Abstract

In everyday scenes, from perceived colors of objects and terrains, observers can simultaneously identify objects across illuminants and identify the nature of the light, e.g., as sunlight or cloudy. As a formal problem, identifying objects and illuminants from the color information provided by sensor responses is underdetermined. It is shown how the problem can be simplified considerably by the empirical result that chromaticities of sets of objects under one illuminant are approximately affine transformations of the chromaticities under spectrally different illuminants. Algorithms that use the affine nature of the correlation as a heuristic can identify objects of identical spectral reflectance across scenes lit simultaneously or successively by different illuminants. The relative chromaticities of the illuminants are estimated as part of the computation. Because information about objects and illuminants is useful in many different tasks, it would be more advantageous for the visual system to use such algorithms to extract both sorts of information from retinal signals than to discount either automatically at an early neural stage.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. E. Ives, “The relation between the color of the illuminant and the color of the illuminated object,” Trans. Illum. Eng. Soc. 7, 62–72 (1912). Reprinted in Color Res. Appl. 20, 70–75 (1995).
    [CrossRef]
  2. E. Land, J. J. McCann, “Lightness and retinex theory,” J. Opt. Soc. Am. 61, 1–11 (1971).
    [CrossRef] [PubMed]
  3. E. Land, “Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image,” Proc. Natl. Acad. Sci. USA 80, 5163–5169 (1983).
    [CrossRef] [PubMed]
  4. G. West, M. H. Brill, “Necessary and sufficient conditions for Von Kries chromatic adaptation to give color constancy,” J. Math. Biol. 15, 249–258 (1982).
    [CrossRef] [PubMed]
  5. J. L. Dannemiller, “Computational approaches to color constancy: adaptive and ontogenetic considerations,” Psychol. Rev. 96, 255–266 (1989).
    [CrossRef] [PubMed]
  6. M. H. Brill, “Image segmentation by object color: a unifying framework and connection to color constancy,” J. Opt. Soc. Am. A 7, 2041–2049 (1990).
    [CrossRef] [PubMed]
  7. A. Valberg, B. Lange-Malecki, “‘Colour constancy,’ in Mondrian patterns: a partial cancellation of physical chromaticity shifts by simultaneous contrast,” Vision Res. 30, 371–380 (1990).
    [CrossRef]
  8. G. D. Finlayson, M. S. Drew, B. V. Funt, “Color constancy: enhancing Von Kries adaptation via sensor transformations,” in Human Vision, Visual Processing, and Digital Display IV, J. P. Allebach, B. E. Rogowitz, eds., Proc. SPIE1913, 473–484 (1993).
    [CrossRef]
  9. G. D. Finlayson, M. S. Drew, B. V. Funt, “Color constancy: generalized diagonal transforms suffice,” J. Opt. Soc. Am. A 11, 3011–3019 (1994).
    [CrossRef]
  10. G. D. Finlayson, B. V. Funt, “Coefficient channels: derivation and relationship to other theoretical studies,” Color Res. Appl. 21, 87–96 (1996).
    [CrossRef]
  11. M. D. Fairchild, P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vision Res. 32, 2077–2085 (1992).
    [CrossRef] [PubMed]
  12. M. A. Webster, J. D. Mollon, “Colour constancy influenced by contrast adaptation,” Nature 373, 694–698 (1995).
    [CrossRef] [PubMed]
  13. J. Walraven, T. L. Benzshawel, B. E. Rogowitz, M. P. Lucassen, “Testing the contrast explanation of color constancy,” in From Pigments to Perception, A. Valberg, B. Lee, eds. (Plenum, New York, 1991), pp. 369–378.
  14. H. Helson, D. Judd, M. Warren, “Object-color changes from daylight to incandescent filament illumination,” Illum. Eng. 47, 221–233 (1952).
  15. J. McCann, S. McKee, T. Taylor, “Quantitative studies in retinex theory,” Vision Res. 16, 445–458 (1976).
    [CrossRef]
  16. D. H. Brainard, “Color constancy in the nearly natural image. 2. Achromatic loci,” J. Opt. Soc. Am. A 15, 307–325 (1998).
    [CrossRef]
  17. D. Jameson, L. Hurvich, “Essay concerning color constancy,” Ann. Rev. Psychol. 40, 1–22 (1989).
    [CrossRef]
  18. J. E. Hopcroft, D. P. Huttenlocher, P. C. Wayner, “Affine invariants for model-based recognition,” in Geometric Invariance in Computer Vision, J. L. Mundy, A. Zisserman, eds. (MIT Press, Cambridge, Mass., 1992), pp. 355–374.
  19. R. G. Ketchum, The Tongass: Alaska’s Vanishing Rain Forest (Aperture Foundation, New York, 1987).
  20. R. G. Ketchum, The Legacy of Wilderness: The Photographs of Robert Glenn Ketchum (Aperture Foundation, New York, 1993).
  21. P. Sinha, E. Adelson, “Recovering reflectance and illumination in a world of painted polyhedra,” in Proceedings of the Fourth International Conference on Computer Vision (IEEE Computer Society Press, Los Alamitos, Calif., 1993), pp. 156–163.
  22. V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 700 nm,” Vision Res. 15, 161–171 (1975).
    [CrossRef] [PubMed]
  23. G. Buchsbaum, A. Gottschalk, “Trichromacy, opponent colours coding, and optimum colour information transmission in the retina,” Proc. R. Soc. London Ser. B 220, 89–113 (1983).
    [CrossRef]
  24. Q. Zaidi, “Decorrelation of L- and M-cone signals,” J. Opt. Soc. Am. A 14, 3430–3431 (1997).
    [CrossRef]
  25. D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
    [CrossRef] [PubMed]
  26. M. Vrhel, R. Gershon, L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).
  27. Q. Zaidi, “Color and brightness induction: from Mach bands to 3-D configurations,” in Color Vision: From Molecular Genetics to Perception, K. Gegenfurtner, L. Sharpe, eds. (Cambridge U. Press, New York, to be published).
  28. G. Buchsbaum, “A spatial processor model for object color perception,” J. Franklin Inst. 310, 1–26 (1980).
    [CrossRef]
  29. L. Maloney, B. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986).
    [CrossRef] [PubMed]
  30. M. D’Zmura, G. Iverson, “Color constancy. I. Basic theory of two-stage linear recovery of spectral descriptions for lights and surfaces,” J. Opt. Soc. Am. A 10, 2148–2165 (1993).
    [CrossRef]
  31. M. D’Zmura, G. Iverson, “Color constancy. II. Results for two-stage linear recovery of spectral descriptions for lights and surfaces,” J. Opt. Soc. Am. A 10, 2166–2180 (1993).
    [CrossRef]
  32. M. D’Zmura, G. Iverson, “Color constancy. III. General linear recovery of spectral descriptions for lights and surfaces,” J. Opt. Soc. Am. A 11, 2389–2400 (1994).
    [CrossRef]
  33. S. Tominaga, B. A. Wandell, “Standard surface-reflectance model and illuminant estimation,” J. Opt. Soc. Am. 6, 576–584 (1989).
    [CrossRef]
  34. M. D’Zmura, G. Iverson, B. Singer, “Probabilistic color constancy,” in Geometric Representations of Perceptual Phenomena. Papers in Honor of Tarow Indow’s 70th Birthday, R. D. Luce, M. D’Zmura, D. Hoffman, G. Iverson, A. K. Romney, eds. (Erlbaum, Hillsdale, N.J., 1995), pp. 187–202.
  35. D. H. Brainard, W. T. Freeman, “Bayesian color constancy,” J. Opt. Soc. Am. A 14, 1393–1411 (1997).
    [CrossRef]
  36. D. Forsyth, “A novel algorithm for color constancy,” Int. J. Comput. Vision 30, 5–36 (1990).
    [CrossRef]
  37. G. D. Finalyson, “Color in perspective,” IEEE Trans. Pattern. Anal. Mach. Intell. 18, 1034–1038 (1996).
    [CrossRef]
  38. D. P. Huttenlocher, S. Ullman, “Object recognition using alignment,” in Proceedings of the 1st International Conference on Computer Vision (IEEE Computer Society Press, Los Alamitos, Calif., 1987), pp. 102–111.
  39. D. P. Huttenlocher, S. Ullman, “Recognizing solid objects by alignment with an image,” Int. J. Comput. Vision 5, 195–212 (1990).
    [CrossRef]
  40. A. H. Taylor, G. P. Kerr, “The distribution of energy in the visible spectrum of daylight,” J. Opt. Soc. Am. 31, 3 (1941).
    [CrossRef]
  41. J. A. Endler, “The color of light in forests and its implications,” Ecol. Monogr. 63, 1–27 (1993).
    [CrossRef]
  42. J. L. Dannemiller, “Rank ordering of photoreceptor catches from objects are nearly illumination invariant,” Vision Res. 33, 131–137 (1993).
    [CrossRef] [PubMed]
  43. D. H. Foster, S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. London Ser. B 250, 116–121 (1994).
  44. Q. Zaidi, B. Spehar, J. S. DeBonet, “Color constancy in variegated scenes: the role of low-level mechanisms in discounting illumination changes,” J. Opt. Soc. Am. A 14, 2608–2621 (1997).
    [CrossRef]
  45. Q. Zaidi, B. Spehar, J. S. DeBonet, “Adaptation to textured chromatic fields,” J. Opt. Soc. Am. A 15, 23–32 (1998).
    [CrossRef]
  46. E. W. Jin, S. K. Shevell, “Color memory and color constancy,” J. Opt. Soc. Am. A 13, 1981–1991 (1996).
    [CrossRef]
  47. L. E. Arend, “How much does illuminant affect unattributed colors?” J. Opt. Soc. Am. 10, 2134–2147 (1993).
    [CrossRef]
  48. L. E. Arend, A. Reeves, “Simultaneous color constancy,” J. Opt. Soc. Am. A 3, 1743–1751 (1986).
    [CrossRef] [PubMed]
  49. D. H. Brainard, W. A. Brunt, J. S. Spiegle, “Color constancy in the nearly natural image. I. Asymmetric matches,” J. Opt. Soc. Am. A 14, 2091–2110 (1997).
    [CrossRef]
  50. J. Cohen, “Dependency of the spectral reflectance curves of the Munsell color chips,” Psychon. Sci. 1, 369–370 (1964).
    [CrossRef]
  51. D. B. Judd, D. L. MacAdam, G. Wyszecki, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. 54, 1031–1040 (1964).
    [CrossRef]
  52. L. Maloney, “Evaluation of linear models of surface spectral reflectance with small numbers of parameters,” J. Opt. Soc. Am. A 3, 1673–1683 (1986).
    [CrossRef] [PubMed]
  53. J. S. DeBonet, Q. Zaidi, “Temporal and spatial frequency analysis of motion-energy and feature-tracking,” Invest. Ophthalmol. Visual Sci. S36, 253 (1995).

1998 (2)

1997 (4)

1996 (3)

G. D. Finalyson, “Color in perspective,” IEEE Trans. Pattern. Anal. Mach. Intell. 18, 1034–1038 (1996).
[CrossRef]

G. D. Finlayson, B. V. Funt, “Coefficient channels: derivation and relationship to other theoretical studies,” Color Res. Appl. 21, 87–96 (1996).
[CrossRef]

E. W. Jin, S. K. Shevell, “Color memory and color constancy,” J. Opt. Soc. Am. A 13, 1981–1991 (1996).
[CrossRef]

1995 (2)

J. S. DeBonet, Q. Zaidi, “Temporal and spatial frequency analysis of motion-energy and feature-tracking,” Invest. Ophthalmol. Visual Sci. S36, 253 (1995).

M. A. Webster, J. D. Mollon, “Colour constancy influenced by contrast adaptation,” Nature 373, 694–698 (1995).
[CrossRef] [PubMed]

1994 (4)

G. D. Finlayson, M. S. Drew, B. V. Funt, “Color constancy: generalized diagonal transforms suffice,” J. Opt. Soc. Am. A 11, 3011–3019 (1994).
[CrossRef]

D. H. Foster, S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. London Ser. B 250, 116–121 (1994).

M. Vrhel, R. Gershon, L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).

M. D’Zmura, G. Iverson, “Color constancy. III. General linear recovery of spectral descriptions for lights and surfaces,” J. Opt. Soc. Am. A 11, 2389–2400 (1994).
[CrossRef]

1993 (5)

M. D’Zmura, G. Iverson, “Color constancy. I. Basic theory of two-stage linear recovery of spectral descriptions for lights and surfaces,” J. Opt. Soc. Am. A 10, 2148–2165 (1993).
[CrossRef]

M. D’Zmura, G. Iverson, “Color constancy. II. Results for two-stage linear recovery of spectral descriptions for lights and surfaces,” J. Opt. Soc. Am. A 10, 2166–2180 (1993).
[CrossRef]

J. A. Endler, “The color of light in forests and its implications,” Ecol. Monogr. 63, 1–27 (1993).
[CrossRef]

J. L. Dannemiller, “Rank ordering of photoreceptor catches from objects are nearly illumination invariant,” Vision Res. 33, 131–137 (1993).
[CrossRef] [PubMed]

L. E. Arend, “How much does illuminant affect unattributed colors?” J. Opt. Soc. Am. 10, 2134–2147 (1993).
[CrossRef]

1992 (1)

M. D. Fairchild, P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vision Res. 32, 2077–2085 (1992).
[CrossRef] [PubMed]

1990 (4)

M. H. Brill, “Image segmentation by object color: a unifying framework and connection to color constancy,” J. Opt. Soc. Am. A 7, 2041–2049 (1990).
[CrossRef] [PubMed]

A. Valberg, B. Lange-Malecki, “‘Colour constancy,’ in Mondrian patterns: a partial cancellation of physical chromaticity shifts by simultaneous contrast,” Vision Res. 30, 371–380 (1990).
[CrossRef]

D. P. Huttenlocher, S. Ullman, “Recognizing solid objects by alignment with an image,” Int. J. Comput. Vision 5, 195–212 (1990).
[CrossRef]

D. Forsyth, “A novel algorithm for color constancy,” Int. J. Comput. Vision 30, 5–36 (1990).
[CrossRef]

1989 (3)

S. Tominaga, B. A. Wandell, “Standard surface-reflectance model and illuminant estimation,” J. Opt. Soc. Am. 6, 576–584 (1989).
[CrossRef]

J. L. Dannemiller, “Computational approaches to color constancy: adaptive and ontogenetic considerations,” Psychol. Rev. 96, 255–266 (1989).
[CrossRef] [PubMed]

D. Jameson, L. Hurvich, “Essay concerning color constancy,” Ann. Rev. Psychol. 40, 1–22 (1989).
[CrossRef]

1986 (3)

1983 (2)

G. Buchsbaum, A. Gottschalk, “Trichromacy, opponent colours coding, and optimum colour information transmission in the retina,” Proc. R. Soc. London Ser. B 220, 89–113 (1983).
[CrossRef]

E. Land, “Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image,” Proc. Natl. Acad. Sci. USA 80, 5163–5169 (1983).
[CrossRef] [PubMed]

1982 (1)

G. West, M. H. Brill, “Necessary and sufficient conditions for Von Kries chromatic adaptation to give color constancy,” J. Math. Biol. 15, 249–258 (1982).
[CrossRef] [PubMed]

1980 (1)

G. Buchsbaum, “A spatial processor model for object color perception,” J. Franklin Inst. 310, 1–26 (1980).
[CrossRef]

1979 (1)

1976 (1)

J. McCann, S. McKee, T. Taylor, “Quantitative studies in retinex theory,” Vision Res. 16, 445–458 (1976).
[CrossRef]

1975 (1)

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 700 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

1971 (1)

1964 (2)

1952 (1)

H. Helson, D. Judd, M. Warren, “Object-color changes from daylight to incandescent filament illumination,” Illum. Eng. 47, 221–233 (1952).

1941 (1)

1912 (1)

H. E. Ives, “The relation between the color of the illuminant and the color of the illuminated object,” Trans. Illum. Eng. Soc. 7, 62–72 (1912). Reprinted in Color Res. Appl. 20, 70–75 (1995).
[CrossRef]

Adelson, E.

P. Sinha, E. Adelson, “Recovering reflectance and illumination in a world of painted polyhedra,” in Proceedings of the Fourth International Conference on Computer Vision (IEEE Computer Society Press, Los Alamitos, Calif., 1993), pp. 156–163.

Arend, L. E.

L. E. Arend, “How much does illuminant affect unattributed colors?” J. Opt. Soc. Am. 10, 2134–2147 (1993).
[CrossRef]

L. E. Arend, A. Reeves, “Simultaneous color constancy,” J. Opt. Soc. Am. A 3, 1743–1751 (1986).
[CrossRef] [PubMed]

Benzshawel, T. L.

J. Walraven, T. L. Benzshawel, B. E. Rogowitz, M. P. Lucassen, “Testing the contrast explanation of color constancy,” in From Pigments to Perception, A. Valberg, B. Lee, eds. (Plenum, New York, 1991), pp. 369–378.

Boynton, R. M.

Brainard, D. H.

Brill, M. H.

M. H. Brill, “Image segmentation by object color: a unifying framework and connection to color constancy,” J. Opt. Soc. Am. A 7, 2041–2049 (1990).
[CrossRef] [PubMed]

G. West, M. H. Brill, “Necessary and sufficient conditions for Von Kries chromatic adaptation to give color constancy,” J. Math. Biol. 15, 249–258 (1982).
[CrossRef] [PubMed]

Brunt, W. A.

Buchsbaum, G.

G. Buchsbaum, A. Gottschalk, “Trichromacy, opponent colours coding, and optimum colour information transmission in the retina,” Proc. R. Soc. London Ser. B 220, 89–113 (1983).
[CrossRef]

G. Buchsbaum, “A spatial processor model for object color perception,” J. Franklin Inst. 310, 1–26 (1980).
[CrossRef]

Cohen, J.

J. Cohen, “Dependency of the spectral reflectance curves of the Munsell color chips,” Psychon. Sci. 1, 369–370 (1964).
[CrossRef]

D’Zmura, M.

Dannemiller, J. L.

J. L. Dannemiller, “Rank ordering of photoreceptor catches from objects are nearly illumination invariant,” Vision Res. 33, 131–137 (1993).
[CrossRef] [PubMed]

J. L. Dannemiller, “Computational approaches to color constancy: adaptive and ontogenetic considerations,” Psychol. Rev. 96, 255–266 (1989).
[CrossRef] [PubMed]

DeBonet, J. S.

Drew, M. S.

G. D. Finlayson, M. S. Drew, B. V. Funt, “Color constancy: generalized diagonal transforms suffice,” J. Opt. Soc. Am. A 11, 3011–3019 (1994).
[CrossRef]

G. D. Finlayson, M. S. Drew, B. V. Funt, “Color constancy: enhancing Von Kries adaptation via sensor transformations,” in Human Vision, Visual Processing, and Digital Display IV, J. P. Allebach, B. E. Rogowitz, eds., Proc. SPIE1913, 473–484 (1993).
[CrossRef]

Endler, J. A.

J. A. Endler, “The color of light in forests and its implications,” Ecol. Monogr. 63, 1–27 (1993).
[CrossRef]

Fairchild, M. D.

M. D. Fairchild, P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vision Res. 32, 2077–2085 (1992).
[CrossRef] [PubMed]

Finalyson, G. D.

G. D. Finalyson, “Color in perspective,” IEEE Trans. Pattern. Anal. Mach. Intell. 18, 1034–1038 (1996).
[CrossRef]

Finlayson, G. D.

G. D. Finlayson, B. V. Funt, “Coefficient channels: derivation and relationship to other theoretical studies,” Color Res. Appl. 21, 87–96 (1996).
[CrossRef]

G. D. Finlayson, M. S. Drew, B. V. Funt, “Color constancy: generalized diagonal transforms suffice,” J. Opt. Soc. Am. A 11, 3011–3019 (1994).
[CrossRef]

G. D. Finlayson, M. S. Drew, B. V. Funt, “Color constancy: enhancing Von Kries adaptation via sensor transformations,” in Human Vision, Visual Processing, and Digital Display IV, J. P. Allebach, B. E. Rogowitz, eds., Proc. SPIE1913, 473–484 (1993).
[CrossRef]

Forsyth, D.

D. Forsyth, “A novel algorithm for color constancy,” Int. J. Comput. Vision 30, 5–36 (1990).
[CrossRef]

Foster, D. H.

D. H. Foster, S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. London Ser. B 250, 116–121 (1994).

Freeman, W. T.

Funt, B. V.

G. D. Finlayson, B. V. Funt, “Coefficient channels: derivation and relationship to other theoretical studies,” Color Res. Appl. 21, 87–96 (1996).
[CrossRef]

G. D. Finlayson, M. S. Drew, B. V. Funt, “Color constancy: generalized diagonal transforms suffice,” J. Opt. Soc. Am. A 11, 3011–3019 (1994).
[CrossRef]

G. D. Finlayson, M. S. Drew, B. V. Funt, “Color constancy: enhancing Von Kries adaptation via sensor transformations,” in Human Vision, Visual Processing, and Digital Display IV, J. P. Allebach, B. E. Rogowitz, eds., Proc. SPIE1913, 473–484 (1993).
[CrossRef]

Gershon, R.

M. Vrhel, R. Gershon, L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).

Gottschalk, A.

G. Buchsbaum, A. Gottschalk, “Trichromacy, opponent colours coding, and optimum colour information transmission in the retina,” Proc. R. Soc. London Ser. B 220, 89–113 (1983).
[CrossRef]

Helson, H.

H. Helson, D. Judd, M. Warren, “Object-color changes from daylight to incandescent filament illumination,” Illum. Eng. 47, 221–233 (1952).

Hopcroft, J. E.

J. E. Hopcroft, D. P. Huttenlocher, P. C. Wayner, “Affine invariants for model-based recognition,” in Geometric Invariance in Computer Vision, J. L. Mundy, A. Zisserman, eds. (MIT Press, Cambridge, Mass., 1992), pp. 355–374.

Hurvich, L.

D. Jameson, L. Hurvich, “Essay concerning color constancy,” Ann. Rev. Psychol. 40, 1–22 (1989).
[CrossRef]

Huttenlocher, D. P.

D. P. Huttenlocher, S. Ullman, “Recognizing solid objects by alignment with an image,” Int. J. Comput. Vision 5, 195–212 (1990).
[CrossRef]

D. P. Huttenlocher, S. Ullman, “Object recognition using alignment,” in Proceedings of the 1st International Conference on Computer Vision (IEEE Computer Society Press, Los Alamitos, Calif., 1987), pp. 102–111.

J. E. Hopcroft, D. P. Huttenlocher, P. C. Wayner, “Affine invariants for model-based recognition,” in Geometric Invariance in Computer Vision, J. L. Mundy, A. Zisserman, eds. (MIT Press, Cambridge, Mass., 1992), pp. 355–374.

Iverson, G.

Ives, H. E.

H. E. Ives, “The relation between the color of the illuminant and the color of the illuminated object,” Trans. Illum. Eng. Soc. 7, 62–72 (1912). Reprinted in Color Res. Appl. 20, 70–75 (1995).
[CrossRef]

Iwan, L. S.

M. Vrhel, R. Gershon, L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).

Jameson, D.

D. Jameson, L. Hurvich, “Essay concerning color constancy,” Ann. Rev. Psychol. 40, 1–22 (1989).
[CrossRef]

Jin, E. W.

Judd, D.

H. Helson, D. Judd, M. Warren, “Object-color changes from daylight to incandescent filament illumination,” Illum. Eng. 47, 221–233 (1952).

Judd, D. B.

Kerr, G. P.

Ketchum, R. G.

R. G. Ketchum, The Tongass: Alaska’s Vanishing Rain Forest (Aperture Foundation, New York, 1987).

R. G. Ketchum, The Legacy of Wilderness: The Photographs of Robert Glenn Ketchum (Aperture Foundation, New York, 1993).

Land, E.

E. Land, “Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image,” Proc. Natl. Acad. Sci. USA 80, 5163–5169 (1983).
[CrossRef] [PubMed]

E. Land, J. J. McCann, “Lightness and retinex theory,” J. Opt. Soc. Am. 61, 1–11 (1971).
[CrossRef] [PubMed]

Lange-Malecki, B.

A. Valberg, B. Lange-Malecki, “‘Colour constancy,’ in Mondrian patterns: a partial cancellation of physical chromaticity shifts by simultaneous contrast,” Vision Res. 30, 371–380 (1990).
[CrossRef]

Lennie, P.

M. D. Fairchild, P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vision Res. 32, 2077–2085 (1992).
[CrossRef] [PubMed]

Lucassen, M. P.

J. Walraven, T. L. Benzshawel, B. E. Rogowitz, M. P. Lucassen, “Testing the contrast explanation of color constancy,” in From Pigments to Perception, A. Valberg, B. Lee, eds. (Plenum, New York, 1991), pp. 369–378.

MacAdam, D. L.

MacLeod, D. I. A.

Maloney, L.

McCann, J.

J. McCann, S. McKee, T. Taylor, “Quantitative studies in retinex theory,” Vision Res. 16, 445–458 (1976).
[CrossRef]

McCann, J. J.

McKee, S.

J. McCann, S. McKee, T. Taylor, “Quantitative studies in retinex theory,” Vision Res. 16, 445–458 (1976).
[CrossRef]

Mollon, J. D.

M. A. Webster, J. D. Mollon, “Colour constancy influenced by contrast adaptation,” Nature 373, 694–698 (1995).
[CrossRef] [PubMed]

Nascimento, S. M. C.

D. H. Foster, S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. London Ser. B 250, 116–121 (1994).

Pokorny, J.

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 700 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Reeves, A.

Rogowitz, B. E.

J. Walraven, T. L. Benzshawel, B. E. Rogowitz, M. P. Lucassen, “Testing the contrast explanation of color constancy,” in From Pigments to Perception, A. Valberg, B. Lee, eds. (Plenum, New York, 1991), pp. 369–378.

Shevell, S. K.

Singer, B.

M. D’Zmura, G. Iverson, B. Singer, “Probabilistic color constancy,” in Geometric Representations of Perceptual Phenomena. Papers in Honor of Tarow Indow’s 70th Birthday, R. D. Luce, M. D’Zmura, D. Hoffman, G. Iverson, A. K. Romney, eds. (Erlbaum, Hillsdale, N.J., 1995), pp. 187–202.

Sinha, P.

P. Sinha, E. Adelson, “Recovering reflectance and illumination in a world of painted polyhedra,” in Proceedings of the Fourth International Conference on Computer Vision (IEEE Computer Society Press, Los Alamitos, Calif., 1993), pp. 156–163.

Smith, V. C.

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 700 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Spehar, B.

Spiegle, J. S.

Taylor, A. H.

Taylor, T.

J. McCann, S. McKee, T. Taylor, “Quantitative studies in retinex theory,” Vision Res. 16, 445–458 (1976).
[CrossRef]

Tominaga, S.

S. Tominaga, B. A. Wandell, “Standard surface-reflectance model and illuminant estimation,” J. Opt. Soc. Am. 6, 576–584 (1989).
[CrossRef]

Ullman, S.

D. P. Huttenlocher, S. Ullman, “Recognizing solid objects by alignment with an image,” Int. J. Comput. Vision 5, 195–212 (1990).
[CrossRef]

D. P. Huttenlocher, S. Ullman, “Object recognition using alignment,” in Proceedings of the 1st International Conference on Computer Vision (IEEE Computer Society Press, Los Alamitos, Calif., 1987), pp. 102–111.

Valberg, A.

A. Valberg, B. Lange-Malecki, “‘Colour constancy,’ in Mondrian patterns: a partial cancellation of physical chromaticity shifts by simultaneous contrast,” Vision Res. 30, 371–380 (1990).
[CrossRef]

Vrhel, M.

M. Vrhel, R. Gershon, L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).

Walraven, J.

J. Walraven, T. L. Benzshawel, B. E. Rogowitz, M. P. Lucassen, “Testing the contrast explanation of color constancy,” in From Pigments to Perception, A. Valberg, B. Lee, eds. (Plenum, New York, 1991), pp. 369–378.

Wandell, B.

Wandell, B. A.

S. Tominaga, B. A. Wandell, “Standard surface-reflectance model and illuminant estimation,” J. Opt. Soc. Am. 6, 576–584 (1989).
[CrossRef]

Warren, M.

H. Helson, D. Judd, M. Warren, “Object-color changes from daylight to incandescent filament illumination,” Illum. Eng. 47, 221–233 (1952).

Wayner, P. C.

J. E. Hopcroft, D. P. Huttenlocher, P. C. Wayner, “Affine invariants for model-based recognition,” in Geometric Invariance in Computer Vision, J. L. Mundy, A. Zisserman, eds. (MIT Press, Cambridge, Mass., 1992), pp. 355–374.

Webster, M. A.

M. A. Webster, J. D. Mollon, “Colour constancy influenced by contrast adaptation,” Nature 373, 694–698 (1995).
[CrossRef] [PubMed]

West, G.

G. West, M. H. Brill, “Necessary and sufficient conditions for Von Kries chromatic adaptation to give color constancy,” J. Math. Biol. 15, 249–258 (1982).
[CrossRef] [PubMed]

Wyszecki, G.

Zaidi, Q.

Q. Zaidi, B. Spehar, J. S. DeBonet, “Adaptation to textured chromatic fields,” J. Opt. Soc. Am. A 15, 23–32 (1998).
[CrossRef]

Q. Zaidi, B. Spehar, J. S. DeBonet, “Color constancy in variegated scenes: the role of low-level mechanisms in discounting illumination changes,” J. Opt. Soc. Am. A 14, 2608–2621 (1997).
[CrossRef]

Q. Zaidi, “Decorrelation of L- and M-cone signals,” J. Opt. Soc. Am. A 14, 3430–3431 (1997).
[CrossRef]

J. S. DeBonet, Q. Zaidi, “Temporal and spatial frequency analysis of motion-energy and feature-tracking,” Invest. Ophthalmol. Visual Sci. S36, 253 (1995).

Q. Zaidi, “Color and brightness induction: from Mach bands to 3-D configurations,” in Color Vision: From Molecular Genetics to Perception, K. Gegenfurtner, L. Sharpe, eds. (Cambridge U. Press, New York, to be published).

Ann. Rev. Psychol. (1)

D. Jameson, L. Hurvich, “Essay concerning color constancy,” Ann. Rev. Psychol. 40, 1–22 (1989).
[CrossRef]

Color Res. Appl. (2)

G. D. Finlayson, B. V. Funt, “Coefficient channels: derivation and relationship to other theoretical studies,” Color Res. Appl. 21, 87–96 (1996).
[CrossRef]

M. Vrhel, R. Gershon, L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).

Ecol. Monogr. (1)

J. A. Endler, “The color of light in forests and its implications,” Ecol. Monogr. 63, 1–27 (1993).
[CrossRef]

IEEE Trans. Pattern. Anal. Mach. Intell. (1)

G. D. Finalyson, “Color in perspective,” IEEE Trans. Pattern. Anal. Mach. Intell. 18, 1034–1038 (1996).
[CrossRef]

Illum. Eng. (1)

H. Helson, D. Judd, M. Warren, “Object-color changes from daylight to incandescent filament illumination,” Illum. Eng. 47, 221–233 (1952).

Int. J. Comput. Vision (2)

D. P. Huttenlocher, S. Ullman, “Recognizing solid objects by alignment with an image,” Int. J. Comput. Vision 5, 195–212 (1990).
[CrossRef]

D. Forsyth, “A novel algorithm for color constancy,” Int. J. Comput. Vision 30, 5–36 (1990).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (1)

J. S. DeBonet, Q. Zaidi, “Temporal and spatial frequency analysis of motion-energy and feature-tracking,” Invest. Ophthalmol. Visual Sci. S36, 253 (1995).

J. Franklin Inst. (1)

G. Buchsbaum, “A spatial processor model for object color perception,” J. Franklin Inst. 310, 1–26 (1980).
[CrossRef]

J. Math. Biol. (1)

G. West, M. H. Brill, “Necessary and sufficient conditions for Von Kries chromatic adaptation to give color constancy,” J. Math. Biol. 15, 249–258 (1982).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (6)

J. Opt. Soc. Am. A (15)

L. Maloney, “Evaluation of linear models of surface spectral reflectance with small numbers of parameters,” J. Opt. Soc. Am. A 3, 1673–1683 (1986).
[CrossRef] [PubMed]

Q. Zaidi, B. Spehar, J. S. DeBonet, “Color constancy in variegated scenes: the role of low-level mechanisms in discounting illumination changes,” J. Opt. Soc. Am. A 14, 2608–2621 (1997).
[CrossRef]

Q. Zaidi, B. Spehar, J. S. DeBonet, “Adaptation to textured chromatic fields,” J. Opt. Soc. Am. A 15, 23–32 (1998).
[CrossRef]

E. W. Jin, S. K. Shevell, “Color memory and color constancy,” J. Opt. Soc. Am. A 13, 1981–1991 (1996).
[CrossRef]

L. E. Arend, A. Reeves, “Simultaneous color constancy,” J. Opt. Soc. Am. A 3, 1743–1751 (1986).
[CrossRef] [PubMed]

D. H. Brainard, W. A. Brunt, J. S. Spiegle, “Color constancy in the nearly natural image. I. Asymmetric matches,” J. Opt. Soc. Am. A 14, 2091–2110 (1997).
[CrossRef]

D. H. Brainard, W. T. Freeman, “Bayesian color constancy,” J. Opt. Soc. Am. A 14, 1393–1411 (1997).
[CrossRef]

L. Maloney, B. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986).
[CrossRef] [PubMed]

M. D’Zmura, G. Iverson, “Color constancy. I. Basic theory of two-stage linear recovery of spectral descriptions for lights and surfaces,” J. Opt. Soc. Am. A 10, 2148–2165 (1993).
[CrossRef]

M. D’Zmura, G. Iverson, “Color constancy. II. Results for two-stage linear recovery of spectral descriptions for lights and surfaces,” J. Opt. Soc. Am. A 10, 2166–2180 (1993).
[CrossRef]

M. D’Zmura, G. Iverson, “Color constancy. III. General linear recovery of spectral descriptions for lights and surfaces,” J. Opt. Soc. Am. A 11, 2389–2400 (1994).
[CrossRef]

D. H. Brainard, “Color constancy in the nearly natural image. 2. Achromatic loci,” J. Opt. Soc. Am. A 15, 307–325 (1998).
[CrossRef]

Q. Zaidi, “Decorrelation of L- and M-cone signals,” J. Opt. Soc. Am. A 14, 3430–3431 (1997).
[CrossRef]

M. H. Brill, “Image segmentation by object color: a unifying framework and connection to color constancy,” J. Opt. Soc. Am. A 7, 2041–2049 (1990).
[CrossRef] [PubMed]

G. D. Finlayson, M. S. Drew, B. V. Funt, “Color constancy: generalized diagonal transforms suffice,” J. Opt. Soc. Am. A 11, 3011–3019 (1994).
[CrossRef]

Nature (1)

M. A. Webster, J. D. Mollon, “Colour constancy influenced by contrast adaptation,” Nature 373, 694–698 (1995).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

E. Land, “Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image,” Proc. Natl. Acad. Sci. USA 80, 5163–5169 (1983).
[CrossRef] [PubMed]

Proc. R. Soc. London Ser. B (2)

G. Buchsbaum, A. Gottschalk, “Trichromacy, opponent colours coding, and optimum colour information transmission in the retina,” Proc. R. Soc. London Ser. B 220, 89–113 (1983).
[CrossRef]

D. H. Foster, S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. London Ser. B 250, 116–121 (1994).

Psychol. Rev. (1)

J. L. Dannemiller, “Computational approaches to color constancy: adaptive and ontogenetic considerations,” Psychol. Rev. 96, 255–266 (1989).
[CrossRef] [PubMed]

Psychon. Sci. (1)

J. Cohen, “Dependency of the spectral reflectance curves of the Munsell color chips,” Psychon. Sci. 1, 369–370 (1964).
[CrossRef]

Trans. Illum. Eng. Soc. (1)

H. E. Ives, “The relation between the color of the illuminant and the color of the illuminated object,” Trans. Illum. Eng. Soc. 7, 62–72 (1912). Reprinted in Color Res. Appl. 20, 70–75 (1995).
[CrossRef]

Vision Res. (5)

A. Valberg, B. Lange-Malecki, “‘Colour constancy,’ in Mondrian patterns: a partial cancellation of physical chromaticity shifts by simultaneous contrast,” Vision Res. 30, 371–380 (1990).
[CrossRef]

M. D. Fairchild, P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vision Res. 32, 2077–2085 (1992).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 700 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

J. McCann, S. McKee, T. Taylor, “Quantitative studies in retinex theory,” Vision Res. 16, 445–458 (1976).
[CrossRef]

J. L. Dannemiller, “Rank ordering of photoreceptor catches from objects are nearly illumination invariant,” Vision Res. 33, 131–137 (1993).
[CrossRef] [PubMed]

Other (9)

D. P. Huttenlocher, S. Ullman, “Object recognition using alignment,” in Proceedings of the 1st International Conference on Computer Vision (IEEE Computer Society Press, Los Alamitos, Calif., 1987), pp. 102–111.

Q. Zaidi, “Color and brightness induction: from Mach bands to 3-D configurations,” in Color Vision: From Molecular Genetics to Perception, K. Gegenfurtner, L. Sharpe, eds. (Cambridge U. Press, New York, to be published).

M. D’Zmura, G. Iverson, B. Singer, “Probabilistic color constancy,” in Geometric Representations of Perceptual Phenomena. Papers in Honor of Tarow Indow’s 70th Birthday, R. D. Luce, M. D’Zmura, D. Hoffman, G. Iverson, A. K. Romney, eds. (Erlbaum, Hillsdale, N.J., 1995), pp. 187–202.

J. Walraven, T. L. Benzshawel, B. E. Rogowitz, M. P. Lucassen, “Testing the contrast explanation of color constancy,” in From Pigments to Perception, A. Valberg, B. Lee, eds. (Plenum, New York, 1991), pp. 369–378.

J. E. Hopcroft, D. P. Huttenlocher, P. C. Wayner, “Affine invariants for model-based recognition,” in Geometric Invariance in Computer Vision, J. L. Mundy, A. Zisserman, eds. (MIT Press, Cambridge, Mass., 1992), pp. 355–374.

R. G. Ketchum, The Tongass: Alaska’s Vanishing Rain Forest (Aperture Foundation, New York, 1987).

R. G. Ketchum, The Legacy of Wilderness: The Photographs of Robert Glenn Ketchum (Aperture Foundation, New York, 1993).

P. Sinha, E. Adelson, “Recovering reflectance and illumination in a world of painted polyhedra,” in Proceedings of the Fourth International Conference on Computer Vision (IEEE Computer Society Press, Los Alamitos, Calif., 1993), pp. 156–163.

G. D. Finlayson, M. S. Drew, B. V. Funt, “Color constancy: enhancing Von Kries adaptation via sensor transformations,” in Human Vision, Visual Processing, and Digital Display IV, J. P. Allebach, B. E. Rogowitz, eds., Proc. SPIE1913, 473–484 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Sun dance, (b) community boardwalk, Port Projection. Photographs from Ketchum19,20 scanned with an HP ScanJet 4P, converted to gray levels in Corel PhotoPal, and printed on a Tektronix Phaser IISD.

Fig. 2
Fig. 2

MacLeod–Boynton chromaticities of 170 natural and manmade objects (Vrhel et al.26) in equal-energy light.

Fig. 3
Fig. 3

Left, L/(L+M) chromaticities of 170 objects (Vrhel et al.26) in equal-energy light versus chromaticities of the same objects in zenith skylight; center, S/(L+M) chromaticities of the same objects under the same illuminants; right, energy spectrum of zenith skylight.

Fig. 4
Fig. 4

Left, L/(L+M) chromaticities of 170 objects (Vrhel et al.26) in equal-energy light versus chromaticities of the same objects in direct sunlight; center, S/(L+M) chromaticities of the same objects under the same illuminants; right, energy spectrum of direct sunlight.

Fig. 5
Fig. 5

Recovery of illuminant chromaticities by the algorithm. The diamond depicts equal-energy light, which was one of the illuminants on random samples of 50 objects. The circles represent the actual chromaticity of the other illuminant in each of the simulation experiments. The crosses represent the chromaticities recovered by the algorithm.

Fig. 6
Fig. 6

Matching of objects by the algorithm despite illuminant-caused chromaticity shifts. Left, chromaticities of six objects from the Vrhel et al.26 set lit by equal-energy light; center, chromaticities of 17 objects from the Vrhel set, lit by skylight. The six objects in the left panel are included in the 17. Right, crosses represent the results of applying to the crosses in the left panel the best affine transformation calculated by the algorithm. To show the accuracy of the matching procedure, circles for the same objects are replotted from the center panel.

Fig. 7
Fig. 7

Matching of objects by the algorithm despite illuminant-caused chromaticity shifts. Left, chromaticities of six objects from the Vrhel set lit by equal-energy light; center, chromaticities of 17 objects from the Vrhel set, lit by sunlight (the six objects in the left panel are included in the 17). Right, crosses represent the results of applying the best affine transformation calculated by the algorithm to the crosses in the left panel. To show the accuracy of the matching procedure, circles for the same objects are replotted from the center panel.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Sia=s(λ)[θi(λ) * Γa(λ)]dλ,
Mia=m(λ)[θi(λ) * Γa(λ)]dλ,
Lia=l(λ)[θi(λ) * Γa(λ)]dλ,
Si=s(λ)θi(λ)dλ,
Mi=m(λ)θi(λ)dλ,
Li=l(λ)θi(λ)dλ.
Si=s(λ)[θi(λ) * E(λ)]dλ,
Mi=m(λ)[θi(λ) * E(λ)]dλ,
Li=l(λ)[θi(λ) * E(λ)]dλ.
Sa=s(λ)Γa(λ)dλ,
Ma=m(λ)Γa(λ)dλ,
La=l(λ)Γa(λ)dλ.
rgiayvia=100σabrgibyvib+τab0,
(τab, σab)=(rgjb-rgia, yvjb/yvia).

Metrics