Abstract

We reevaluate the facilitation at threshold previously reported between aligned micropatterns and assess the role of such lateral spatial interactions in suprathreshold contour integration tasks. Contrary to previous claims, we show that these interactions are phase dependent. Furthermore, they are clearly evident only for foveal viewing, are not evident for curved alignments (>20°), and do not produce any suprathreshold consequence for contrast perception. Such findings question their usefulness for contour integration of smoothly curved suprathreshold paths.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Gilbert, “Horizontal integration and cortical dynamics,” Neuron 9, 1–20 (1992).
    [CrossRef] [PubMed]
  2. D. J. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local association field,” Vision Res. 33, 173–193 (1993).
    [CrossRef] [PubMed]
  3. I. Kovacs, B. Julesz, “A closed curve is much more than an incomplete one: effects of closure on figure-ground segmentation,” Proc. Natl. Acad. Sci. USA 90, 7495–7497 (1993).
    [CrossRef]
  4. W. H. McIlhagga, K. T. Mullen, “Contour integration with colour and luminance contrast,” Vision Res. 36, 1265–1279 (1996).
    [CrossRef] [PubMed]
  5. M. W. Pettet, S. P. McKee, N. M. Grzywacz, “Smoothness constrains long range interactions mediating contour detection,” Invest. Ophthalmol. Visual Sci. 37, S954 (1996).
  6. D. J. Field, A. Hayes, R. F. Hess, “The role of phase and contrast polarity in contour integration,” Invest. Ophthalmol. Visual Sci. 38, S999 (1997).
  7. U. Polat, D. Sagi, “Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments,” Vision Res. 33, 993–999 (1993).
    [CrossRef] [PubMed]
  8. U. Polat, D. Sagi, “The architecture of perceptual spatial interactions,” Vision Res. 34, 73–78 (1994).
    [CrossRef] [PubMed]
  9. S.-H. Yen, L. H. Finkel, “Extraction of perceptually salient contours by striate cortical networks,” Vision Res. 38, 719–741 (1998).
    [CrossRef] [PubMed]
  10. D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
    [CrossRef] [PubMed]
  11. M. M. Taylor, C. D. Creelman, “PEST: efficient estimates on probability functions,” J. Acoust. Soc. Am. 41, 782–787 (1967).
    [CrossRef]
  12. C. Yu, D. M. Levi, “Spatial facilitation predicted with end-stopped spatial filters,” Vision Res. 37, 3117–3127 (1997).
    [CrossRef]
  13. C. Wehrhahn, B. Dresp, “Detection facilitation by collinear stimuli in humans: dependence on strength and sign of contrast,” Vision Res. 38, 423–428 (1998).
    [CrossRef] [PubMed]
  14. B. Zenger, D. Sagi, “Isolating excitatory and inhibitory nonlinear spatial interactions involved in contrast detection,” Vision Res. 36, 2497–2513 (1996).
    [CrossRef] [PubMed]
  15. R. F. Hess, S. C. Dakin, “Absence of contour linking in peripheral vision,” Nature (London) 390, 602–604 (1997).
    [CrossRef]
  16. J. A. Solomon, M. J. Morgan, A. B. Watson, “Evaluating the need for lateral excitation,” presented at 1997 OSA Annual Meeting, Long Beach, Calif., October 11–17, 1997.
  17. M. J. Morgan, B. Dresp, “Contrast detection facilitation by spatially separated targets and inducers,” Vision Res. 35, 1019–1024 (1995).
    [CrossRef] [PubMed]
  18. R. F. Hess, S. C. Dakin, D. J. Field, “The role of contrast enhancement in the detection and appearance of visual contours,” Vision Res. 38, 783–787 (1998).
    [CrossRef] [PubMed]
  19. K. T. Mullen, M. A. Losada, “Spatial frequency bandwidths of the Red–Green and luminance mechanisms as a function of eccentricity revealed by notch filtered noise masking,” Invest. Ophthalmol. Visual Sci. 37, S246 (1996).
  20. J. Rovamo, V. Virsu, “An estimation and application of the human cortical magnification factor,” Exp. Brain Res. 37, 495–510 (1979).
    [CrossRef] [PubMed]
  21. M. W. Cannon, S. C. Fullenkamp, “Spatial interactions in apparent contrast: individual differences in enhancement and suppression effects,” Vision Res. 33, 1685–1695 (1993).
    [CrossRef] [PubMed]
  22. M. Stemmler, U. Usher, E. Niebur, “Lateral interac-tions in primary visual cortex: a model bridging physiology and psychophysics,” Science 269, 1877–1880 (1995).
    [CrossRef] [PubMed]
  23. S.-C. Yen, L. H. Finkel, “Salient contour extraction by temporal binding in a cortically-based network,” in Advances in Neural Information Processing Systems, D. Touretzky, M. C. Mozer, M. E. Hasselmo, eds. (MIT Press, Boston, 1996).
  24. D. G. Pelli, “Effects of visual noise,” Ph.D. dissertation (Cambridge University, Cambridge, UK1981).
  25. R. F. Hess, A. Hayes, “The coding of spatial position by the human visual system: effects of spatial scale and retinal eccentricity,” Vision Res. 34, 625–643 (1994).
    [CrossRef] [PubMed]

1998 (3)

S.-H. Yen, L. H. Finkel, “Extraction of perceptually salient contours by striate cortical networks,” Vision Res. 38, 719–741 (1998).
[CrossRef] [PubMed]

C. Wehrhahn, B. Dresp, “Detection facilitation by collinear stimuli in humans: dependence on strength and sign of contrast,” Vision Res. 38, 423–428 (1998).
[CrossRef] [PubMed]

R. F. Hess, S. C. Dakin, D. J. Field, “The role of contrast enhancement in the detection and appearance of visual contours,” Vision Res. 38, 783–787 (1998).
[CrossRef] [PubMed]

1997 (3)

R. F. Hess, S. C. Dakin, “Absence of contour linking in peripheral vision,” Nature (London) 390, 602–604 (1997).
[CrossRef]

D. J. Field, A. Hayes, R. F. Hess, “The role of phase and contrast polarity in contour integration,” Invest. Ophthalmol. Visual Sci. 38, S999 (1997).

C. Yu, D. M. Levi, “Spatial facilitation predicted with end-stopped spatial filters,” Vision Res. 37, 3117–3127 (1997).
[CrossRef]

1996 (4)

W. H. McIlhagga, K. T. Mullen, “Contour integration with colour and luminance contrast,” Vision Res. 36, 1265–1279 (1996).
[CrossRef] [PubMed]

M. W. Pettet, S. P. McKee, N. M. Grzywacz, “Smoothness constrains long range interactions mediating contour detection,” Invest. Ophthalmol. Visual Sci. 37, S954 (1996).

K. T. Mullen, M. A. Losada, “Spatial frequency bandwidths of the Red–Green and luminance mechanisms as a function of eccentricity revealed by notch filtered noise masking,” Invest. Ophthalmol. Visual Sci. 37, S246 (1996).

B. Zenger, D. Sagi, “Isolating excitatory and inhibitory nonlinear spatial interactions involved in contrast detection,” Vision Res. 36, 2497–2513 (1996).
[CrossRef] [PubMed]

1995 (2)

M. J. Morgan, B. Dresp, “Contrast detection facilitation by spatially separated targets and inducers,” Vision Res. 35, 1019–1024 (1995).
[CrossRef] [PubMed]

M. Stemmler, U. Usher, E. Niebur, “Lateral interac-tions in primary visual cortex: a model bridging physiology and psychophysics,” Science 269, 1877–1880 (1995).
[CrossRef] [PubMed]

1994 (2)

R. F. Hess, A. Hayes, “The coding of spatial position by the human visual system: effects of spatial scale and retinal eccentricity,” Vision Res. 34, 625–643 (1994).
[CrossRef] [PubMed]

U. Polat, D. Sagi, “The architecture of perceptual spatial interactions,” Vision Res. 34, 73–78 (1994).
[CrossRef] [PubMed]

1993 (4)

U. Polat, D. Sagi, “Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments,” Vision Res. 33, 993–999 (1993).
[CrossRef] [PubMed]

D. J. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local association field,” Vision Res. 33, 173–193 (1993).
[CrossRef] [PubMed]

I. Kovacs, B. Julesz, “A closed curve is much more than an incomplete one: effects of closure on figure-ground segmentation,” Proc. Natl. Acad. Sci. USA 90, 7495–7497 (1993).
[CrossRef]

M. W. Cannon, S. C. Fullenkamp, “Spatial interactions in apparent contrast: individual differences in enhancement and suppression effects,” Vision Res. 33, 1685–1695 (1993).
[CrossRef] [PubMed]

1992 (1)

C. D. Gilbert, “Horizontal integration and cortical dynamics,” Neuron 9, 1–20 (1992).
[CrossRef] [PubMed]

1991 (1)

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

1979 (1)

J. Rovamo, V. Virsu, “An estimation and application of the human cortical magnification factor,” Exp. Brain Res. 37, 495–510 (1979).
[CrossRef] [PubMed]

1967 (1)

M. M. Taylor, C. D. Creelman, “PEST: efficient estimates on probability functions,” J. Acoust. Soc. Am. 41, 782–787 (1967).
[CrossRef]

Cannon, M. W.

M. W. Cannon, S. C. Fullenkamp, “Spatial interactions in apparent contrast: individual differences in enhancement and suppression effects,” Vision Res. 33, 1685–1695 (1993).
[CrossRef] [PubMed]

Creelman, C. D.

M. M. Taylor, C. D. Creelman, “PEST: efficient estimates on probability functions,” J. Acoust. Soc. Am. 41, 782–787 (1967).
[CrossRef]

Dakin, S. C.

R. F. Hess, S. C. Dakin, D. J. Field, “The role of contrast enhancement in the detection and appearance of visual contours,” Vision Res. 38, 783–787 (1998).
[CrossRef] [PubMed]

R. F. Hess, S. C. Dakin, “Absence of contour linking in peripheral vision,” Nature (London) 390, 602–604 (1997).
[CrossRef]

Dresp, B.

C. Wehrhahn, B. Dresp, “Detection facilitation by collinear stimuli in humans: dependence on strength and sign of contrast,” Vision Res. 38, 423–428 (1998).
[CrossRef] [PubMed]

M. J. Morgan, B. Dresp, “Contrast detection facilitation by spatially separated targets and inducers,” Vision Res. 35, 1019–1024 (1995).
[CrossRef] [PubMed]

Field, D. J.

R. F. Hess, S. C. Dakin, D. J. Field, “The role of contrast enhancement in the detection and appearance of visual contours,” Vision Res. 38, 783–787 (1998).
[CrossRef] [PubMed]

D. J. Field, A. Hayes, R. F. Hess, “The role of phase and contrast polarity in contour integration,” Invest. Ophthalmol. Visual Sci. 38, S999 (1997).

D. J. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local association field,” Vision Res. 33, 173–193 (1993).
[CrossRef] [PubMed]

Finkel, L. H.

S.-H. Yen, L. H. Finkel, “Extraction of perceptually salient contours by striate cortical networks,” Vision Res. 38, 719–741 (1998).
[CrossRef] [PubMed]

S.-C. Yen, L. H. Finkel, “Salient contour extraction by temporal binding in a cortically-based network,” in Advances in Neural Information Processing Systems, D. Touretzky, M. C. Mozer, M. E. Hasselmo, eds. (MIT Press, Boston, 1996).

Fullenkamp, S. C.

M. W. Cannon, S. C. Fullenkamp, “Spatial interactions in apparent contrast: individual differences in enhancement and suppression effects,” Vision Res. 33, 1685–1695 (1993).
[CrossRef] [PubMed]

Gilbert, C. D.

C. D. Gilbert, “Horizontal integration and cortical dynamics,” Neuron 9, 1–20 (1992).
[CrossRef] [PubMed]

Grzywacz, N. M.

M. W. Pettet, S. P. McKee, N. M. Grzywacz, “Smoothness constrains long range interactions mediating contour detection,” Invest. Ophthalmol. Visual Sci. 37, S954 (1996).

Hayes, A.

D. J. Field, A. Hayes, R. F. Hess, “The role of phase and contrast polarity in contour integration,” Invest. Ophthalmol. Visual Sci. 38, S999 (1997).

R. F. Hess, A. Hayes, “The coding of spatial position by the human visual system: effects of spatial scale and retinal eccentricity,” Vision Res. 34, 625–643 (1994).
[CrossRef] [PubMed]

D. J. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local association field,” Vision Res. 33, 173–193 (1993).
[CrossRef] [PubMed]

Hess, R. F.

R. F. Hess, S. C. Dakin, D. J. Field, “The role of contrast enhancement in the detection and appearance of visual contours,” Vision Res. 38, 783–787 (1998).
[CrossRef] [PubMed]

D. J. Field, A. Hayes, R. F. Hess, “The role of phase and contrast polarity in contour integration,” Invest. Ophthalmol. Visual Sci. 38, S999 (1997).

R. F. Hess, S. C. Dakin, “Absence of contour linking in peripheral vision,” Nature (London) 390, 602–604 (1997).
[CrossRef]

R. F. Hess, A. Hayes, “The coding of spatial position by the human visual system: effects of spatial scale and retinal eccentricity,” Vision Res. 34, 625–643 (1994).
[CrossRef] [PubMed]

D. J. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local association field,” Vision Res. 33, 173–193 (1993).
[CrossRef] [PubMed]

Julesz, B.

I. Kovacs, B. Julesz, “A closed curve is much more than an incomplete one: effects of closure on figure-ground segmentation,” Proc. Natl. Acad. Sci. USA 90, 7495–7497 (1993).
[CrossRef]

Kovacs, I.

I. Kovacs, B. Julesz, “A closed curve is much more than an incomplete one: effects of closure on figure-ground segmentation,” Proc. Natl. Acad. Sci. USA 90, 7495–7497 (1993).
[CrossRef]

Levi, D. M.

C. Yu, D. M. Levi, “Spatial facilitation predicted with end-stopped spatial filters,” Vision Res. 37, 3117–3127 (1997).
[CrossRef]

Losada, M. A.

K. T. Mullen, M. A. Losada, “Spatial frequency bandwidths of the Red–Green and luminance mechanisms as a function of eccentricity revealed by notch filtered noise masking,” Invest. Ophthalmol. Visual Sci. 37, S246 (1996).

McIlhagga, W. H.

W. H. McIlhagga, K. T. Mullen, “Contour integration with colour and luminance contrast,” Vision Res. 36, 1265–1279 (1996).
[CrossRef] [PubMed]

McKee, S. P.

M. W. Pettet, S. P. McKee, N. M. Grzywacz, “Smoothness constrains long range interactions mediating contour detection,” Invest. Ophthalmol. Visual Sci. 37, S954 (1996).

Morgan, M. J.

M. J. Morgan, B. Dresp, “Contrast detection facilitation by spatially separated targets and inducers,” Vision Res. 35, 1019–1024 (1995).
[CrossRef] [PubMed]

J. A. Solomon, M. J. Morgan, A. B. Watson, “Evaluating the need for lateral excitation,” presented at 1997 OSA Annual Meeting, Long Beach, Calif., October 11–17, 1997.

Mullen, K. T.

W. H. McIlhagga, K. T. Mullen, “Contour integration with colour and luminance contrast,” Vision Res. 36, 1265–1279 (1996).
[CrossRef] [PubMed]

K. T. Mullen, M. A. Losada, “Spatial frequency bandwidths of the Red–Green and luminance mechanisms as a function of eccentricity revealed by notch filtered noise masking,” Invest. Ophthalmol. Visual Sci. 37, S246 (1996).

Niebur, E.

M. Stemmler, U. Usher, E. Niebur, “Lateral interac-tions in primary visual cortex: a model bridging physiology and psychophysics,” Science 269, 1877–1880 (1995).
[CrossRef] [PubMed]

Pelli, D. G.

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

D. G. Pelli, “Effects of visual noise,” Ph.D. dissertation (Cambridge University, Cambridge, UK1981).

Pettet, M. W.

M. W. Pettet, S. P. McKee, N. M. Grzywacz, “Smoothness constrains long range interactions mediating contour detection,” Invest. Ophthalmol. Visual Sci. 37, S954 (1996).

Polat, U.

U. Polat, D. Sagi, “The architecture of perceptual spatial interactions,” Vision Res. 34, 73–78 (1994).
[CrossRef] [PubMed]

U. Polat, D. Sagi, “Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments,” Vision Res. 33, 993–999 (1993).
[CrossRef] [PubMed]

Rovamo, J.

J. Rovamo, V. Virsu, “An estimation and application of the human cortical magnification factor,” Exp. Brain Res. 37, 495–510 (1979).
[CrossRef] [PubMed]

Sagi, D.

B. Zenger, D. Sagi, “Isolating excitatory and inhibitory nonlinear spatial interactions involved in contrast detection,” Vision Res. 36, 2497–2513 (1996).
[CrossRef] [PubMed]

U. Polat, D. Sagi, “The architecture of perceptual spatial interactions,” Vision Res. 34, 73–78 (1994).
[CrossRef] [PubMed]

U. Polat, D. Sagi, “Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments,” Vision Res. 33, 993–999 (1993).
[CrossRef] [PubMed]

Solomon, J. A.

J. A. Solomon, M. J. Morgan, A. B. Watson, “Evaluating the need for lateral excitation,” presented at 1997 OSA Annual Meeting, Long Beach, Calif., October 11–17, 1997.

Stemmler, M.

M. Stemmler, U. Usher, E. Niebur, “Lateral interac-tions in primary visual cortex: a model bridging physiology and psychophysics,” Science 269, 1877–1880 (1995).
[CrossRef] [PubMed]

Taylor, M. M.

M. M. Taylor, C. D. Creelman, “PEST: efficient estimates on probability functions,” J. Acoust. Soc. Am. 41, 782–787 (1967).
[CrossRef]

Usher, U.

M. Stemmler, U. Usher, E. Niebur, “Lateral interac-tions in primary visual cortex: a model bridging physiology and psychophysics,” Science 269, 1877–1880 (1995).
[CrossRef] [PubMed]

Virsu, V.

J. Rovamo, V. Virsu, “An estimation and application of the human cortical magnification factor,” Exp. Brain Res. 37, 495–510 (1979).
[CrossRef] [PubMed]

Watson, A. B.

J. A. Solomon, M. J. Morgan, A. B. Watson, “Evaluating the need for lateral excitation,” presented at 1997 OSA Annual Meeting, Long Beach, Calif., October 11–17, 1997.

Wehrhahn, C.

C. Wehrhahn, B. Dresp, “Detection facilitation by collinear stimuli in humans: dependence on strength and sign of contrast,” Vision Res. 38, 423–428 (1998).
[CrossRef] [PubMed]

Yen, S.-C.

S.-C. Yen, L. H. Finkel, “Salient contour extraction by temporal binding in a cortically-based network,” in Advances in Neural Information Processing Systems, D. Touretzky, M. C. Mozer, M. E. Hasselmo, eds. (MIT Press, Boston, 1996).

Yen, S.-H.

S.-H. Yen, L. H. Finkel, “Extraction of perceptually salient contours by striate cortical networks,” Vision Res. 38, 719–741 (1998).
[CrossRef] [PubMed]

Yu, C.

C. Yu, D. M. Levi, “Spatial facilitation predicted with end-stopped spatial filters,” Vision Res. 37, 3117–3127 (1997).
[CrossRef]

Zenger, B.

B. Zenger, D. Sagi, “Isolating excitatory and inhibitory nonlinear spatial interactions involved in contrast detection,” Vision Res. 36, 2497–2513 (1996).
[CrossRef] [PubMed]

Zhang, L.

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

Exp. Brain Res. (1)

J. Rovamo, V. Virsu, “An estimation and application of the human cortical magnification factor,” Exp. Brain Res. 37, 495–510 (1979).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci. (3)

K. T. Mullen, M. A. Losada, “Spatial frequency bandwidths of the Red–Green and luminance mechanisms as a function of eccentricity revealed by notch filtered noise masking,” Invest. Ophthalmol. Visual Sci. 37, S246 (1996).

M. W. Pettet, S. P. McKee, N. M. Grzywacz, “Smoothness constrains long range interactions mediating contour detection,” Invest. Ophthalmol. Visual Sci. 37, S954 (1996).

D. J. Field, A. Hayes, R. F. Hess, “The role of phase and contrast polarity in contour integration,” Invest. Ophthalmol. Visual Sci. 38, S999 (1997).

J. Acoust. Soc. Am. (1)

M. M. Taylor, C. D. Creelman, “PEST: efficient estimates on probability functions,” J. Acoust. Soc. Am. 41, 782–787 (1967).
[CrossRef]

Nature (London) (1)

R. F. Hess, S. C. Dakin, “Absence of contour linking in peripheral vision,” Nature (London) 390, 602–604 (1997).
[CrossRef]

Neuron (1)

C. D. Gilbert, “Horizontal integration and cortical dynamics,” Neuron 9, 1–20 (1992).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

I. Kovacs, B. Julesz, “A closed curve is much more than an incomplete one: effects of closure on figure-ground segmentation,” Proc. Natl. Acad. Sci. USA 90, 7495–7497 (1993).
[CrossRef]

Science (1)

M. Stemmler, U. Usher, E. Niebur, “Lateral interac-tions in primary visual cortex: a model bridging physiology and psychophysics,” Science 269, 1877–1880 (1995).
[CrossRef] [PubMed]

Vision Res. (13)

M. W. Cannon, S. C. Fullenkamp, “Spatial interactions in apparent contrast: individual differences in enhancement and suppression effects,” Vision Res. 33, 1685–1695 (1993).
[CrossRef] [PubMed]

R. F. Hess, A. Hayes, “The coding of spatial position by the human visual system: effects of spatial scale and retinal eccentricity,” Vision Res. 34, 625–643 (1994).
[CrossRef] [PubMed]

W. H. McIlhagga, K. T. Mullen, “Contour integration with colour and luminance contrast,” Vision Res. 36, 1265–1279 (1996).
[CrossRef] [PubMed]

D. J. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local association field,” Vision Res. 33, 173–193 (1993).
[CrossRef] [PubMed]

U. Polat, D. Sagi, “Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments,” Vision Res. 33, 993–999 (1993).
[CrossRef] [PubMed]

U. Polat, D. Sagi, “The architecture of perceptual spatial interactions,” Vision Res. 34, 73–78 (1994).
[CrossRef] [PubMed]

S.-H. Yen, L. H. Finkel, “Extraction of perceptually salient contours by striate cortical networks,” Vision Res. 38, 719–741 (1998).
[CrossRef] [PubMed]

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

M. J. Morgan, B. Dresp, “Contrast detection facilitation by spatially separated targets and inducers,” Vision Res. 35, 1019–1024 (1995).
[CrossRef] [PubMed]

R. F. Hess, S. C. Dakin, D. J. Field, “The role of contrast enhancement in the detection and appearance of visual contours,” Vision Res. 38, 783–787 (1998).
[CrossRef] [PubMed]

C. Yu, D. M. Levi, “Spatial facilitation predicted with end-stopped spatial filters,” Vision Res. 37, 3117–3127 (1997).
[CrossRef]

C. Wehrhahn, B. Dresp, “Detection facilitation by collinear stimuli in humans: dependence on strength and sign of contrast,” Vision Res. 38, 423–428 (1998).
[CrossRef] [PubMed]

B. Zenger, D. Sagi, “Isolating excitatory and inhibitory nonlinear spatial interactions involved in contrast detection,” Vision Res. 36, 2497–2513 (1996).
[CrossRef] [PubMed]

Other (3)

J. A. Solomon, M. J. Morgan, A. B. Watson, “Evaluating the need for lateral excitation,” presented at 1997 OSA Annual Meeting, Long Beach, Calif., October 11–17, 1997.

S.-C. Yen, L. H. Finkel, “Salient contour extraction by temporal binding in a cortically-based network,” in Advances in Neural Information Processing Systems, D. Touretzky, M. C. Mozer, M. E. Hasselmo, eds. (MIT Press, Boston, 1996).

D. G. Pelli, “Effects of visual noise,” Ph.D. dissertation (Cambridge University, Cambridge, UK1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Example of stimuli configurations. Center-to-center separations of targets and flanks shown are 3λ, and target contrast is enhanced for demonstration purposes. A: Straight-path target and flanks in phase, B: target and flanks on a 30° curved path, C: target and flanks in opposite sine phase, D: stimulus used for single-interval displaced-fixation experiment. See Section 2 for details.

Fig. 2
Fig. 2

Change in target detection threshold (dB) plotted against target-to-flank separation (λ). Data are plotted as differences in threshold from an isolated target for vertical targets and flanks on a straight path (σ=λ=0.075°). This is a replication of conditions from Polat and Sagi.7 Error bars show 1 standard error on each side of the mean.

Fig. 3
Fig. 3

Change in target detection threshold plotted against angle of path curvature (see Section 2 for a definition of path angle). Target-to-flank separation (along the arc) was set to 3λ (σ=λ=0.24°).

Fig. 4
Fig. 4

Change in detection threshold when the flank elements were in phase and out of phase with a sine-phase target (σ=λ=0.24°).

Fig. 5
Fig. 5

Change in detection threshold when target and flanks were viewed with 3° eccentric fixation (σ=λ=0.24°). Data are shown for two target-to-flank separations (3λ and 6λ).

Fig. 6
Fig. 6

Suprathreshold contrast-matching data for two subjects between a single Gabor of variable contrast and a just-suprathreshold (+6-dB) Gabor flanked (3λ) by two suprathreshold (40%-contrast) Gabors. The solid curve is the best-fitting error function.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L(x, y)=L0{1+C cos[(2π/λ)(x cos θ+y sin θ)]×exp[-(x2+y2)/σ2]/100},
L(x, y)=Lf1(x±Δx,y±Δy)+Lt(x,y)+Lf2(x±Δx,y±Δy)-2L0,

Metrics