## Abstract

Frequency-domain diffusion imaging uses the magnitude and phase of modulated light propagating through a highly scattering medium to reconstruct an image of the spatially dependent scattering or absorption coefficients in the medium. An inversion algorithm is formulated in a Bayesian framework and an efficient optimization technique is presented for calculating the maximum *a posteriori* image. In this framework the data are modeled as a complex Gaussian random vector with shot-noise statistics, and the unknown image is modeled as a generalized Gaussian Markov random field. The shot-noise statistics provide correct weighting for the measurement, and the generalized Gaussian Markov random field prior enhances the reconstruction quality and retains edges in the reconstruction. A localized relaxation algorithm, the iterative-coordinate-descent algorithm, is employed as a computationally efficient optimization technique. Numerical results for two-dimensional images show that the Bayesian framework with the new optimization scheme outperforms conventional approaches in both speed and reconstruction quality.

© 1999 Optical Society of America

Full Article | PDF Article**Related Articles**

Seungseok Oh, Adam B. Milstein, R. P. Millane, Charles A. Bouman, and Kevin J. Webb

J. Opt. Soc. Am. A **19**(10) 1983-1993 (2002)

Adam B. Milstein, Seungseok Oh, Kevin J. Webb, Charles A. Bouman, Quan Zhang, David A. Boas, and R. P. Millane

Appl. Opt. **42**(16) 3081-3094 (2003)

J. C. Ye, K. J. Webb, R. P. Millane, and T. J. Downar

J. Opt. Soc. Am. A **16**(7) 1814-1826 (1999)