Abstract

Frequency-domain diffusion imaging uses the magnitude and phase of modulated light propagating through a highly scattering medium to reconstruct an image of the spatially dependent scattering or absorption coefficients in the medium. An inversion algorithm is formulated in a Bayesian framework and an efficient optimization technique is presented for calculating the maximum a posteriori image. In this framework the data are modeled as a complex Gaussian random vector with shot-noise statistics, and the unknown image is modeled as a generalized Gaussian Markov random field. The shot-noise statistics provide correct weighting for the measurement, and the generalized Gaussian Markov random field prior enhances the reconstruction quality and retains edges in the reconstruction. A localized relaxation algorithm, the iterative-coordinate-descent algorithm, is employed as a computationally efficient optimization technique. Numerical results for two-dimensional images show that the Bayesian framework with the new optimization scheme outperforms conventional approaches in both speed and reconstruction quality.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (52)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription