Abstract

We analyze adaptation processes responsible for eliciting and alleviating flicker response suppression, which is a class of phenomena characterized by the selective reduction of visual response to the ac component of a flickering light. Stimulus conditions were chosen that would allow characteristic features of flicker response suppression to be defined and manipulated systematically. Data are presented to show that reducing the sinusoidal modulation depth of an 11-Hz stimulus can correspond precisely to raising the temporal frequency of a fully modulated stimulus. In each case there is a nonmonotonic relation between flicker response and dc test illuminance. The nonmonotonic relation cannot be explained by adaptation models that postulate multiplicative and subtractive adaptation processes followed by a single static saturating nonlinearity, even when temporal frequency filters are incorporated into such models. A satisfactory explanation requires an additional contrast gain-control process. This process enhances flicker response at progressively lower temporal response contrasts as the illuminance of a surrounding adaptation field increases.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription