Abstract

Blind-deconvolution microscopy, the simultaneous estimation of the specimen function and the point-spread function (PSF) of the microscope, is an underdetermined problem with nonunique solutions that are usually avoided by enforcing constraints on the specimen function and the PSF. We derived a maximum-likelihood-based method for blind deconvolution in which we assume a mathematical model for the PSF that depends on a small number of parameters (e.g., less than 20). The algorithm then estimates the unknown parameters together with the specimen function. The mathematical model ensures that all the constraints of the PSF are satisfied, and the maximum-likelihood approach ensures that the specimen is nonnegative. The method successfully estimates the PSF and removes out-of-focus blur. The PSF estimation is robust to aberrations in the PSF and to noise in the image.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (53)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription