the base angle of the prism.

Fig. 2
Fig. 2

Representation of the possible orientations between the rutile prism (1) and the LiNbO3 crystal (2) for Z-cut (a), (b) and X-cut (c), (d) samples. The refractive index of the substrate can be examined for each case.

Fig. 3
Fig. 3

Evolution of the TM reflectivity (solid curves) at three different polishing stages, measured at λ=633 nm, for a Z-cut Zn-diffused LiNbO3 sample at 800 °C over 8 h. Dotted curves represent the reconstructed refractive-index profiles.

Fig. 4
Fig. 4

Evolution of the TE reflectivity (solid curves) associated with the ordinary index of a Z-cut Zn-diffused LiNbO3 sample at 800 °C over 8 h. λ=633 nm, and the dotted curves represent the modeled index profiles that reproduce the experimental reflectivity.

Fig. 5
Fig. 5

Changes in the TE reflectivity (solid curves) and the associated modeled index profile (dashed curves) at three different polishing stages, corresponding to a Zn-diffused X-cut LiNbO3 sample at 800 °C over 5.5 h. The linearly polarized light is along the Z axis of the LiNbO3 substrate.  

Fig. 6
Fig. 6

Theoretical evolution (solid curves) of the modes associated with the waveguide fabricated in a Zn-diffused X-cut LiNbO3 sample at 800 °C over 5.5 h as a function of the depth of the two step-index layers. Symbols represent the experimental data after a systematic polishing of the diffused sample.

Fig. 7
Fig. 7

Evolution of the TE reflectivity associated with the ordinary index of a Zn-diffused LiNbO3 X-cut sample at 800 °C over 5.5 h. The linearly polarized light is along the Y axis of the LiNbO3 substrate. All measurements are at λ=633 nm. The dotted curves represent the modeled index profiles that reproduce the experimental reflectivity.

Fig. 8
Fig. 8

Changes in the TM reflectivity (solid curves) and the associated modeled index profiles (dotted curves) at three different polishing stages, corresponding to a Zn-diffused X-cut LiNbO3 sample at 800 °C over 5.5 h.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n(x)=n+Δn exp[-(x/d)4],

Metrics