Abstract

It has recently been demonstrated that object recognition can be formulated as an image-restoration problem. In this approach, which we term impulse restoration, the objective is to restore a delta function that indicates the detected object’s location. We develop solutions based on impulse restoration for the Gaussian-noise case. We propose a new iterative approach, based on the expectation-maximization (EM) algorithm, that simultaneously estimates the background statistics and restores a delta function at the location of the template. We use a Monte Carlo study and localization-receiver-operating-characteristics curves to evaluate the performance of this approach quantitatively and compare it with existing methods. We present experimental results that demonstrate that impulse restoration is a powerful approach for detecting known objects in images severely degraded by noise. Our numerical experiments point out that the proposed EM-based approach is superior to all tested variants of the matched filter. This result demonstrates that accurate modeling and estimation of the background and noise statistics are crucial for realizing the full potential of impulse restoration-based template matching.

© 1998 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Methods to detect objects in photon-limited images

Ahmad Abu-Naser, Nikolas P. Galatsanos, and Miles N. Wernick
J. Opt. Soc. Am. A 23(2) 272-278 (2006)

Automatic image segmentation for concealed object detection using the expectation-maximization algorithm

Dong-Su Lee, Seokwon Yeom, Jung-Young Son, and Shin-Hwan Kim
Opt. Express 18(10) 10659-10667 (2010)

Iterative linear minimum mean-square-error image restoration from partially known blur

Vladimir Z. Mesarović, Nikolas P. Galatsanos, and Miles N. Wernick
J. Opt. Soc. Am. A 17(4) 711-723 (2000)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (70)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription