R. Pierri, F. Soldovieri, “On the information content of the radiated fields in near zone over bounded domains,” Inverse Probl. 14, 321–337 (1998).

[CrossRef]

R. Pierri, A. Tamburino, “On the local minima problem in conductivity imaging via a quadratic approach,” Inverse Probl. 13, 1547–1568 (1997).

[CrossRef]

R. Pierri, A. Brancaccio, “Imaging of a rotationally symmetric cylinder by a quadratic approach,” J. Opt. Soc. Am. A 14, 2777–2785 (1997).

[CrossRef]

T. Isernia, V. Pascazio, R. Pierri, “A nonlinear estimation method in tomographic imaging,” IEEE Trans. Geosci. Remote Sens. 35, 910–923 (1997).

[CrossRef]

L. Monch, “A Newton method for solving the inverse scattering problem for a sound-hard obstacle,” Inverse Probl. 12, 309–323 (1996).

[CrossRef]

C. Lu, J. Lin, W. Chew, G. Otto, “Image reconstruction with acoustic measurement using distorted Born iteration method,” Ultrason. Imaging 18, 140–156 (1996).

[CrossRef]
[PubMed]

T. C. Wedberg, W. C. Wedberg, “Tomographic reconstruction of the cross sectional refractive index distribution in semi-transparent, birefringent fibres,” J. Microsccopy 177, 53–67 (1995).

[CrossRef]

T. C. Wedberg, J. J. Stamnes, “Experimental examination of the quantitative imaging properties of optical diffraction tomography,” J. Opt. Soc. Am. A 12, 493–500 (1995).

[CrossRef]

C. Torres-Verdin, T. M. Habashy, “A two-step linear inversion of two-dimensional electrical conductivity,” IEEE Trans. Antennas Propag. 43, 405–415 (1995).

[CrossRef]

A. Brancaccio, V. Pascazio, R. Pierri, “A quadratic model for inverse profiling: the one dimensional case,” J. Electromagn. Waves Appl. 9, 673–696 (1995).

[CrossRef]

H. Harada, D. J. N. Wall, T. Takenaka, M. Tanaka, “Conjugate gradient method applied to inverse scattering problem,” IEEE Trans. Antennas Propag. 43, 784–792 (1995).

[CrossRef]

N. G. Gencer, M. Kuzouglu, Y. Z. Ider, “Electrical impedance tomography using induced currents,” IEEE Trans. Med. Imaging 13, 338–350 (1994).

[CrossRef]
[PubMed]

M. H. Maleki, A. J. Devaney, “Noniterative reconstruction of complex-valued objects from two intensity measurements,” Opt. Eng. 33, 3243–3253 (1994).

[CrossRef]

I. Akduman, “An inverse scattering problem related to buried cylindrical bodies illuminated by gaussian beams,” Inverse Probl. 10, 213–226 (1994).

[CrossRef]

S. Gutman, M. Klibanov, “Iterative method for multi-dimensional inverse scattering problems at fixed frequencies,” Inverse Probl. 10, 573–599 (1994).

[CrossRef]

M. Moghaddam, W. C. Chew, “Study of some practical issues in inversion with the Born iterative method using time-domain data,” IEEE Trans. Antennas Propag. 41, 177–184 (1993).

[CrossRef]

N. Joachimowitz, C. Pichot, J. P. Hugonin, “Inverse scattering: an iterative numerical method for electromagnetic imaging,” IEEE Trans. Antennas Propag. 39, 1742–1752 (1991).

[CrossRef]

W. Tabbara, B. Duchene, C. Pichot, D. Lesselier, L. Chommeloux, N. Joachimovicz, “Diffraction tomography: contribution to the analysis of some applications in microwaves and ultrasonics,” Inverse Probl. 4, 305–331 (1988).

[CrossRef]

M. Slaney, A. C. Kak, L. E. Larsen, “Limitations of imaging with first order diffraction tomography,” IEEE Trans. Microwave Theory Tech. MTT-32, 860–874 (1984).

[CrossRef]

M. Azimi, K. C. Kak, “Distortion in diffraction tomography caused by multiple scattering,” IEEE Trans. Med. Imaging MI-2, 176–195 (1983).

[CrossRef]

D. Slepian, “On bandwidth,” Proc. IEEE 64, 292–300 (1976).

[CrossRef]

J. H. Richmond, “Scattering by a dielectric cylinder of arbitrary cross section shape,” IEEE Trans. Antennas Propag. AP-13, 334–341 (1965).

[CrossRef]

M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).

I. Akduman, “An inverse scattering problem related to buried cylindrical bodies illuminated by gaussian beams,” Inverse Probl. 10, 213–226 (1994).

[CrossRef]

M. Azimi, K. C. Kak, “Distortion in diffraction tomography caused by multiple scattering,” IEEE Trans. Med. Imaging MI-2, 176–195 (1983).

[CrossRef]

C. Lu, J. Lin, W. Chew, G. Otto, “Image reconstruction with acoustic measurement using distorted Born iteration method,” Ultrason. Imaging 18, 140–156 (1996).

[CrossRef]
[PubMed]

M. Moghaddam, W. C. Chew, “Study of some practical issues in inversion with the Born iterative method using time-domain data,” IEEE Trans. Antennas Propag. 41, 177–184 (1993).

[CrossRef]

W. Tabbara, B. Duchene, C. Pichot, D. Lesselier, L. Chommeloux, N. Joachimovicz, “Diffraction tomography: contribution to the analysis of some applications in microwaves and ultrasonics,” Inverse Probl. 4, 305–331 (1988).

[CrossRef]

D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory (Springer-Verlag, Berlin, 1992).

M. H. Maleki, A. J. Devaney, “Noniterative reconstruction of complex-valued objects from two intensity measurements,” Opt. Eng. 33, 3243–3253 (1994).

[CrossRef]

A. J. Devaney, “Diffraction tomographic reconstruction from intensity data,” IEEE Trans. Image Process. 1, 221–228 (1992).

[CrossRef]
[PubMed]

M. H. Maleki, A. J. Devaney, A. Shatzberg, “Tomographic reconstruction from optical scattered intensities,” J. Opt. Soc. Am. A 9, 1356–1363 (1992).

[CrossRef]

R. P. Porter, A. J. Devaney, “Generalized holography and computational solutions to inverse source problems,” J. Opt. Soc. Am. 72, 1707–1713 (1982).

[CrossRef]

W. Tabbara, B. Duchene, C. Pichot, D. Lesselier, L. Chommeloux, N. Joachimovicz, “Diffraction tomography: contribution to the analysis of some applications in microwaves and ultrasonics,” Inverse Probl. 4, 305–331 (1988).

[CrossRef]

N. G. Gencer, M. Kuzouglu, Y. Z. Ider, “Electrical impedance tomography using induced currents,” IEEE Trans. Med. Imaging 13, 338–350 (1994).

[CrossRef]
[PubMed]

S. Gutman, M. Klibanov, “Iterative method for multi-dimensional inverse scattering problems at fixed frequencies,” Inverse Probl. 10, 573–599 (1994).

[CrossRef]

C. Torres-Verdin, T. M. Habashy, “A two-step linear inversion of two-dimensional electrical conductivity,” IEEE Trans. Antennas Propag. 43, 405–415 (1995).

[CrossRef]

H. Harada, D. J. N. Wall, T. Takenaka, M. Tanaka, “Conjugate gradient method applied to inverse scattering problem,” IEEE Trans. Antennas Propag. 43, 784–792 (1995).

[CrossRef]

N. Joachimowitz, C. Pichot, J. P. Hugonin, “Inverse scattering: an iterative numerical method for electromagnetic imaging,” IEEE Trans. Antennas Propag. 39, 1742–1752 (1991).

[CrossRef]

N. G. Gencer, M. Kuzouglu, Y. Z. Ider, “Electrical impedance tomography using induced currents,” IEEE Trans. Med. Imaging 13, 338–350 (1994).

[CrossRef]
[PubMed]

T. Isernia, V. Pascazio, R. Pierri, “A nonlinear estimation method in tomographic imaging,” IEEE Trans. Geosci. Remote Sens. 35, 910–923 (1997).

[CrossRef]

W. Tabbara, B. Duchene, C. Pichot, D. Lesselier, L. Chommeloux, N. Joachimovicz, “Diffraction tomography: contribution to the analysis of some applications in microwaves and ultrasonics,” Inverse Probl. 4, 305–331 (1988).

[CrossRef]

N. Joachimowitz, C. Pichot, J. P. Hugonin, “Inverse scattering: an iterative numerical method for electromagnetic imaging,” IEEE Trans. Antennas Propag. 39, 1742–1752 (1991).

[CrossRef]

M. Slaney, A. C. Kak, L. E. Larsen, “Limitations of imaging with first order diffraction tomography,” IEEE Trans. Microwave Theory Tech. MTT-32, 860–874 (1984).

[CrossRef]

M. Azimi, K. C. Kak, “Distortion in diffraction tomography caused by multiple scattering,” IEEE Trans. Med. Imaging MI-2, 176–195 (1983).

[CrossRef]

S. Gutman, M. Klibanov, “Iterative method for multi-dimensional inverse scattering problems at fixed frequencies,” Inverse Probl. 10, 573–599 (1994).

[CrossRef]

D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory (Springer-Verlag, Berlin, 1992).

N. G. Gencer, M. Kuzouglu, Y. Z. Ider, “Electrical impedance tomography using induced currents,” IEEE Trans. Med. Imaging 13, 338–350 (1994).

[CrossRef]
[PubMed]

M. Slaney, A. C. Kak, L. E. Larsen, “Limitations of imaging with first order diffraction tomography,” IEEE Trans. Microwave Theory Tech. MTT-32, 860–874 (1984).

[CrossRef]

R. Pierri, G. Leone, “Inverse scattering of dielectric cylinders by second order Born approximation,” IEEE Trans. Geosci. Remote Sens. (to be published).

W. Tabbara, B. Duchene, C. Pichot, D. Lesselier, L. Chommeloux, N. Joachimovicz, “Diffraction tomography: contribution to the analysis of some applications in microwaves and ultrasonics,” Inverse Probl. 4, 305–331 (1988).

[CrossRef]

C. Lu, J. Lin, W. Chew, G. Otto, “Image reconstruction with acoustic measurement using distorted Born iteration method,” Ultrason. Imaging 18, 140–156 (1996).

[CrossRef]
[PubMed]

C. Lu, J. Lin, W. Chew, G. Otto, “Image reconstruction with acoustic measurement using distorted Born iteration method,” Ultrason. Imaging 18, 140–156 (1996).

[CrossRef]
[PubMed]

M. Moghaddam, W. C. Chew, “Study of some practical issues in inversion with the Born iterative method using time-domain data,” IEEE Trans. Antennas Propag. 41, 177–184 (1993).

[CrossRef]

L. Monch, “A Newton method for solving the inverse scattering problem for a sound-hard obstacle,” Inverse Probl. 12, 309–323 (1996).

[CrossRef]

C. Lu, J. Lin, W. Chew, G. Otto, “Image reconstruction with acoustic measurement using distorted Born iteration method,” Ultrason. Imaging 18, 140–156 (1996).

[CrossRef]
[PubMed]

T. Isernia, V. Pascazio, R. Pierri, “A nonlinear estimation method in tomographic imaging,” IEEE Trans. Geosci. Remote Sens. 35, 910–923 (1997).

[CrossRef]

A. Brancaccio, V. Pascazio, R. Pierri, “A quadratic model for inverse profiling: the one dimensional case,” J. Electromagn. Waves Appl. 9, 673–696 (1995).

[CrossRef]

N. Joachimowitz, C. Pichot, J. P. Hugonin, “Inverse scattering: an iterative numerical method for electromagnetic imaging,” IEEE Trans. Antennas Propag. 39, 1742–1752 (1991).

[CrossRef]

W. Tabbara, B. Duchene, C. Pichot, D. Lesselier, L. Chommeloux, N. Joachimovicz, “Diffraction tomography: contribution to the analysis of some applications in microwaves and ultrasonics,” Inverse Probl. 4, 305–331 (1988).

[CrossRef]

R. Pierri, F. Soldovieri, “On the information content of the radiated fields in near zone over bounded domains,” Inverse Probl. 14, 321–337 (1998).

[CrossRef]

R. Pierri, A. Brancaccio, “Imaging of a rotationally symmetric cylinder by a quadratic approach,” J. Opt. Soc. Am. A 14, 2777–2785 (1997).

[CrossRef]

R. Pierri, A. Tamburino, “On the local minima problem in conductivity imaging via a quadratic approach,” Inverse Probl. 13, 1547–1568 (1997).

[CrossRef]

T. Isernia, V. Pascazio, R. Pierri, “A nonlinear estimation method in tomographic imaging,” IEEE Trans. Geosci. Remote Sens. 35, 910–923 (1997).

[CrossRef]

A. Brancaccio, V. Pascazio, R. Pierri, “A quadratic model for inverse profiling: the one dimensional case,” J. Electromagn. Waves Appl. 9, 673–696 (1995).

[CrossRef]

R. Pierri, G. Leone, “Inverse scattering of dielectric cylinders by second order Born approximation,” IEEE Trans. Geosci. Remote Sens. (to be published).

J. H. Richmond, “Scattering by a dielectric cylinder of arbitrary cross section shape,” IEEE Trans. Antennas Propag. AP-13, 334–341 (1965).

[CrossRef]

M. Slaney, A. C. Kak, L. E. Larsen, “Limitations of imaging with first order diffraction tomography,” IEEE Trans. Microwave Theory Tech. MTT-32, 860–874 (1984).

[CrossRef]

D. Slepian, “On bandwidth,” Proc. IEEE 64, 292–300 (1976).

[CrossRef]

R. Pierri, F. Soldovieri, “On the information content of the radiated fields in near zone over bounded domains,” Inverse Probl. 14, 321–337 (1998).

[CrossRef]

M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).

W. Tabbara, B. Duchene, C. Pichot, D. Lesselier, L. Chommeloux, N. Joachimovicz, “Diffraction tomography: contribution to the analysis of some applications in microwaves and ultrasonics,” Inverse Probl. 4, 305–331 (1988).

[CrossRef]

H. Harada, D. J. N. Wall, T. Takenaka, M. Tanaka, “Conjugate gradient method applied to inverse scattering problem,” IEEE Trans. Antennas Propag. 43, 784–792 (1995).

[CrossRef]

R. Pierri, A. Tamburino, “On the local minima problem in conductivity imaging via a quadratic approach,” Inverse Probl. 13, 1547–1568 (1997).

[CrossRef]

H. Harada, D. J. N. Wall, T. Takenaka, M. Tanaka, “Conjugate gradient method applied to inverse scattering problem,” IEEE Trans. Antennas Propag. 43, 784–792 (1995).

[CrossRef]

C. Torres-Verdin, T. M. Habashy, “A two-step linear inversion of two-dimensional electrical conductivity,” IEEE Trans. Antennas Propag. 43, 405–415 (1995).

[CrossRef]

H. Harada, D. J. N. Wall, T. Takenaka, M. Tanaka, “Conjugate gradient method applied to inverse scattering problem,” IEEE Trans. Antennas Propag. 43, 784–792 (1995).

[CrossRef]

T. C. Wedberg, W. C. Wedberg, “Tomographic reconstruction of the cross sectional refractive index distribution in semi-transparent, birefringent fibres,” J. Microsccopy 177, 53–67 (1995).

[CrossRef]

N. Joachimowitz, C. Pichot, J. P. Hugonin, “Inverse scattering: an iterative numerical method for electromagnetic imaging,” IEEE Trans. Antennas Propag. 39, 1742–1752 (1991).

[CrossRef]

M. Moghaddam, W. C. Chew, “Study of some practical issues in inversion with the Born iterative method using time-domain data,” IEEE Trans. Antennas Propag. 41, 177–184 (1993).

[CrossRef]

C. Torres-Verdin, T. M. Habashy, “A two-step linear inversion of two-dimensional electrical conductivity,” IEEE Trans. Antennas Propag. 43, 405–415 (1995).

[CrossRef]

J. H. Richmond, “Scattering by a dielectric cylinder of arbitrary cross section shape,” IEEE Trans. Antennas Propag. AP-13, 334–341 (1965).

[CrossRef]

H. Harada, D. J. N. Wall, T. Takenaka, M. Tanaka, “Conjugate gradient method applied to inverse scattering problem,” IEEE Trans. Antennas Propag. 43, 784–792 (1995).

[CrossRef]

T. Isernia, V. Pascazio, R. Pierri, “A nonlinear estimation method in tomographic imaging,” IEEE Trans. Geosci. Remote Sens. 35, 910–923 (1997).

[CrossRef]

A. J. Devaney, “Diffraction tomographic reconstruction from intensity data,” IEEE Trans. Image Process. 1, 221–228 (1992).

[CrossRef]
[PubMed]

N. G. Gencer, M. Kuzouglu, Y. Z. Ider, “Electrical impedance tomography using induced currents,” IEEE Trans. Med. Imaging 13, 338–350 (1994).

[CrossRef]
[PubMed]

M. Azimi, K. C. Kak, “Distortion in diffraction tomography caused by multiple scattering,” IEEE Trans. Med. Imaging MI-2, 176–195 (1983).

[CrossRef]

M. Slaney, A. C. Kak, L. E. Larsen, “Limitations of imaging with first order diffraction tomography,” IEEE Trans. Microwave Theory Tech. MTT-32, 860–874 (1984).

[CrossRef]

W. Tabbara, B. Duchene, C. Pichot, D. Lesselier, L. Chommeloux, N. Joachimovicz, “Diffraction tomography: contribution to the analysis of some applications in microwaves and ultrasonics,” Inverse Probl. 4, 305–331 (1988).

[CrossRef]

L. Monch, “A Newton method for solving the inverse scattering problem for a sound-hard obstacle,” Inverse Probl. 12, 309–323 (1996).

[CrossRef]

I. Akduman, “An inverse scattering problem related to buried cylindrical bodies illuminated by gaussian beams,” Inverse Probl. 10, 213–226 (1994).

[CrossRef]

S. Gutman, M. Klibanov, “Iterative method for multi-dimensional inverse scattering problems at fixed frequencies,” Inverse Probl. 10, 573–599 (1994).

[CrossRef]

R. Pierri, A. Tamburino, “On the local minima problem in conductivity imaging via a quadratic approach,” Inverse Probl. 13, 1547–1568 (1997).

[CrossRef]

R. Pierri, F. Soldovieri, “On the information content of the radiated fields in near zone over bounded domains,” Inverse Probl. 14, 321–337 (1998).

[CrossRef]

A. Brancaccio, V. Pascazio, R. Pierri, “A quadratic model for inverse profiling: the one dimensional case,” J. Electromagn. Waves Appl. 9, 673–696 (1995).

[CrossRef]

T. C. Wedberg, W. C. Wedberg, “Tomographic reconstruction of the cross sectional refractive index distribution in semi-transparent, birefringent fibres,” J. Microsccopy 177, 53–67 (1995).

[CrossRef]

T. C. Wedberg, J. J. Stamnes, “Experimental examination of the quantitative imaging properties of optical diffraction tomography,” J. Opt. Soc. Am. A 12, 493–500 (1995).

[CrossRef]

M. H. Maleki, A. J. Devaney, A. Shatzberg, “Tomographic reconstruction from optical scattered intensities,” J. Opt. Soc. Am. A 9, 1356–1363 (1992).

[CrossRef]

R. Pierri, A. Brancaccio, “Imaging of a rotationally symmetric cylinder by a quadratic approach,” J. Opt. Soc. Am. A 14, 2777–2785 (1997).

[CrossRef]

M. H. Maleki, A. J. Devaney, “Noniterative reconstruction of complex-valued objects from two intensity measurements,” Opt. Eng. 33, 3243–3253 (1994).

[CrossRef]

D. Slepian, “On bandwidth,” Proc. IEEE 64, 292–300 (1976).

[CrossRef]

C. Lu, J. Lin, W. Chew, G. Otto, “Image reconstruction with acoustic measurement using distorted Born iteration method,” Ultrason. Imaging 18, 140–156 (1996).

[CrossRef]
[PubMed]

D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory (Springer-Verlag, Berlin, 1992).

R. Pierri, G. Leone, “Inverse scattering of dielectric cylinders by second order Born approximation,” IEEE Trans. Geosci. Remote Sens. (to be published).

M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).