Abstract

Achromatic adjustment has been used widely to study color context effects. In the achromatic adjustment procedure, an observer adjusts a test stimulus until it appears black, gray, or white. By its nature, achromatic adjustment directly measures the effect of context only for stimuli that appear gray. We present achromatic loci measured in two contexts and asymmetric color matches measured across the same two contexts. The results indicate that achromatic adjustments, together with a gain-control model, may be used to make accurate predictions of the chromaticity of asymmetric matches. Thus measurements of the effect of context for test stimuli that appear gray may be used to predict the effect of context for stimuli that appear colored. The experiments also indicate that accurate prediction depends on ensuring that observers use similar fixational strategies for the two judgments.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Helson, W. C. Michels, “The effect of chromatic adaptation on achromaticity,” J. Opt. Soc. Am. 38, 1025–1032 (1948).
    [CrossRef] [PubMed]
  2. R. W. G. Hunt, L. M. Winter, “Color adaptation in picture-viewing situations,” J. Phot. Sci. 23, 112–115 (1975).
  3. J. S. Werner, J. Walraven, “Effect of chromatic adaptation on the achromatic locus: the role of contrast, luminance and background color,” Vision Res. 22, 929–944 (1982).
    [CrossRef] [PubMed]
  4. R. S. Berns, M. E. Gorzynski, “Simulating surface colors on CRT displays: the importance of cognitive clues,” in Proceedings of the AIC Conference: Colour and Light (Association Internationale de la Couleur, 1991), pp. 21–24.
  5. M. D. Fairchild, P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vision Res. 32, 2077–2085 (1992).
    [CrossRef] [PubMed]
  6. K. H. Bauml, “Color appearance: effects of illuminant changes under different surface collections,” J. Opt. Soc. Am. A 11, 531–542 (1994).
    [CrossRef]
  7. D. H. Brainard, K. Ishigami, “Factors influencing the appearance of CRT colors,” in Proceedings of the IS&T/SID Color Imaging Conference: Color Science, Systems, and Applications (Society for Imaging Science and Technology, Springfield, Va., 1995), pp. 62–66.
  8. E. J. Chichilnisky, B. A. Wandell, “Seeing gray through the on and off pathways,” Visual Neurosci. 13, 591–596 (1996).
    [CrossRef]
  9. D. H. Brainard, “Color constancy in the nearly natural image. 2. Achromatic loci,” J. Opt. Soc. Am. A 15, 307–325 (1998).
    [CrossRef]
  10. H. Helson, “Fundamental problems in color vision. I. The principle governing changes in hue, saturation and lightness of non-selective samples in chromatic illumination,” J. Exp. Psychol. 23, 439–476 (1938).
    [CrossRef]
  11. H. Helson, V. B. Jeffers, “Fundamental problems in color vision. II. Hue, lightness, and saturation of selective samples in chromatic illumination,” J. Exp. Psychol. 26, 1–27 (1940).
    [CrossRef]
  12. J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory: a comparison between theoretical predictions and observer responses to the ‘Color Mondrian’ experiments,” Vision Res. 16, 445–458 (1976).
    [CrossRef]
  13. L. E. Arend, A. Reeves, “Simultaneous color constancy,” J. Opt. Soc. Am. A 3, 1743–1751 (1986).
    [CrossRef] [PubMed]
  14. A. Valberg, B. Lange-Malecki, “Mondrian complexity does not improve ‘color constancy’,” Invest. Ophthalmol. Visual Sci. Suppl. 28, 92 (1987).
  15. D. H. Brainard, B. A. Wandell, “Asymmetric color-matching: how color appearance depends on the illuminant,” J. Opt. Soc. Am. A 9, 1433–1448 (1992).
    [CrossRef] [PubMed]
  16. M. P. Lucassen, J. Walraven, “Color constancy under natural and artificial illumination,” Vision Res. 36, 2699–2711 (1996).
    [CrossRef] [PubMed]
  17. D. H. Brainard, W. A. Brunt, J. M. Speigle, “Color constancy in the nearly natural image. 1. Asymmetric matches,” J. Opt. Soc. Am. A 14, 2091–2110 (1997).
    [CrossRef]
  18. W. S. Stiles, “Mechanism concepts in colour theory,” J. Colour Group 11, 106–123 (1967).
  19. J. M. Speigle, D. H. Brainard, “Luminosity thresholds: effects of test chromaticity and ambient illumination,” J. Opt. Soc. Am. A 13, 436–451 (1996).
    [CrossRef]
  20. K. H. Bauml, “Illuminant changes under different surface collections: examining some principles of color appearance,” J. Opt. Soc. Am. A 12, 261–271 (1995).
    [CrossRef]
  21. E. J. Chichilnisky, B. A. Wandell, “Photoreceptor sensitivity changes explain color appearance shifts induced by large uniform backgrounds in dichoptic matching,” Vision Res. 35, 239–254 (1995).
    [CrossRef] [PubMed]
  22. J. von Kries, “Chromatic adaptation” [originally published in Festschrift der Albrecht-Ludwigs-Universitat (Fribourg, Germany, 1902), pp. 145–148.] In Sources of Color Vision, L. D. MacAdam, ed. (MIT Press, Cambridge, Mass., 1970), pp. 109–126.
  23. D. Jameson, L. M. Hurvich, “Theory of brightness and color contrast in human vision,” Vision Res. 4, 135–154 (1964).
    [CrossRef] [PubMed]
  24. J. Walraven, “Discounting the background: the missing link in the explanation of chromatic induction,” Vision Res. 16, 289–295 (1976).
    [CrossRef]
  25. S. K. Shevell, “The dual role of chromatic backgrounds in color perception,” Vision Res. 18, 1649–1661 (1978).
    [CrossRef] [PubMed]
  26. J. M. Speigle, “Testing whether a common representation explains the effects of viewing context on color appearance,” Ph.D. dissertation (University of California, Santa Barbara, Calif., 1997).
  27. A goodness-of-fit test does indicate that the difference between full diagonal and alternating-fixation, achromatic constrained models is statistically significant (F-test for nested linear models applied to CIELAB E* errors; p< 0.05 for all observers.) This test, however, does not reflect prediction error induced by error in measurement of the achromatic loci.
  28. J. M. Kraft, D. H. Brainard, “Mechanisms of color constancy under nearly natural viewing,” Proc. Natl. Acad. Sci. USA 96, 307–312 (1999).
    [CrossRef] [PubMed]
  29. V. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
    [CrossRef] [PubMed]
  30. P. DeMarco, J. Pokorny, V. C. Smith, “Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats,” J. Opt. Soc. Am. A 9, 1465–1476 (1992).
    [CrossRef] [PubMed]

1999 (1)

J. M. Kraft, D. H. Brainard, “Mechanisms of color constancy under nearly natural viewing,” Proc. Natl. Acad. Sci. USA 96, 307–312 (1999).
[CrossRef] [PubMed]

1998 (1)

1997 (1)

1996 (3)

J. M. Speigle, D. H. Brainard, “Luminosity thresholds: effects of test chromaticity and ambient illumination,” J. Opt. Soc. Am. A 13, 436–451 (1996).
[CrossRef]

M. P. Lucassen, J. Walraven, “Color constancy under natural and artificial illumination,” Vision Res. 36, 2699–2711 (1996).
[CrossRef] [PubMed]

E. J. Chichilnisky, B. A. Wandell, “Seeing gray through the on and off pathways,” Visual Neurosci. 13, 591–596 (1996).
[CrossRef]

1995 (2)

E. J. Chichilnisky, B. A. Wandell, “Photoreceptor sensitivity changes explain color appearance shifts induced by large uniform backgrounds in dichoptic matching,” Vision Res. 35, 239–254 (1995).
[CrossRef] [PubMed]

K. H. Bauml, “Illuminant changes under different surface collections: examining some principles of color appearance,” J. Opt. Soc. Am. A 12, 261–271 (1995).
[CrossRef]

1994 (1)

1992 (3)

1987 (1)

A. Valberg, B. Lange-Malecki, “Mondrian complexity does not improve ‘color constancy’,” Invest. Ophthalmol. Visual Sci. Suppl. 28, 92 (1987).

1986 (1)

1982 (1)

J. S. Werner, J. Walraven, “Effect of chromatic adaptation on the achromatic locus: the role of contrast, luminance and background color,” Vision Res. 22, 929–944 (1982).
[CrossRef] [PubMed]

1978 (1)

S. K. Shevell, “The dual role of chromatic backgrounds in color perception,” Vision Res. 18, 1649–1661 (1978).
[CrossRef] [PubMed]

1976 (2)

J. Walraven, “Discounting the background: the missing link in the explanation of chromatic induction,” Vision Res. 16, 289–295 (1976).
[CrossRef]

J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory: a comparison between theoretical predictions and observer responses to the ‘Color Mondrian’ experiments,” Vision Res. 16, 445–458 (1976).
[CrossRef]

1975 (2)

R. W. G. Hunt, L. M. Winter, “Color adaptation in picture-viewing situations,” J. Phot. Sci. 23, 112–115 (1975).

V. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

1967 (1)

W. S. Stiles, “Mechanism concepts in colour theory,” J. Colour Group 11, 106–123 (1967).

1964 (1)

D. Jameson, L. M. Hurvich, “Theory of brightness and color contrast in human vision,” Vision Res. 4, 135–154 (1964).
[CrossRef] [PubMed]

1948 (1)

1940 (1)

H. Helson, V. B. Jeffers, “Fundamental problems in color vision. II. Hue, lightness, and saturation of selective samples in chromatic illumination,” J. Exp. Psychol. 26, 1–27 (1940).
[CrossRef]

1938 (1)

H. Helson, “Fundamental problems in color vision. I. The principle governing changes in hue, saturation and lightness of non-selective samples in chromatic illumination,” J. Exp. Psychol. 23, 439–476 (1938).
[CrossRef]

Arend, L. E.

Bauml, K. H.

Berns, R. S.

R. S. Berns, M. E. Gorzynski, “Simulating surface colors on CRT displays: the importance of cognitive clues,” in Proceedings of the AIC Conference: Colour and Light (Association Internationale de la Couleur, 1991), pp. 21–24.

Brainard, D. H.

Brunt, W. A.

Chichilnisky, E. J.

E. J. Chichilnisky, B. A. Wandell, “Seeing gray through the on and off pathways,” Visual Neurosci. 13, 591–596 (1996).
[CrossRef]

E. J. Chichilnisky, B. A. Wandell, “Photoreceptor sensitivity changes explain color appearance shifts induced by large uniform backgrounds in dichoptic matching,” Vision Res. 35, 239–254 (1995).
[CrossRef] [PubMed]

DeMarco, P.

Fairchild, M. D.

M. D. Fairchild, P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vision Res. 32, 2077–2085 (1992).
[CrossRef] [PubMed]

Gorzynski, M. E.

R. S. Berns, M. E. Gorzynski, “Simulating surface colors on CRT displays: the importance of cognitive clues,” in Proceedings of the AIC Conference: Colour and Light (Association Internationale de la Couleur, 1991), pp. 21–24.

Helson, H.

H. Helson, W. C. Michels, “The effect of chromatic adaptation on achromaticity,” J. Opt. Soc. Am. 38, 1025–1032 (1948).
[CrossRef] [PubMed]

H. Helson, V. B. Jeffers, “Fundamental problems in color vision. II. Hue, lightness, and saturation of selective samples in chromatic illumination,” J. Exp. Psychol. 26, 1–27 (1940).
[CrossRef]

H. Helson, “Fundamental problems in color vision. I. The principle governing changes in hue, saturation and lightness of non-selective samples in chromatic illumination,” J. Exp. Psychol. 23, 439–476 (1938).
[CrossRef]

Hunt, R. W. G.

R. W. G. Hunt, L. M. Winter, “Color adaptation in picture-viewing situations,” J. Phot. Sci. 23, 112–115 (1975).

Hurvich, L. M.

D. Jameson, L. M. Hurvich, “Theory of brightness and color contrast in human vision,” Vision Res. 4, 135–154 (1964).
[CrossRef] [PubMed]

Ishigami, K.

D. H. Brainard, K. Ishigami, “Factors influencing the appearance of CRT colors,” in Proceedings of the IS&T/SID Color Imaging Conference: Color Science, Systems, and Applications (Society for Imaging Science and Technology, Springfield, Va., 1995), pp. 62–66.

Jameson, D.

D. Jameson, L. M. Hurvich, “Theory of brightness and color contrast in human vision,” Vision Res. 4, 135–154 (1964).
[CrossRef] [PubMed]

Jeffers, V. B.

H. Helson, V. B. Jeffers, “Fundamental problems in color vision. II. Hue, lightness, and saturation of selective samples in chromatic illumination,” J. Exp. Psychol. 26, 1–27 (1940).
[CrossRef]

Kraft, J. M.

J. M. Kraft, D. H. Brainard, “Mechanisms of color constancy under nearly natural viewing,” Proc. Natl. Acad. Sci. USA 96, 307–312 (1999).
[CrossRef] [PubMed]

Lange-Malecki, B.

A. Valberg, B. Lange-Malecki, “Mondrian complexity does not improve ‘color constancy’,” Invest. Ophthalmol. Visual Sci. Suppl. 28, 92 (1987).

Lennie, P.

M. D. Fairchild, P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vision Res. 32, 2077–2085 (1992).
[CrossRef] [PubMed]

Lucassen, M. P.

M. P. Lucassen, J. Walraven, “Color constancy under natural and artificial illumination,” Vision Res. 36, 2699–2711 (1996).
[CrossRef] [PubMed]

McCann, J. J.

J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory: a comparison between theoretical predictions and observer responses to the ‘Color Mondrian’ experiments,” Vision Res. 16, 445–458 (1976).
[CrossRef]

McKee, S. P.

J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory: a comparison between theoretical predictions and observer responses to the ‘Color Mondrian’ experiments,” Vision Res. 16, 445–458 (1976).
[CrossRef]

Michels, W. C.

Pokorny, J.

P. DeMarco, J. Pokorny, V. C. Smith, “Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats,” J. Opt. Soc. Am. A 9, 1465–1476 (1992).
[CrossRef] [PubMed]

V. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Reeves, A.

Shevell, S. K.

S. K. Shevell, “The dual role of chromatic backgrounds in color perception,” Vision Res. 18, 1649–1661 (1978).
[CrossRef] [PubMed]

Smith, V.

V. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Smith, V. C.

Speigle, J. M.

Stiles, W. S.

W. S. Stiles, “Mechanism concepts in colour theory,” J. Colour Group 11, 106–123 (1967).

Taylor, T. H.

J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory: a comparison between theoretical predictions and observer responses to the ‘Color Mondrian’ experiments,” Vision Res. 16, 445–458 (1976).
[CrossRef]

Valberg, A.

A. Valberg, B. Lange-Malecki, “Mondrian complexity does not improve ‘color constancy’,” Invest. Ophthalmol. Visual Sci. Suppl. 28, 92 (1987).

von Kries, J.

J. von Kries, “Chromatic adaptation” [originally published in Festschrift der Albrecht-Ludwigs-Universitat (Fribourg, Germany, 1902), pp. 145–148.] In Sources of Color Vision, L. D. MacAdam, ed. (MIT Press, Cambridge, Mass., 1970), pp. 109–126.

Walraven, J.

M. P. Lucassen, J. Walraven, “Color constancy under natural and artificial illumination,” Vision Res. 36, 2699–2711 (1996).
[CrossRef] [PubMed]

J. S. Werner, J. Walraven, “Effect of chromatic adaptation on the achromatic locus: the role of contrast, luminance and background color,” Vision Res. 22, 929–944 (1982).
[CrossRef] [PubMed]

J. Walraven, “Discounting the background: the missing link in the explanation of chromatic induction,” Vision Res. 16, 289–295 (1976).
[CrossRef]

Wandell, B. A.

E. J. Chichilnisky, B. A. Wandell, “Seeing gray through the on and off pathways,” Visual Neurosci. 13, 591–596 (1996).
[CrossRef]

E. J. Chichilnisky, B. A. Wandell, “Photoreceptor sensitivity changes explain color appearance shifts induced by large uniform backgrounds in dichoptic matching,” Vision Res. 35, 239–254 (1995).
[CrossRef] [PubMed]

D. H. Brainard, B. A. Wandell, “Asymmetric color-matching: how color appearance depends on the illuminant,” J. Opt. Soc. Am. A 9, 1433–1448 (1992).
[CrossRef] [PubMed]

Werner, J. S.

J. S. Werner, J. Walraven, “Effect of chromatic adaptation on the achromatic locus: the role of contrast, luminance and background color,” Vision Res. 22, 929–944 (1982).
[CrossRef] [PubMed]

Winter, L. M.

R. W. G. Hunt, L. M. Winter, “Color adaptation in picture-viewing situations,” J. Phot. Sci. 23, 112–115 (1975).

Invest. Ophthalmol. Visual Sci. Suppl. (1)

A. Valberg, B. Lange-Malecki, “Mondrian complexity does not improve ‘color constancy’,” Invest. Ophthalmol. Visual Sci. Suppl. 28, 92 (1987).

J. Colour Group (1)

W. S. Stiles, “Mechanism concepts in colour theory,” J. Colour Group 11, 106–123 (1967).

J. Exp. Psychol. (2)

H. Helson, “Fundamental problems in color vision. I. The principle governing changes in hue, saturation and lightness of non-selective samples in chromatic illumination,” J. Exp. Psychol. 23, 439–476 (1938).
[CrossRef]

H. Helson, V. B. Jeffers, “Fundamental problems in color vision. II. Hue, lightness, and saturation of selective samples in chromatic illumination,” J. Exp. Psychol. 26, 1–27 (1940).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (8)

J. Phot. Sci. (1)

R. W. G. Hunt, L. M. Winter, “Color adaptation in picture-viewing situations,” J. Phot. Sci. 23, 112–115 (1975).

Proc. Natl. Acad. Sci. USA (1)

J. M. Kraft, D. H. Brainard, “Mechanisms of color constancy under nearly natural viewing,” Proc. Natl. Acad. Sci. USA 96, 307–312 (1999).
[CrossRef] [PubMed]

Vision Res. (9)

V. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

J. S. Werner, J. Walraven, “Effect of chromatic adaptation on the achromatic locus: the role of contrast, luminance and background color,” Vision Res. 22, 929–944 (1982).
[CrossRef] [PubMed]

M. D. Fairchild, P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vision Res. 32, 2077–2085 (1992).
[CrossRef] [PubMed]

J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory: a comparison between theoretical predictions and observer responses to the ‘Color Mondrian’ experiments,” Vision Res. 16, 445–458 (1976).
[CrossRef]

E. J. Chichilnisky, B. A. Wandell, “Photoreceptor sensitivity changes explain color appearance shifts induced by large uniform backgrounds in dichoptic matching,” Vision Res. 35, 239–254 (1995).
[CrossRef] [PubMed]

M. P. Lucassen, J. Walraven, “Color constancy under natural and artificial illumination,” Vision Res. 36, 2699–2711 (1996).
[CrossRef] [PubMed]

D. Jameson, L. M. Hurvich, “Theory of brightness and color contrast in human vision,” Vision Res. 4, 135–154 (1964).
[CrossRef] [PubMed]

J. Walraven, “Discounting the background: the missing link in the explanation of chromatic induction,” Vision Res. 16, 289–295 (1976).
[CrossRef]

S. K. Shevell, “The dual role of chromatic backgrounds in color perception,” Vision Res. 18, 1649–1661 (1978).
[CrossRef] [PubMed]

Visual Neurosci. (1)

E. J. Chichilnisky, B. A. Wandell, “Seeing gray through the on and off pathways,” Visual Neurosci. 13, 591–596 (1996).
[CrossRef]

Other (5)

R. S. Berns, M. E. Gorzynski, “Simulating surface colors on CRT displays: the importance of cognitive clues,” in Proceedings of the AIC Conference: Colour and Light (Association Internationale de la Couleur, 1991), pp. 21–24.

D. H. Brainard, K. Ishigami, “Factors influencing the appearance of CRT colors,” in Proceedings of the IS&T/SID Color Imaging Conference: Color Science, Systems, and Applications (Society for Imaging Science and Technology, Springfield, Va., 1995), pp. 62–66.

J. M. Speigle, “Testing whether a common representation explains the effects of viewing context on color appearance,” Ph.D. dissertation (University of California, Santa Barbara, Calif., 1997).

A goodness-of-fit test does indicate that the difference between full diagonal and alternating-fixation, achromatic constrained models is statistically significant (F-test for nested linear models applied to CIELAB E* errors; p< 0.05 for all observers.) This test, however, does not reflect prediction error induced by error in measurement of the achromatic loci.

J. von Kries, “Chromatic adaptation” [originally published in Festschrift der Albrecht-Ludwigs-Universitat (Fribourg, Germany, 1902), pp. 145–148.] In Sources of Color Vision, L. D. MacAdam, ed. (MIT Press, Cambridge, Mass., 1970), pp. 109–126.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Asymmetric matches. Top panels show data and predictions for the diagonal model: open squares, test surface coordinates; solid squares, match surface coordinates; open circles, matches predicted by the diagonal model. Bottom panels are the same as the top ones except that model predictions are constrained by the achromatic loci measured with alternating fixation. Correspondence between test and match coordinates is indicated by the solid lines. Data are for observer ASH. The standard error of measurement is smaller than the plotted points. To avoid overwhelming the plots, only a subset of the data is shown. Similar data for observer JMS are shown in Ref. 17, Fig. 6.

Fig. 2
Fig. 2

Achromatic loci. Top panels show the alternating-fixation condition. Bottom panels show the steady-fixation condition. The CIE xy chromaticities of the achromatic loci for the three observers are shown: open squares show the achromatic locus when the illumination at the match surface was bluish (bluish illuminant); solid squares show the locus when the illumination at the match surface was yellowish (yellowish illuminant); open and solid triangles show the corresponding illuminants. In the top panels, the dashed lines show asymmetric matching data for comparison (see description in text).

Fig. 3
Fig. 3

Mean CIELAB ΔE* prediction error for the asymmetric matching data set for each observer and each model. Abbreviations as in Table 1.

Tables (3)

Tables Icon

Table 1 Illuminant Specifications: Measured CIE 1931 xy Chromaticity and Luminance (cd/m2) of the Illuminant at Test and Match Locations for Each Observer, Experiment, and Illuminanta

Tables Icon

Table 2 Achromatic Adjustment Conditions and Results: Number of Adjustments Made, Mean CIE 1931 xy Chromaticity of the Adjustments, and Luminances (cd/m2) at Which Adjustments Were Madea

Tables Icon

Table 3 Constancy Indicesa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

rT=DrM
aT=D(caM)=cDaM,
D=diag(aT./aM)/c ,

Metrics