Abstract

We evaluated the performance of a liquid-crystal spatial light modulator for static correction of the aberrations in the human eye. By applying phase-retrieval techniques to pairs of double-pass images we first estimated the wave aberration of the eye to be corrected. Then we introduced the opposite phase map in the modulator, which was placed in a plane conjugated with the eye’s pupil, and we recorded double-pass images of a point source before and after correction of the aberrations. In a slightly aberrated artificial eye a clear improvement was obtained after correction, and, although diffraction-limited performance was not achieved, the results were close to the theoretical predictions. In the two living eyes that we studied some benefit also appeared in the correction, but the performance was worse than that expected. We evaluated possible explanations for the relatively poor performance that was obtained in the human eye: an incorrect estimate of the ocular aberration, the limited spatial resolution of the modulator, and the dynamic changes in the ocular aberrations. Based on the results in the artificial eye, the first problem was not considered to be a major source of error. However, we showed that the spatial resolution of the liquid-crystal spatial light modulator limits the maximum correction to be attained. In addition, the changes in the ocular optics over time also impose a limit in the performance of static corrections.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Tyson, Principles of Adaptive Optics (Academic, New York, 1991).
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  3. A. F. Fercher, C. K. Hitzenberg, W. Drexler, G. Kamp, H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).
    [PubMed]
  4. P. Artal, R. Navarro, “High-resolution imaging of the living human fovea: measurement of the intercenter cone distance by speckle interferometry,” Opt. Lett. 14, 1098–1100 (1989).
    [CrossRef] [PubMed]
  5. D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996).
    [CrossRef] [PubMed]
  6. A. W. Dreher, J. F. Bille, R. N. Weinreb, “Active optical depth resolution improvement of the laser tomographic scanner,” Appl. Opt. 28, 804–808 (1989).
    [CrossRef] [PubMed]
  7. J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [CrossRef]
  8. A. Roorda, D. R. Williams, “Spectrally and spatially resolved images of the human cone mosaic,” presented at OSA Annual Meeting, October 11–17, 1997 (Optical Society of America, Washington, D.C., 1997).
  9. P. Artal, F. Vargas, I. Iglesias, “Wave-front correction in the human eye with liquid crystal spatial light modula-tors,” presented at OSA Annual Meeting, October 20–25, 1996 (Optical Society of America, Washington, D.C., 1996).
  10. F. Vargas, I. Iglesias, P. Artal, “Images of the human fovea after correction of the ocular aberrations with a liquid crystal spatial light modulator,” Invest. Ophthalmol. Visual Sci. Suppl. 13, 513 (1997).
  11. L. N. Thibos, A. Bradley, “Use of liquid-crystal adaptive optics to alter the refractive state of the eye,” Optom. Vision Sci. 74, 581–587 (1997).
    [CrossRef]
  12. G. D. Love, J. S. Fender, S. R. Restaino, “Adaptive wave-front shaping with liquid crystals,” Opt. Photonics News 6(10), 16–20 (1995).
    [CrossRef]
  13. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1524 (1997).
    [CrossRef] [PubMed]
  14. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  15. D. Malacara, Optical Shop Testing, 2nd ed. (Wiley, New York, 1992).
  16. P. Artal, S. Marcos, R. Navarro, D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995).
    [CrossRef]
  17. J. Liang, B. Grimm, S. Goelz, J. F. Bille, “Objective measurement of wave aberrations of the human eye with use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
    [CrossRef]
  18. J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
    [CrossRef]
  19. P. Artal, I. Iglesias, N. López-Gil, D. G. Green, “Double-pass measurements of the retinal-image quality with unequal entrance and exit pupil sizes and the reversibility of the eye’s optical system,” J. Opt. Soc. Am. A 12, 2358–2366 (1995).
    [CrossRef]
  20. I. Iglesias, N. López-Gil, P. Artal, “Reconstruction of the point-spread function of the human eye from two double-pass retinal images by phase-retrieval algorithms,” J. Opt. Soc. Am. A 15, 326–339 (1998).
    [CrossRef]
  21. I. Iglesias, E. Berrio, P. Artal, “Estimates of the ocular wave aberration from pairs of double-pass retinal images,” J. Opt. Soc. Am. A 15, 2466–2476 (1998).
    [CrossRef]
  22. American National Standard for the Safe Use of Lasers ANSI Z136.1 (Laser Institute of America, Orlando, Fla., 1993).
  23. C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579–582 (1987).
    [CrossRef] [PubMed]
  24. D. R. Williams, “Topography of the foveal cone mosaic in the living human eye,” Vision Res. 28, 433–454 (1988).
    [CrossRef] [PubMed]
  25. S. Marcos, R. Navarro, P. Artal, “Coherent imaging of the cone mosaic in the living human eye,” J. Opt. Soc. Am. A 13, 897–905 (1996).
    [CrossRef]
  26. G. J. van Blokland, “Ellipsometry of the human retina in vivo: preservation of polarization,” J. Opt. Soc. Am. A 2, 72–75 (1985).
    [CrossRef] [PubMed]
  27. G. J. van Blokland, S. C. Verhelst, “Corneal polarization in the living human eye explained with a biaxial model,” J. Opt. Soc. Am. A 4, 82–90 (1987).
    [CrossRef] [PubMed]
  28. F. Vargas-Martı́n, P. Artal, “Phasor averaging for wavefront correction with liquid crystal spatial light modulators,” Opt. Commun. (to be published).

1998 (2)

1997 (5)

G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1524 (1997).
[CrossRef] [PubMed]

J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
[CrossRef]

J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

F. Vargas, I. Iglesias, P. Artal, “Images of the human fovea after correction of the ocular aberrations with a liquid crystal spatial light modulator,” Invest. Ophthalmol. Visual Sci. Suppl. 13, 513 (1997).

L. N. Thibos, A. Bradley, “Use of liquid-crystal adaptive optics to alter the refractive state of the eye,” Optom. Vision Sci. 74, 581–587 (1997).
[CrossRef]

1996 (2)

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

S. Marcos, R. Navarro, P. Artal, “Coherent imaging of the cone mosaic in the living human eye,” J. Opt. Soc. Am. A 13, 897–905 (1996).
[CrossRef]

1995 (3)

1994 (1)

1993 (1)

A. F. Fercher, C. K. Hitzenberg, W. Drexler, G. Kamp, H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).
[PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1989 (2)

1988 (1)

D. R. Williams, “Topography of the foveal cone mosaic in the living human eye,” Vision Res. 28, 433–454 (1988).
[CrossRef] [PubMed]

1987 (2)

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579–582 (1987).
[CrossRef] [PubMed]

G. J. van Blokland, S. C. Verhelst, “Corneal polarization in the living human eye explained with a biaxial model,” J. Opt. Soc. Am. A 4, 82–90 (1987).
[CrossRef] [PubMed]

1985 (1)

Artal, P.

I. Iglesias, N. López-Gil, P. Artal, “Reconstruction of the point-spread function of the human eye from two double-pass retinal images by phase-retrieval algorithms,” J. Opt. Soc. Am. A 15, 326–339 (1998).
[CrossRef]

I. Iglesias, E. Berrio, P. Artal, “Estimates of the ocular wave aberration from pairs of double-pass retinal images,” J. Opt. Soc. Am. A 15, 2466–2476 (1998).
[CrossRef]

F. Vargas, I. Iglesias, P. Artal, “Images of the human fovea after correction of the ocular aberrations with a liquid crystal spatial light modulator,” Invest. Ophthalmol. Visual Sci. Suppl. 13, 513 (1997).

S. Marcos, R. Navarro, P. Artal, “Coherent imaging of the cone mosaic in the living human eye,” J. Opt. Soc. Am. A 13, 897–905 (1996).
[CrossRef]

P. Artal, S. Marcos, R. Navarro, D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995).
[CrossRef]

P. Artal, I. Iglesias, N. López-Gil, D. G. Green, “Double-pass measurements of the retinal-image quality with unequal entrance and exit pupil sizes and the reversibility of the eye’s optical system,” J. Opt. Soc. Am. A 12, 2358–2366 (1995).
[CrossRef]

P. Artal, R. Navarro, “High-resolution imaging of the living human fovea: measurement of the intercenter cone distance by speckle interferometry,” Opt. Lett. 14, 1098–1100 (1989).
[CrossRef] [PubMed]

P. Artal, F. Vargas, I. Iglesias, “Wave-front correction in the human eye with liquid crystal spatial light modula-tors,” presented at OSA Annual Meeting, October 20–25, 1996 (Optical Society of America, Washington, D.C., 1996).

F. Vargas-Martı́n, P. Artal, “Phasor averaging for wavefront correction with liquid crystal spatial light modulators,” Opt. Commun. (to be published).

Berrio, E.

Bille, J. F.

Bradley, A.

L. N. Thibos, A. Bradley, “Use of liquid-crystal adaptive optics to alter the refractive state of the eye,” Optom. Vision Sci. 74, 581–587 (1997).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Curcio, C. A.

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579–582 (1987).
[CrossRef] [PubMed]

Dreher, A. W.

Drexler, W.

A. F. Fercher, C. K. Hitzenberg, W. Drexler, G. Kamp, H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).
[PubMed]

Fender, J. S.

G. D. Love, J. S. Fender, S. R. Restaino, “Adaptive wave-front shaping with liquid crystals,” Opt. Photonics News 6(10), 16–20 (1995).
[CrossRef]

Fercher, A. F.

A. F. Fercher, C. K. Hitzenberg, W. Drexler, G. Kamp, H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).
[PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Goelz, S.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

Green, D. G.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Grimm, B.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579–582 (1987).
[CrossRef] [PubMed]

Hitzenberg, C. K.

A. F. Fercher, C. K. Hitzenberg, W. Drexler, G. Kamp, H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).
[PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Iglesias, I.

I. Iglesias, N. López-Gil, P. Artal, “Reconstruction of the point-spread function of the human eye from two double-pass retinal images by phase-retrieval algorithms,” J. Opt. Soc. Am. A 15, 326–339 (1998).
[CrossRef]

I. Iglesias, E. Berrio, P. Artal, “Estimates of the ocular wave aberration from pairs of double-pass retinal images,” J. Opt. Soc. Am. A 15, 2466–2476 (1998).
[CrossRef]

F. Vargas, I. Iglesias, P. Artal, “Images of the human fovea after correction of the ocular aberrations with a liquid crystal spatial light modulator,” Invest. Ophthalmol. Visual Sci. Suppl. 13, 513 (1997).

P. Artal, I. Iglesias, N. López-Gil, D. G. Green, “Double-pass measurements of the retinal-image quality with unequal entrance and exit pupil sizes and the reversibility of the eye’s optical system,” J. Opt. Soc. Am. A 12, 2358–2366 (1995).
[CrossRef]

P. Artal, F. Vargas, I. Iglesias, “Wave-front correction in the human eye with liquid crystal spatial light modula-tors,” presented at OSA Annual Meeting, October 20–25, 1996 (Optical Society of America, Washington, D.C., 1996).

Kalina, R. E.

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579–582 (1987).
[CrossRef] [PubMed]

Kamp, G.

A. F. Fercher, C. K. Hitzenberg, W. Drexler, G. Kamp, H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).
[PubMed]

Liang, J.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

López-Gil, N.

Love, G. D.

G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1524 (1997).
[CrossRef] [PubMed]

G. D. Love, J. S. Fender, S. R. Restaino, “Adaptive wave-front shaping with liquid crystals,” Opt. Photonics News 6(10), 16–20 (1995).
[CrossRef]

Malacara, D.

D. Malacara, Optical Shop Testing, 2nd ed. (Wiley, New York, 1992).

Marcos, S.

Miller, D. T.

J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

Morris, G. M.

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

Navarro, R.

Packer, O.

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579–582 (1987).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Restaino, S. R.

G. D. Love, J. S. Fender, S. R. Restaino, “Adaptive wave-front shaping with liquid crystals,” Opt. Photonics News 6(10), 16–20 (1995).
[CrossRef]

Roorda, A.

A. Roorda, D. R. Williams, “Spectrally and spatially resolved images of the human cone mosaic,” presented at OSA Annual Meeting, October 11–17, 1997 (Optical Society of America, Washington, D.C., 1997).

Sattmann, H.

A. F. Fercher, C. K. Hitzenberg, W. Drexler, G. Kamp, H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).
[PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Sloan, K. R.

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579–582 (1987).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Thibos, L. N.

L. N. Thibos, A. Bradley, “Use of liquid-crystal adaptive optics to alter the refractive state of the eye,” Optom. Vision Sci. 74, 581–587 (1997).
[CrossRef]

Tyson, R. K.

R. K. Tyson, Principles of Adaptive Optics (Academic, New York, 1991).

van Blokland, G. J.

Vargas, F.

F. Vargas, I. Iglesias, P. Artal, “Images of the human fovea after correction of the ocular aberrations with a liquid crystal spatial light modulator,” Invest. Ophthalmol. Visual Sci. Suppl. 13, 513 (1997).

P. Artal, F. Vargas, I. Iglesias, “Wave-front correction in the human eye with liquid crystal spatial light modula-tors,” presented at OSA Annual Meeting, October 20–25, 1996 (Optical Society of America, Washington, D.C., 1996).

Vargas-Marti´n, F.

F. Vargas-Martı́n, P. Artal, “Phasor averaging for wavefront correction with liquid crystal spatial light modulators,” Opt. Commun. (to be published).

Verhelst, S. C.

Weinreb, R. N.

Williams, D. R.

J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
[CrossRef]

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

P. Artal, S. Marcos, R. Navarro, D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995).
[CrossRef]

D. R. Williams, “Topography of the foveal cone mosaic in the living human eye,” Vision Res. 28, 433–454 (1988).
[CrossRef] [PubMed]

A. Roorda, D. R. Williams, “Spectrally and spatially resolved images of the human cone mosaic,” presented at OSA Annual Meeting, October 11–17, 1997 (Optical Society of America, Washington, D.C., 1997).

Am. J. Ophthalmol. (1)

A. F. Fercher, C. K. Hitzenberg, W. Drexler, G. Kamp, H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).
[PubMed]

Appl. Opt. (2)

Invest. Ophthalmol. Visual Sci. Suppl. (1)

F. Vargas, I. Iglesias, P. Artal, “Images of the human fovea after correction of the ocular aberrations with a liquid crystal spatial light modulator,” Invest. Ophthalmol. Visual Sci. Suppl. 13, 513 (1997).

J. Opt. Soc. Am. A (10)

P. Artal, S. Marcos, R. Navarro, D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995).
[CrossRef]

J. Liang, B. Grimm, S. Goelz, J. F. Bille, “Objective measurement of wave aberrations of the human eye with use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
[CrossRef]

J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
[CrossRef]

P. Artal, I. Iglesias, N. López-Gil, D. G. Green, “Double-pass measurements of the retinal-image quality with unequal entrance and exit pupil sizes and the reversibility of the eye’s optical system,” J. Opt. Soc. Am. A 12, 2358–2366 (1995).
[CrossRef]

I. Iglesias, N. López-Gil, P. Artal, “Reconstruction of the point-spread function of the human eye from two double-pass retinal images by phase-retrieval algorithms,” J. Opt. Soc. Am. A 15, 326–339 (1998).
[CrossRef]

I. Iglesias, E. Berrio, P. Artal, “Estimates of the ocular wave aberration from pairs of double-pass retinal images,” J. Opt. Soc. Am. A 15, 2466–2476 (1998).
[CrossRef]

J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

S. Marcos, R. Navarro, P. Artal, “Coherent imaging of the cone mosaic in the living human eye,” J. Opt. Soc. Am. A 13, 897–905 (1996).
[CrossRef]

G. J. van Blokland, “Ellipsometry of the human retina in vivo: preservation of polarization,” J. Opt. Soc. Am. A 2, 72–75 (1985).
[CrossRef] [PubMed]

G. J. van Blokland, S. C. Verhelst, “Corneal polarization in the living human eye explained with a biaxial model,” J. Opt. Soc. Am. A 4, 82–90 (1987).
[CrossRef] [PubMed]

Opt. Lett. (1)

Opt. Photonics News (1)

G. D. Love, J. S. Fender, S. R. Restaino, “Adaptive wave-front shaping with liquid crystals,” Opt. Photonics News 6(10), 16–20 (1995).
[CrossRef]

Optom. Vision Sci. (1)

L. N. Thibos, A. Bradley, “Use of liquid-crystal adaptive optics to alter the refractive state of the eye,” Optom. Vision Sci. 74, 581–587 (1997).
[CrossRef]

Science (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579–582 (1987).
[CrossRef] [PubMed]

Vision Res. (2)

D. R. Williams, “Topography of the foveal cone mosaic in the living human eye,” Vision Res. 28, 433–454 (1988).
[CrossRef] [PubMed]

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

Other (7)

R. K. Tyson, Principles of Adaptive Optics (Academic, New York, 1991).

A. Roorda, D. R. Williams, “Spectrally and spatially resolved images of the human cone mosaic,” presented at OSA Annual Meeting, October 11–17, 1997 (Optical Society of America, Washington, D.C., 1997).

P. Artal, F. Vargas, I. Iglesias, “Wave-front correction in the human eye with liquid crystal spatial light modula-tors,” presented at OSA Annual Meeting, October 20–25, 1996 (Optical Society of America, Washington, D.C., 1996).

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

D. Malacara, Optical Shop Testing, 2nd ed. (Wiley, New York, 1992).

American National Standard for the Safe Use of Lasers ANSI Z136.1 (Laser Institute of America, Orlando, Fla., 1993).

F. Vargas-Martı́n, P. Artal, “Phasor averaging for wavefront correction with liquid crystal spatial light modulators,” Opt. Commun. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic diagram showing the rationale of our experiment: a LC-SLM conjugated to the eye pupil to introduce a series of piston dephases so as to flatten the WA of the system. Although a residual aberration remains because of the discontinuous nature of the correction, the double-pass retinal images recorded after correction of aberrations are expected to be sharpened.

Fig. 2
Fig. 2

Scheme of the double-pass apparatus. It was first used to record double-pass images of a point source before and after correction of the aberrations. By incorporating two fast-rotating diffusers it can be also used to record high-magnification images of a larger area (approximately 0.5 deg) of the retina. ES, electronic shutter; O, pinhole of a spatial filter used as point source; C, collimating lens (f=190 mm); P1, first-pass pupil (commutable for equal- and unequal-pupil-size double-pass configurations); CBS, cube beam splitter; L1, lens (f=600 mm); M, mirror; FC, focus corrector; PM, pupil mirror; L2, lens (f=190 mm); P, eye pupil; O, retinal image of O; P2, second-pass pupil (15-mm actual diameter, which corresponds to 4.75 mm on the eye pupil plane); L3, lens (f=500 mm); L4, lens (f=190 mm); OC, lens (f=600 mm); and O, image of O on the CCD. To select a specific retinal location within the fovea for recording of extended images, a fixation test was introduced in a plane conjugate to the retina, composed of L, lamp; AF, green filter; and FT, fixation target.

Fig. 3
Fig. 3

Results for WA correction on an artificial eye. (a) represents the double-pass image for unequal-pupil-size configuration (1.5–4.75-mm diameter) before correction. (b) is the WA estimate, and (d) is the map that we obtained by averaging the phase values over each hexagonal facet (both over the 4.75-mm-diameter effective exit pupil). (c) is the double-pass image after correction for the same configuration as in (a). (e) is the simulated double-pass image for the residual aberration that we obtained by subtracting the phase maps of (b) and (d), that is, the expected image for a perfect performance of the whole procedure to estimate and correct the aberrations.

Fig. 4
Fig. 4

Ratio between the modulation transfer function (MTF; radial averaged) after and before correction of the aberrations for the artificial eye. The solid curve corresponds to the experimental data, while the dashed curves correspond to theoretical corrections up to the diffraction limit (long dashes) and for a perfect system performance (short dashes). In every case the MTF before correction was that obtained from the experimental double-pass image.

Fig. 5
Fig. 5

Experimental results for WA correction in subject PA. (a) is the WA estimate, and (c) the corresponding phase map. Series of double-pass images with 1.5- and 4.75-mm pupil diameters (b) before compensation and (d) after compensation. Each double-pass image in the series subtends 24 arc min. Every double-pass image was normalized to its maximum. Effective pupil diameter for (a) and (c), 4.75 mm.

Fig. 6
Fig. 6

Ratio between the MTF (radial averaged) after and before correction of the aberrations for subject PA. The solid curve corresponds to the experimental data, while the dashed curves correspond to theoretical corrections up to the diffraction limit (long dashes) and for a perfect system performance (short dashes).

Fig. 7
Fig. 7

Experimental results for WA correction in subject PP. (a) is the WA estimate, and (c) the corresponding phase map. Series of double-pass images with 1.5- and 4.75-mm pupil diameters (b) before compensation and (d) after compensation. Each double-pass image in the series subtends 24 arc min. Every double-pass image was normalized to its maximum. Effective pupil diameter for (a) and (c), 4.75 mm.

Fig. 8
Fig. 8

Ratio between the MTF (radial averages) after and before correction of the aberrations for subject PP. The solid curve corresponds to the experimental data, while the dashed curves correspond to theoretical corrections up to the diffraction limit (long dashes) and for a perfect system performance (short dashes).

Fig. 9
Fig. 9

High-magnification images of the fundus recorded at (a) 0.7, (b) 1.4, and (c) 2.1 deg of eccentricity within the fovea, at best focus for subject PP. (See details in the text.)

Fig. 10
Fig. 10

Theoretical performance of a piston corrector device with the spatial resolution of the LC-SLM that we used (69 elements), for a mild aberration compensation. (a) Aberration to be corrected, (b) phase map that has to be subtracted from the WA, (c) PSF corresponding to the WA without correction, (d) PSF associated with the residual aberration (i.e., after correction). The number above each PSF represents the Strehl ratio. Effective diameter of the hexagonal pupil for (a) and (b), 4.75 mm.

Fig. 11
Fig. 11

Theoretical performance of a piston corrector device with the spatial resolution of the LC-SLM that we used (69 elements), for a severe aberration compensation. (a) Aberration to be corrected, (b) phase map that has to be subtracted from the WA, (c) PSF corresponding to the WA without correction, (d) PSF associated with the residual aberration (i.e., after correction). The number above each PSF represents the Strehl ratio. Effective diameter of the hexagonal pupil for (a) and (b), 4.75 mm.

Fig. 12
Fig. 12

Theoretical performance of a piston corrector device with a larger spatial resolution (127 elements). (a) Phase map corresponding to the mild aberration [Fig. 10(a)], (b) phase map corresponding to the severe aberration [Fig. 11(a)], (c) PSF after correction of the mild aberration, (d) PSF after correction of the severe aberration. The number above each PSF represents its Strehl ratio. Effective diameter of the hexagonal pupil for (a) and (b), 4.75 mm.

Fig. 13
Fig. 13

Contour plots of the WA estimates obtained for subject PP under the same experimental conditions from pairs of double-pass images recorded every minute. The step between curves is λ/4, and the dashed curves represent negative values. Table 1 shows additional data on these WA’s. Effective pupil diameter, 4.75 mm.

Tables (1)

Tables Icon

Table 1 Rms and Peak-to-Valley Values for the WA Represented in Fig. 13

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ei(x, y)=KF[Ep(u, v)P(u, v)],
P(u, v)=P(u, v)exp[iW(u, v)],
p(x, y)=|F[P(u, v)]|2,

Metrics