Abstract

We present a spectral vision system that can be used to measure a color spectrum and two-dimensional spectral images. First, a low-dimensional color filter set was designed by an unsupervised neural network. Then a compact optical setup for the spectral synthesizer was constructed to synthesize the light that corresponds to the spectral characteristics of the color filter. In the optical setup a liquid-crystal spatial light modulator was used to implement color filters. A sample was illuminated by the synthesized lights, and the intensity images that correspond to the inner products between the color filter and the sample were detected by a CCD camera. From the detected inner products the sample’s color spectra were reconstructed by use of a pseudoinverse matrix. Experimental results of measuring a single color spectrum and spectral images are presented.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Ramasamy, V. Venkatasubrmanian, S. Anbazhagan, “Reflectance spectra of minerals and their discrimination using Thematic Mapper, IRS and SPOT multispectral data,” Int. J. Remote Sens. 14, 2935–2970 (1993).
    [CrossRef]
  2. T. Hyvarinen, E. Herrala, A. Dall’Ava, “Direct sight imaging spectrograph: a unique add-on component brings spectral imaging to industrial applications,” in Proceedings of IS&T/SPIE Symposium on Electronic Imaging (SPIE, Bellingham, Wash., 1998), Vol. 3302-21, pp. 165–175.
  3. P. K. Kaiser, R. M. Boynton, Human Color Vision, 2nd ed. (Optical Society of America, Washington, D.C., 1996).
  4. G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).
  5. M. S. Drew, B. V. Funt, “Natural metamers,” CVGIP: Image Understand. 56, 139–151 (1992).
    [CrossRef]
  6. S. Kawata, K. Sasaki, S. Minami, “Component analysis of spatial and spectral patterns in multispectral images. I. Basis,” J. Opt. Soc. Am. A 4, 2101–2106 (1987).
    [CrossRef] [PubMed]
  7. J. Hallikainen, J. P. S. Parkkinen, T. Jaaskelainen, “Color image processing with AOTF,” in Proceedings of the 6th Scandinavian Conference on Image Analysis, M. Pietikäinen, J. Röning, eds. (Pattern Recognition Society of Finland, Oulu, Finland, 1989), pp. 294–300.
  8. K. Itoh, “Interferometric multispectral imaging,” in Progress in Optics XXXV, E. Wolf, ed. (Elsevier, Amsterdam, 1996), pp. 145–196.
  9. J. P. S. Parkkinen, J. Hallikainen, T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989).
    [CrossRef]
  10. S. Usui, S. Nakauchi, M. Nakano, “Reconstruction of Munsell color space by a five-layer neural network,” J. Opt. Soc. Am. A 9, 516–520 (1992).
    [CrossRef]
  11. S. Tominaga, “Multichannel vision system for estimating surface and illumination functions,” J. Opt. Soc. Am. A 13, 2163–2173 (1996).
    [CrossRef]
  12. S. Baronti, A. Casini, F. Lotti, S. Porcinai, “Multispectral imaging system for the mapping of pigments in works of art by use of principal-component analysis,” Appl. Opt. 37, 1299–1309 (1998).
    [CrossRef]
  13. H. Haneishi, T. Hasegawa, N. Tsumura, Y. Miyake, “Design of color filters for recording artworks,” in Proceedings of IS&T’s 50th Annual Conference (The Society for Imaging Science and Technology, Springfield, Va., 1997), pp. 369–372.
  14. R. Lenz, M. Österberg, J. Hiltunen, T. Jaaskelainen, J. Parkkinen, “Unsupervised filtering of color spectra,” J. Opt. Soc. Am. A 13, 1315–1324 (1996).
    [CrossRef]
  15. Munsell Book of Color-Matte Finish Collection (Munsell Color, Baltimore, Md., 1976).
  16. T. Jaaskelainen, J. Parkkinen, S. Toyooka, “Vector-subspace model for color representation,” J. Opt. Soc. Am. A 7, 725–730 (1990).
    [CrossRef]
  17. T. Jaaskelainen, S. Toyooka, S. Izawa, H. Kadono, “Color classification by vector subspace method and its optical implementation using liquid crystal spatial light modulator,” Opt. Commun. 89, 23–29 (1992).
    [CrossRef]
  18. N. Hayasaka, S. Toyooka, T. Jaaskelainen, “Iterative feedback method to make a spatial filter on a liquid crystal spatial light modulator for 2D spectroscopic pattern recognition,” Opt. Commun. 119, 643–651 (1995).
    [CrossRef]
  19. M. Hauta-Kasari, W. Wang, S. Toyooka, J. Parkkinen, R. Lenz, “Unsupervised filtering of Munsell spectra,” in Proceedings of the 3rd Asian Conference on Computer Vision, ACCV’98, Hong Kong, January 8–10, Vol. 1351 of Lecture Notes in Computer Science, R. Chin, T.-C. Pong eds. (Springer-Verlag, Berlin, 1998), pp. 248–255.
  20. E. Oja, Subspace Methods of Pattern Recognition (Research Studies Press, Letchworth, UK, 1983).
  21. S. Grossberg, Studies of the Mind and Brain (Reidel, Dordrecht, The Netherlands, 1982).
  22. T. Kohonen, The Self-Organizing Maps (Springer-Verlag, Berlin, 1995).
  23. S. Haykin, Neural Networks (Macmillan, New York, 1994).
  24. P. L. Vora, J. E. Farrell, J. D. Tietz, D. H. Brainard, “Linear models for digital cameras,” in Proceedings of IS&T’s 50th Annual Conference (The Society for Imaging Science and Technology, Springfield, Va., 1997), pp. 369–372.
  25. G. J. Klinker, S. A. Shafer, T. Kanade, “The measurement of highlights in color images,” Int. J. Comput. Vision 2, 7–25 (1988).
    [CrossRef]

1998 (1)

1996 (2)

1995 (1)

N. Hayasaka, S. Toyooka, T. Jaaskelainen, “Iterative feedback method to make a spatial filter on a liquid crystal spatial light modulator for 2D spectroscopic pattern recognition,” Opt. Commun. 119, 643–651 (1995).
[CrossRef]

1993 (1)

S. M. Ramasamy, V. Venkatasubrmanian, S. Anbazhagan, “Reflectance spectra of minerals and their discrimination using Thematic Mapper, IRS and SPOT multispectral data,” Int. J. Remote Sens. 14, 2935–2970 (1993).
[CrossRef]

1992 (3)

M. S. Drew, B. V. Funt, “Natural metamers,” CVGIP: Image Understand. 56, 139–151 (1992).
[CrossRef]

T. Jaaskelainen, S. Toyooka, S. Izawa, H. Kadono, “Color classification by vector subspace method and its optical implementation using liquid crystal spatial light modulator,” Opt. Commun. 89, 23–29 (1992).
[CrossRef]

S. Usui, S. Nakauchi, M. Nakano, “Reconstruction of Munsell color space by a five-layer neural network,” J. Opt. Soc. Am. A 9, 516–520 (1992).
[CrossRef]

1990 (1)

1989 (1)

1988 (1)

G. J. Klinker, S. A. Shafer, T. Kanade, “The measurement of highlights in color images,” Int. J. Comput. Vision 2, 7–25 (1988).
[CrossRef]

1987 (1)

Anbazhagan, S.

S. M. Ramasamy, V. Venkatasubrmanian, S. Anbazhagan, “Reflectance spectra of minerals and their discrimination using Thematic Mapper, IRS and SPOT multispectral data,” Int. J. Remote Sens. 14, 2935–2970 (1993).
[CrossRef]

Baronti, S.

Boynton, R. M.

P. K. Kaiser, R. M. Boynton, Human Color Vision, 2nd ed. (Optical Society of America, Washington, D.C., 1996).

Brainard, D. H.

P. L. Vora, J. E. Farrell, J. D. Tietz, D. H. Brainard, “Linear models for digital cameras,” in Proceedings of IS&T’s 50th Annual Conference (The Society for Imaging Science and Technology, Springfield, Va., 1997), pp. 369–372.

Casini, A.

Dall’Ava, A.

T. Hyvarinen, E. Herrala, A. Dall’Ava, “Direct sight imaging spectrograph: a unique add-on component brings spectral imaging to industrial applications,” in Proceedings of IS&T/SPIE Symposium on Electronic Imaging (SPIE, Bellingham, Wash., 1998), Vol. 3302-21, pp. 165–175.

Drew, M. S.

M. S. Drew, B. V. Funt, “Natural metamers,” CVGIP: Image Understand. 56, 139–151 (1992).
[CrossRef]

Farrell, J. E.

P. L. Vora, J. E. Farrell, J. D. Tietz, D. H. Brainard, “Linear models for digital cameras,” in Proceedings of IS&T’s 50th Annual Conference (The Society for Imaging Science and Technology, Springfield, Va., 1997), pp. 369–372.

Funt, B. V.

M. S. Drew, B. V. Funt, “Natural metamers,” CVGIP: Image Understand. 56, 139–151 (1992).
[CrossRef]

Grossberg, S.

S. Grossberg, Studies of the Mind and Brain (Reidel, Dordrecht, The Netherlands, 1982).

Hallikainen, J.

J. P. S. Parkkinen, J. Hallikainen, T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989).
[CrossRef]

J. Hallikainen, J. P. S. Parkkinen, T. Jaaskelainen, “Color image processing with AOTF,” in Proceedings of the 6th Scandinavian Conference on Image Analysis, M. Pietikäinen, J. Röning, eds. (Pattern Recognition Society of Finland, Oulu, Finland, 1989), pp. 294–300.

Haneishi, H.

H. Haneishi, T. Hasegawa, N. Tsumura, Y. Miyake, “Design of color filters for recording artworks,” in Proceedings of IS&T’s 50th Annual Conference (The Society for Imaging Science and Technology, Springfield, Va., 1997), pp. 369–372.

Hasegawa, T.

H. Haneishi, T. Hasegawa, N. Tsumura, Y. Miyake, “Design of color filters for recording artworks,” in Proceedings of IS&T’s 50th Annual Conference (The Society for Imaging Science and Technology, Springfield, Va., 1997), pp. 369–372.

Hauta-Kasari, M.

M. Hauta-Kasari, W. Wang, S. Toyooka, J. Parkkinen, R. Lenz, “Unsupervised filtering of Munsell spectra,” in Proceedings of the 3rd Asian Conference on Computer Vision, ACCV’98, Hong Kong, January 8–10, Vol. 1351 of Lecture Notes in Computer Science, R. Chin, T.-C. Pong eds. (Springer-Verlag, Berlin, 1998), pp. 248–255.

Hayasaka, N.

N. Hayasaka, S. Toyooka, T. Jaaskelainen, “Iterative feedback method to make a spatial filter on a liquid crystal spatial light modulator for 2D spectroscopic pattern recognition,” Opt. Commun. 119, 643–651 (1995).
[CrossRef]

Haykin, S.

S. Haykin, Neural Networks (Macmillan, New York, 1994).

Herrala, E.

T. Hyvarinen, E. Herrala, A. Dall’Ava, “Direct sight imaging spectrograph: a unique add-on component brings spectral imaging to industrial applications,” in Proceedings of IS&T/SPIE Symposium on Electronic Imaging (SPIE, Bellingham, Wash., 1998), Vol. 3302-21, pp. 165–175.

Hiltunen, J.

Hyvarinen, T.

T. Hyvarinen, E. Herrala, A. Dall’Ava, “Direct sight imaging spectrograph: a unique add-on component brings spectral imaging to industrial applications,” in Proceedings of IS&T/SPIE Symposium on Electronic Imaging (SPIE, Bellingham, Wash., 1998), Vol. 3302-21, pp. 165–175.

Itoh, K.

K. Itoh, “Interferometric multispectral imaging,” in Progress in Optics XXXV, E. Wolf, ed. (Elsevier, Amsterdam, 1996), pp. 145–196.

Izawa, S.

T. Jaaskelainen, S. Toyooka, S. Izawa, H. Kadono, “Color classification by vector subspace method and its optical implementation using liquid crystal spatial light modulator,” Opt. Commun. 89, 23–29 (1992).
[CrossRef]

Jaaskelainen, T.

R. Lenz, M. Österberg, J. Hiltunen, T. Jaaskelainen, J. Parkkinen, “Unsupervised filtering of color spectra,” J. Opt. Soc. Am. A 13, 1315–1324 (1996).
[CrossRef]

N. Hayasaka, S. Toyooka, T. Jaaskelainen, “Iterative feedback method to make a spatial filter on a liquid crystal spatial light modulator for 2D spectroscopic pattern recognition,” Opt. Commun. 119, 643–651 (1995).
[CrossRef]

T. Jaaskelainen, S. Toyooka, S. Izawa, H. Kadono, “Color classification by vector subspace method and its optical implementation using liquid crystal spatial light modulator,” Opt. Commun. 89, 23–29 (1992).
[CrossRef]

T. Jaaskelainen, J. Parkkinen, S. Toyooka, “Vector-subspace model for color representation,” J. Opt. Soc. Am. A 7, 725–730 (1990).
[CrossRef]

J. P. S. Parkkinen, J. Hallikainen, T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989).
[CrossRef]

J. Hallikainen, J. P. S. Parkkinen, T. Jaaskelainen, “Color image processing with AOTF,” in Proceedings of the 6th Scandinavian Conference on Image Analysis, M. Pietikäinen, J. Röning, eds. (Pattern Recognition Society of Finland, Oulu, Finland, 1989), pp. 294–300.

Kadono, H.

T. Jaaskelainen, S. Toyooka, S. Izawa, H. Kadono, “Color classification by vector subspace method and its optical implementation using liquid crystal spatial light modulator,” Opt. Commun. 89, 23–29 (1992).
[CrossRef]

Kaiser, P. K.

P. K. Kaiser, R. M. Boynton, Human Color Vision, 2nd ed. (Optical Society of America, Washington, D.C., 1996).

Kanade, T.

G. J. Klinker, S. A. Shafer, T. Kanade, “The measurement of highlights in color images,” Int. J. Comput. Vision 2, 7–25 (1988).
[CrossRef]

Kawata, S.

Klinker, G. J.

G. J. Klinker, S. A. Shafer, T. Kanade, “The measurement of highlights in color images,” Int. J. Comput. Vision 2, 7–25 (1988).
[CrossRef]

Kohonen, T.

T. Kohonen, The Self-Organizing Maps (Springer-Verlag, Berlin, 1995).

Lenz, R.

R. Lenz, M. Österberg, J. Hiltunen, T. Jaaskelainen, J. Parkkinen, “Unsupervised filtering of color spectra,” J. Opt. Soc. Am. A 13, 1315–1324 (1996).
[CrossRef]

M. Hauta-Kasari, W. Wang, S. Toyooka, J. Parkkinen, R. Lenz, “Unsupervised filtering of Munsell spectra,” in Proceedings of the 3rd Asian Conference on Computer Vision, ACCV’98, Hong Kong, January 8–10, Vol. 1351 of Lecture Notes in Computer Science, R. Chin, T.-C. Pong eds. (Springer-Verlag, Berlin, 1998), pp. 248–255.

Lotti, F.

Minami, S.

Miyake, Y.

H. Haneishi, T. Hasegawa, N. Tsumura, Y. Miyake, “Design of color filters for recording artworks,” in Proceedings of IS&T’s 50th Annual Conference (The Society for Imaging Science and Technology, Springfield, Va., 1997), pp. 369–372.

Nakano, M.

Nakauchi, S.

Oja, E.

E. Oja, Subspace Methods of Pattern Recognition (Research Studies Press, Letchworth, UK, 1983).

Österberg, M.

Parkkinen, J.

R. Lenz, M. Österberg, J. Hiltunen, T. Jaaskelainen, J. Parkkinen, “Unsupervised filtering of color spectra,” J. Opt. Soc. Am. A 13, 1315–1324 (1996).
[CrossRef]

T. Jaaskelainen, J. Parkkinen, S. Toyooka, “Vector-subspace model for color representation,” J. Opt. Soc. Am. A 7, 725–730 (1990).
[CrossRef]

M. Hauta-Kasari, W. Wang, S. Toyooka, J. Parkkinen, R. Lenz, “Unsupervised filtering of Munsell spectra,” in Proceedings of the 3rd Asian Conference on Computer Vision, ACCV’98, Hong Kong, January 8–10, Vol. 1351 of Lecture Notes in Computer Science, R. Chin, T.-C. Pong eds. (Springer-Verlag, Berlin, 1998), pp. 248–255.

Parkkinen, J. P. S.

J. P. S. Parkkinen, J. Hallikainen, T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989).
[CrossRef]

J. Hallikainen, J. P. S. Parkkinen, T. Jaaskelainen, “Color image processing with AOTF,” in Proceedings of the 6th Scandinavian Conference on Image Analysis, M. Pietikäinen, J. Röning, eds. (Pattern Recognition Society of Finland, Oulu, Finland, 1989), pp. 294–300.

Porcinai, S.

Ramasamy, S. M.

S. M. Ramasamy, V. Venkatasubrmanian, S. Anbazhagan, “Reflectance spectra of minerals and their discrimination using Thematic Mapper, IRS and SPOT multispectral data,” Int. J. Remote Sens. 14, 2935–2970 (1993).
[CrossRef]

Sasaki, K.

Shafer, S. A.

G. J. Klinker, S. A. Shafer, T. Kanade, “The measurement of highlights in color images,” Int. J. Comput. Vision 2, 7–25 (1988).
[CrossRef]

Stiles, W. S.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).

Tietz, J. D.

P. L. Vora, J. E. Farrell, J. D. Tietz, D. H. Brainard, “Linear models for digital cameras,” in Proceedings of IS&T’s 50th Annual Conference (The Society for Imaging Science and Technology, Springfield, Va., 1997), pp. 369–372.

Tominaga, S.

Toyooka, S.

N. Hayasaka, S. Toyooka, T. Jaaskelainen, “Iterative feedback method to make a spatial filter on a liquid crystal spatial light modulator for 2D spectroscopic pattern recognition,” Opt. Commun. 119, 643–651 (1995).
[CrossRef]

T. Jaaskelainen, S. Toyooka, S. Izawa, H. Kadono, “Color classification by vector subspace method and its optical implementation using liquid crystal spatial light modulator,” Opt. Commun. 89, 23–29 (1992).
[CrossRef]

T. Jaaskelainen, J. Parkkinen, S. Toyooka, “Vector-subspace model for color representation,” J. Opt. Soc. Am. A 7, 725–730 (1990).
[CrossRef]

M. Hauta-Kasari, W. Wang, S. Toyooka, J. Parkkinen, R. Lenz, “Unsupervised filtering of Munsell spectra,” in Proceedings of the 3rd Asian Conference on Computer Vision, ACCV’98, Hong Kong, January 8–10, Vol. 1351 of Lecture Notes in Computer Science, R. Chin, T.-C. Pong eds. (Springer-Verlag, Berlin, 1998), pp. 248–255.

Tsumura, N.

H. Haneishi, T. Hasegawa, N. Tsumura, Y. Miyake, “Design of color filters for recording artworks,” in Proceedings of IS&T’s 50th Annual Conference (The Society for Imaging Science and Technology, Springfield, Va., 1997), pp. 369–372.

Usui, S.

Venkatasubrmanian, V.

S. M. Ramasamy, V. Venkatasubrmanian, S. Anbazhagan, “Reflectance spectra of minerals and their discrimination using Thematic Mapper, IRS and SPOT multispectral data,” Int. J. Remote Sens. 14, 2935–2970 (1993).
[CrossRef]

Vora, P. L.

P. L. Vora, J. E. Farrell, J. D. Tietz, D. H. Brainard, “Linear models for digital cameras,” in Proceedings of IS&T’s 50th Annual Conference (The Society for Imaging Science and Technology, Springfield, Va., 1997), pp. 369–372.

Wang, W.

M. Hauta-Kasari, W. Wang, S. Toyooka, J. Parkkinen, R. Lenz, “Unsupervised filtering of Munsell spectra,” in Proceedings of the 3rd Asian Conference on Computer Vision, ACCV’98, Hong Kong, January 8–10, Vol. 1351 of Lecture Notes in Computer Science, R. Chin, T.-C. Pong eds. (Springer-Verlag, Berlin, 1998), pp. 248–255.

Wyszecki, G.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).

Appl. Opt. (1)

CVGIP: Image Understand. (1)

M. S. Drew, B. V. Funt, “Natural metamers,” CVGIP: Image Understand. 56, 139–151 (1992).
[CrossRef]

Int. J. Comput. Vision (1)

G. J. Klinker, S. A. Shafer, T. Kanade, “The measurement of highlights in color images,” Int. J. Comput. Vision 2, 7–25 (1988).
[CrossRef]

Int. J. Remote Sens. (1)

S. M. Ramasamy, V. Venkatasubrmanian, S. Anbazhagan, “Reflectance spectra of minerals and their discrimination using Thematic Mapper, IRS and SPOT multispectral data,” Int. J. Remote Sens. 14, 2935–2970 (1993).
[CrossRef]

J. Opt. Soc. Am. A (6)

Opt. Commun. (2)

T. Jaaskelainen, S. Toyooka, S. Izawa, H. Kadono, “Color classification by vector subspace method and its optical implementation using liquid crystal spatial light modulator,” Opt. Commun. 89, 23–29 (1992).
[CrossRef]

N. Hayasaka, S. Toyooka, T. Jaaskelainen, “Iterative feedback method to make a spatial filter on a liquid crystal spatial light modulator for 2D spectroscopic pattern recognition,” Opt. Commun. 119, 643–651 (1995).
[CrossRef]

Other (13)

M. Hauta-Kasari, W. Wang, S. Toyooka, J. Parkkinen, R. Lenz, “Unsupervised filtering of Munsell spectra,” in Proceedings of the 3rd Asian Conference on Computer Vision, ACCV’98, Hong Kong, January 8–10, Vol. 1351 of Lecture Notes in Computer Science, R. Chin, T.-C. Pong eds. (Springer-Verlag, Berlin, 1998), pp. 248–255.

E. Oja, Subspace Methods of Pattern Recognition (Research Studies Press, Letchworth, UK, 1983).

S. Grossberg, Studies of the Mind and Brain (Reidel, Dordrecht, The Netherlands, 1982).

T. Kohonen, The Self-Organizing Maps (Springer-Verlag, Berlin, 1995).

S. Haykin, Neural Networks (Macmillan, New York, 1994).

P. L. Vora, J. E. Farrell, J. D. Tietz, D. H. Brainard, “Linear models for digital cameras,” in Proceedings of IS&T’s 50th Annual Conference (The Society for Imaging Science and Technology, Springfield, Va., 1997), pp. 369–372.

T. Hyvarinen, E. Herrala, A. Dall’Ava, “Direct sight imaging spectrograph: a unique add-on component brings spectral imaging to industrial applications,” in Proceedings of IS&T/SPIE Symposium on Electronic Imaging (SPIE, Bellingham, Wash., 1998), Vol. 3302-21, pp. 165–175.

P. K. Kaiser, R. M. Boynton, Human Color Vision, 2nd ed. (Optical Society of America, Washington, D.C., 1996).

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).

H. Haneishi, T. Hasegawa, N. Tsumura, Y. Miyake, “Design of color filters for recording artworks,” in Proceedings of IS&T’s 50th Annual Conference (The Society for Imaging Science and Technology, Springfield, Va., 1997), pp. 369–372.

Munsell Book of Color-Matte Finish Collection (Munsell Color, Baltimore, Md., 1976).

J. Hallikainen, J. P. S. Parkkinen, T. Jaaskelainen, “Color image processing with AOTF,” in Proceedings of the 6th Scandinavian Conference on Image Analysis, M. Pietikäinen, J. Röning, eds. (Pattern Recognition Society of Finland, Oulu, Finland, 1989), pp. 294–300.

K. Itoh, “Interferometric multispectral imaging,” in Progress in Optics XXXV, E. Wolf, ed. (Elsevier, Amsterdam, 1996), pp. 145–196.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Filter set of four learned filters used in the proposed spectral vision system.

Fig. 2
Fig. 2

Optical setup of the calibration measurements for the spectral vision system.

Fig. 3
Fig. 3

Optical setup of the spectral synthesizer.

Fig. 4
Fig. 4

Schematic drawing of control of the LC panel.

Fig. 5
Fig. 5

Measured light-source spectrum.

Fig. 6
Fig. 6

Spectral characteristics of the LC panel.

Fig. 7
Fig. 7

(a) LC-panel transmittance patterns for the set of four filters. (b) Optically measured results of the filtered illuminator. Solid curves, designed filters multiplied by the light-source spectrum; dotted curves, measured results.

Fig. 8
Fig. 8

Spectra of six transparent samples measured by the spectrophotometer (solid curves) and the spectra measured by the spectral vision system with four filters (dotted curves).

Fig. 9
Fig. 9

Spectral vision system for acquiring spectral images.

Fig. 10
Fig. 10

(a) Sample as a real-size gray-level image, illuminated by a halogen lamp. (b) Detected intensity images of the sample, illuminated by synthesized lights, that correspond to the four color filters.

Fig. 11
Fig. 11

(a) Spectral image measured by the spectral vision system with four filters. (b) Spectral image measured by the CCD camera with 31 narrow-band interference filters.

Fig. 12
Fig. 12

Spectra at six locations of the spectral image. Solid curves, spectral image measured by the CCD camera with 31 narrow-band filters; dotted curves, spectral image measured by the spectral vision system with four filters.

Fig. 13
Fig. 13

Spectral images converted to RGB images. (a) Spectral image measured by the spectral vision system with four filters; (b) spectral image measured by the CCD camera with 31 narrow-band filters.

Tables (2)

Tables Icon

Table 1 Averaged CIE xy and CIE L*a*b* Errors over Six Transparent Color Samples for the Spectra Measured by the Spectrophotometer and by the Spectral Vision System

Tables Icon

Table 2 Comparison of the CIE xy and CIE L*a*b* Errors over Six Transparent Color Samples for Spectra Measured by the Spectrophotometer (s) and Spectra Measured by the Spectral Vision System (s) with Four Filters

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

s=W(WTW)-1WTs,

Metrics