Abstract

In this analysis some limitations of the linear Born approximation in the diffraction tomography problem from far-zone data are pointed out. The analysis is performed by means of singular-value decomposition of the scattering operator in the scalar two-dimensional case of a circular dielectric cylinder illuminated by a TM-polarized plane wave. It is shown that the validity of the Born approximation entails the important condition that the scattering object not present too-fast spatial variations of the permittivity profile. For the rotationally symmetric cylinder, evidence is presented that the imaginary part of the normalized scattered far field has no information content for real permittivity objects. Moreover, for angularly varying cylinders the information content of the scattered far field for a single view is approximately the same as in the multiview case. Examples of singular-value and singular-function behavior and of profile reconstruction are depicted for the considered geometries.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (29)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription