Abstract

In diffraction tomography, the spatial distribution of the scattering object is reconstructed from the measured scattered data. For a scattering object that is illuminated with plane-wave radiation, under the condition of weak scattering one can invoke the Born (or the Rytov) approximation to linearize the equation for the scattered field (or the scattered phase) and derive a relationship between the scattered field (or the scattered phase) and the distribution of the scattering object. Reconstruction methods such as the Fourier domain interpolation methods and the filtered backpropagation method have been developed previously. However, the underlying relationship among and the noise properties of these methods are not evident. We introduce the concepts of ideal and modified sinograms. Analysis of the relationships between, and the noise properties of the two sinograms reveals infinite classes of methods for image reconstruction in diffraction tomography that include the previously proposed methods as special members. The methods in these classes are mathematically identical, but they respond to noise and numerical errors differently.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (83)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription