Abstract

Threshold-elevation (TE-) versus-mask-spatial-frequency (SF) curves and TE-versus-mask-contrast curves, produced by the oblique-masking technique, were reported for uncrossed stimuli (color-test-on-color-mask and luminance-test-on-luminance-mask) [Invest. Ophthalmol. Visual Sci. Suppl. 34, 751 (1993) and Vision. Res. 23, 873 (1983)]. The technique minimizes the artifacts that are due to spatial phase effects, spatial beats, spatial probability summation, and local cues. My goal was to measure these curves for crossed stimuli (color-test-on-luminance-mask and luminance-test-on-color-mask) by this oblique-masking technique and to compare the curves with those reported in previous studies. For this purpose threshold contrasts were measured by a yes–no procedure with randomized double staircases. Test targets were vertical spatially localized (D6) patterns, and masks were oblique sinusoidal patterns; both the test and the mask were presented simultaneously, for 2 s (Gaussian window), on a color monitor interfaced with an ATVista system and a Powell achromatizing lens. The test SF’s were 0.125, 0.5, 2, 4, and 8 cycles per degree (cpd); mask SF’s were 0.031–16 cpd; and mask contrasts were 6.25%–50%. Furthermore, the Red–Green channel was defined by the minimum flicker and the hue cancellation techniques. Results show mostly masking effect (TE>1) at contrasts above threshold; sometimes, separability (TE=1) and above-threshold facilitation (TE<1) effects were also observed, depending on the test SF, the mask SF, the mask contrast, and the subject. In general, the magnitudes of TE’s are smaller and the TE-versus-mask-SF curves are slightly narrower for the oblique-cross-masking conditions than those for the respective oblique uncross masking. In addition, the TE-versus-mask-contrast curves for the crossed conditions are mostly shallower than those for the respective uncrossed conditions. Furthermore, mostly the color–luminance asymmetry (color masks luminance more than luminance masks color) is found, in mild form, for SFs0.5 cpd. For the lower SF of 0.125 cpd, there is either a lack of asymmetry or a very mild asymmetry of the opposite kind (luminance masks color slightly more than color masks luminance) seems to prevail. In general, the oblique-masking data shows mild asymmetry and reduced facilitation; both are consistent with reduced local cues, similar to those shown by randomized phase data, thus making the data suitable for SF analysis; moreover, at high contrast, the masking data are consistent with those reported in previous studies.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. P. Vimal, “Orientation tuning of the spatial-frequency-tuned mechanisms of the Red–Green channel,” J. Opt. Soc. Am. A 14, 2622–2632 (1997).
    [CrossRef]
  2. M. A. Losada, K. T. Mullen, “The spatial tuning of chromatic mechanisms identified by simultaneous masking,” Vision Res. 34, 331–334 (1994).
    [CrossRef] [PubMed]
  3. E. Switkes, A. Bradley, K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162 (1988).
    [CrossRef] [PubMed]
  4. H. R. Wilson, D. K. McFarlane, G. C. Phillips, “Spatial frequency tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983); G. C. Phillips, H. R. Wilson, “Orientation bandwidths of spatial mechanisms measured by masking,” J. Opt. Soc. Am. A 1, 226–232 (1984).
    [CrossRef] [PubMed]
  5. K. T. Mullen, M. A. Losada, “Evidence for separate pathways for color and luminance detection mechanisms,” J. Opt. Soc. Am. A 11, 3136–3151 (1994).
    [CrossRef]
  6. R. Pandey, R. L. P. Vimal, “Threshold elevation curves for the Red–Green channel estimated by oblique masking,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 751 (1993).
  7. R. L. P. Vimal, “Spatial-frequency tuning of sustained nonoriented units of the Red–Green channel,” J. Opt. Soc. Am. A 15, 1–15 (1998).
    [CrossRef]
  8. K. T. Mullen, “The contrast sensitivity of human colour vision to red/green and blue/yellow chromatic gratings,” J. Physiol. (London) 359, 381–400 (1985).
  9. A. Bradley, E. Switkes, K. K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28, 841–856 (1988).
    [CrossRef] [PubMed]
  10. I. Powell, “Lenses for correcting chromatic aberration of the eye,” Appl. Opt. 20, 4152–4155 (1981).
    [CrossRef] [PubMed]
  11. R. L. P. Vimal, R. Pandey, “Interaction between the spatial frequency tuned mechanisms of the Red–Green channel and those of the achromatic channel,” Invest. Ophthalmol. Visual Sci. Suppl. 35, 1370 (1994).
  12. M. Gur, V. Akri, “Isoluminant stimuli may not expose the full contribution of color to visual functioning: spatial contrast sensitivity measurements indicate interaction between color and luminance processing,” Vision Res. 32, 1253–1262 (1992).
    [CrossRef] [PubMed]
  13. D. Jameson, L. M. Hurvich, “Some quantitative aspects of an opponent-color theory. I. Chromatic responses and spectral saturation,” J. Opt. Soc. Am. 45, 546–552 (1955).
    [CrossRef]
  14. For the color vision tests of the observers RV and RP see R. L. P. Vimal, J. M. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989). For the projective transformation to estimate Judd (x, y) from CIE (x, y) see J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978). For the calculation of tristimulus values from (x, y) coordinates see G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982), p. 139; for CIE chromaticity diagram see p. 176. For Smith–Pokorny fundamentals see V. C. Smith, J. M. Pokorny, “Spectral sensitivity of the foveal cones between 400 and 500 nm,” Vision Res. 15, 161–171 (1975); D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979). For contrasts see P. Lennie, M. D’Zmura, “Mechanisms of color vision,” CRC Crit. Rev. Neurobiol. 3, 333–400 (1988).
    [CrossRef] [PubMed]
  15. T. N. Cornsweet, “The staircase method in psychophysics,” Am. J. Psychol. 75, 485–491 (1962).
    [CrossRef] [PubMed]
  16. J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of colour space,” Vision Res. 22, 1123–1131 (1982).
    [CrossRef]
  17. G. R. Cole, C. F. Stromeyer, R. E. Kronauer, “Visual interactions with luminance and chromatic stimuli,” J. Opt. Soc. Am. A 7, 128–140 (1990); G. R. Cole, T. R. Hine, W. H. McIlhagga, “Estimation of linear detection mechanisms for stimuli of medium spatial frequency,” Vision Res. 34, 1267–1278 (1994).
    [CrossRef] [PubMed]
  18. A. Chaparro, C. F. Stromeyer, R. E. Kronauer, R. T. Eskew, “Separable Red–Green and luminance detectors for small flashes,” Vision Res. 34, 751–762 (1994).
    [CrossRef] [PubMed]
  19. K. T. Mullen, S. J. Cropper, M. A. Losada, “Absence of linear subthreshold summation between Red–Green and luminance mechanisms over a wide range of spatio-temporal conditions,” Vision Res. 37, 1157–1165 (1997).
    [CrossRef] [PubMed]
  20. R. T. Eskew, C. F. Stromeyer, C. J. Picotte, R. E. Kronauer, “Detection uncertainty and the facilitation of chro-matic detection by luminance contours,” J. Opt. Soc. Am. A 8, 394–403 (1991).
    [CrossRef] [PubMed]
  21. C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chaparro, R. T. Eskew, “Contribution of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221–243 (1995).
  22. J. Nachmias, “Masked detection of gratings: the standard model revisited,” Vision Res. 33, 1359–1365 (1993).
    [CrossRef] [PubMed]
  23. P. H. Schiller, C. L. Colby, “The responses of single cells in the lateral geniculate nucleus of the rhesus monkey to color and luminance contrast,” Vision Res. 23, 1631–1641 (1983).
    [CrossRef] [PubMed]
  24. J. Ross, H. R. Speed, M. J. Morgan, “The effects of adaptation and masking on incremental threshold for contrast,” Vision Res. 33, 2051–2056 (1993) and references therein.
    [CrossRef] [PubMed]
  25. J. M. Foley, “Human luminance pattern-vision mechanisms: masking experiments require a new model,” J. Opt. Soc. Am. A 11, 1710–1719 (1994); D. J. Heeger, “Normalization of cell responses in cat visual cortex,” Visual Neurosci. 9, 181–197 (1992) and references therein.
    [CrossRef]
  26. K. R. Gegenfurtner, D. C. Kiper, “Contrast detection in luminance and chromatic noise,” J. Opt. Soc. Am. A 9, 1880–1888 (1992).
    [CrossRef] [PubMed]
  27. M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994); J. Krauskopf, H. J. Wu, B. Farell, “Coherence, cardinal directions and higher-order mechanisms,” Vision Res. 36, 1235–1245 (1996) and references therein.
    [CrossRef] [PubMed]
  28. M. J. Sankeralli, K. T. Mullen, “Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space,” J. Opt. Soc. Am. A 14, 2633–2646 (1997).
    [CrossRef]
  29. P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990) and references therein; L. G. Thorell, R. L. De Valois, D. G. Albrecht, “Spatial mapping of monkey V1 cells with pure color and luminance stimuli,” Vision Res. 24, 751–769 (1984).
    [CrossRef] [PubMed]

1998 (1)

1997 (3)

1995 (1)

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chaparro, R. T. Eskew, “Contribution of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221–243 (1995).

1994 (6)

A. Chaparro, C. F. Stromeyer, R. E. Kronauer, R. T. Eskew, “Separable Red–Green and luminance detectors for small flashes,” Vision Res. 34, 751–762 (1994).
[CrossRef] [PubMed]

J. M. Foley, “Human luminance pattern-vision mechanisms: masking experiments require a new model,” J. Opt. Soc. Am. A 11, 1710–1719 (1994); D. J. Heeger, “Normalization of cell responses in cat visual cortex,” Visual Neurosci. 9, 181–197 (1992) and references therein.
[CrossRef]

M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994); J. Krauskopf, H. J. Wu, B. Farell, “Coherence, cardinal directions and higher-order mechanisms,” Vision Res. 36, 1235–1245 (1996) and references therein.
[CrossRef] [PubMed]

M. A. Losada, K. T. Mullen, “The spatial tuning of chromatic mechanisms identified by simultaneous masking,” Vision Res. 34, 331–334 (1994).
[CrossRef] [PubMed]

K. T. Mullen, M. A. Losada, “Evidence for separate pathways for color and luminance detection mechanisms,” J. Opt. Soc. Am. A 11, 3136–3151 (1994).
[CrossRef]

R. L. P. Vimal, R. Pandey, “Interaction between the spatial frequency tuned mechanisms of the Red–Green channel and those of the achromatic channel,” Invest. Ophthalmol. Visual Sci. Suppl. 35, 1370 (1994).

1993 (3)

R. Pandey, R. L. P. Vimal, “Threshold elevation curves for the Red–Green channel estimated by oblique masking,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 751 (1993).

J. Ross, H. R. Speed, M. J. Morgan, “The effects of adaptation and masking on incremental threshold for contrast,” Vision Res. 33, 2051–2056 (1993) and references therein.
[CrossRef] [PubMed]

J. Nachmias, “Masked detection of gratings: the standard model revisited,” Vision Res. 33, 1359–1365 (1993).
[CrossRef] [PubMed]

1992 (2)

K. R. Gegenfurtner, D. C. Kiper, “Contrast detection in luminance and chromatic noise,” J. Opt. Soc. Am. A 9, 1880–1888 (1992).
[CrossRef] [PubMed]

M. Gur, V. Akri, “Isoluminant stimuli may not expose the full contribution of color to visual functioning: spatial contrast sensitivity measurements indicate interaction between color and luminance processing,” Vision Res. 32, 1253–1262 (1992).
[CrossRef] [PubMed]

1991 (1)

1990 (2)

P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990) and references therein; L. G. Thorell, R. L. De Valois, D. G. Albrecht, “Spatial mapping of monkey V1 cells with pure color and luminance stimuli,” Vision Res. 24, 751–769 (1984).
[CrossRef] [PubMed]

G. R. Cole, C. F. Stromeyer, R. E. Kronauer, “Visual interactions with luminance and chromatic stimuli,” J. Opt. Soc. Am. A 7, 128–140 (1990); G. R. Cole, T. R. Hine, W. H. McIlhagga, “Estimation of linear detection mechanisms for stimuli of medium spatial frequency,” Vision Res. 34, 1267–1278 (1994).
[CrossRef] [PubMed]

1989 (1)

For the color vision tests of the observers RV and RP see R. L. P. Vimal, J. M. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989). For the projective transformation to estimate Judd (x, y) from CIE (x, y) see J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978). For the calculation of tristimulus values from (x, y) coordinates see G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982), p. 139; for CIE chromaticity diagram see p. 176. For Smith–Pokorny fundamentals see V. C. Smith, J. M. Pokorny, “Spectral sensitivity of the foveal cones between 400 and 500 nm,” Vision Res. 15, 161–171 (1975); D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979). For contrasts see P. Lennie, M. D’Zmura, “Mechanisms of color vision,” CRC Crit. Rev. Neurobiol. 3, 333–400 (1988).
[CrossRef] [PubMed]

1988 (2)

A. Bradley, E. Switkes, K. K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28, 841–856 (1988).
[CrossRef] [PubMed]

E. Switkes, A. Bradley, K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162 (1988).
[CrossRef] [PubMed]

1985 (1)

K. T. Mullen, “The contrast sensitivity of human colour vision to red/green and blue/yellow chromatic gratings,” J. Physiol. (London) 359, 381–400 (1985).

1983 (2)

H. R. Wilson, D. K. McFarlane, G. C. Phillips, “Spatial frequency tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983); G. C. Phillips, H. R. Wilson, “Orientation bandwidths of spatial mechanisms measured by masking,” J. Opt. Soc. Am. A 1, 226–232 (1984).
[CrossRef] [PubMed]

P. H. Schiller, C. L. Colby, “The responses of single cells in the lateral geniculate nucleus of the rhesus monkey to color and luminance contrast,” Vision Res. 23, 1631–1641 (1983).
[CrossRef] [PubMed]

1982 (1)

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of colour space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef]

1981 (1)

1962 (1)

T. N. Cornsweet, “The staircase method in psychophysics,” Am. J. Psychol. 75, 485–491 (1962).
[CrossRef] [PubMed]

1955 (1)

Akri, V.

M. Gur, V. Akri, “Isoluminant stimuli may not expose the full contribution of color to visual functioning: spatial contrast sensitivity measurements indicate interaction between color and luminance processing,” Vision Res. 32, 1253–1262 (1992).
[CrossRef] [PubMed]

Bradley, A.

A. Bradley, E. Switkes, K. K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28, 841–856 (1988).
[CrossRef] [PubMed]

E. Switkes, A. Bradley, K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162 (1988).
[CrossRef] [PubMed]

Chaparro, A.

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chaparro, R. T. Eskew, “Contribution of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221–243 (1995).

A. Chaparro, C. F. Stromeyer, R. E. Kronauer, R. T. Eskew, “Separable Red–Green and luminance detectors for small flashes,” Vision Res. 34, 751–762 (1994).
[CrossRef] [PubMed]

Colby, C. L.

P. H. Schiller, C. L. Colby, “The responses of single cells in the lateral geniculate nucleus of the rhesus monkey to color and luminance contrast,” Vision Res. 23, 1631–1641 (1983).
[CrossRef] [PubMed]

Cole, G. R.

Cornsweet, T. N.

T. N. Cornsweet, “The staircase method in psychophysics,” Am. J. Psychol. 75, 485–491 (1962).
[CrossRef] [PubMed]

Cropper, S. J.

K. T. Mullen, S. J. Cropper, M. A. Losada, “Absence of linear subthreshold summation between Red–Green and luminance mechanisms over a wide range of spatio-temporal conditions,” Vision Res. 37, 1157–1165 (1997).
[CrossRef] [PubMed]

De Valois, K. K.

A. Bradley, E. Switkes, K. K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28, 841–856 (1988).
[CrossRef] [PubMed]

E. Switkes, A. Bradley, K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162 (1988).
[CrossRef] [PubMed]

Eskew, R. T.

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chaparro, R. T. Eskew, “Contribution of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221–243 (1995).

A. Chaparro, C. F. Stromeyer, R. E. Kronauer, R. T. Eskew, “Separable Red–Green and luminance detectors for small flashes,” Vision Res. 34, 751–762 (1994).
[CrossRef] [PubMed]

R. T. Eskew, C. F. Stromeyer, C. J. Picotte, R. E. Kronauer, “Detection uncertainty and the facilitation of chro-matic detection by luminance contours,” J. Opt. Soc. Am. A 8, 394–403 (1991).
[CrossRef] [PubMed]

Foley, J. M.

Gegenfurtner, K. R.

Gur, M.

M. Gur, V. Akri, “Isoluminant stimuli may not expose the full contribution of color to visual functioning: spatial contrast sensitivity measurements indicate interaction between color and luminance processing,” Vision Res. 32, 1253–1262 (1992).
[CrossRef] [PubMed]

Heeley, D. W.

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of colour space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef]

Hurvich, L. M.

Jameson, D.

Kiper, D. C.

Krauskopf, J.

P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990) and references therein; L. G. Thorell, R. L. De Valois, D. G. Albrecht, “Spatial mapping of monkey V1 cells with pure color and luminance stimuli,” Vision Res. 24, 751–769 (1984).
[CrossRef] [PubMed]

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of colour space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef]

Kronauer, R. E.

Lennie, P.

P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990) and references therein; L. G. Thorell, R. L. De Valois, D. G. Albrecht, “Spatial mapping of monkey V1 cells with pure color and luminance stimuli,” Vision Res. 24, 751–769 (1984).
[CrossRef] [PubMed]

Losada, M. A.

K. T. Mullen, S. J. Cropper, M. A. Losada, “Absence of linear subthreshold summation between Red–Green and luminance mechanisms over a wide range of spatio-temporal conditions,” Vision Res. 37, 1157–1165 (1997).
[CrossRef] [PubMed]

M. A. Losada, K. T. Mullen, “The spatial tuning of chromatic mechanisms identified by simultaneous masking,” Vision Res. 34, 331–334 (1994).
[CrossRef] [PubMed]

K. T. Mullen, M. A. Losada, “Evidence for separate pathways for color and luminance detection mechanisms,” J. Opt. Soc. Am. A 11, 3136–3151 (1994).
[CrossRef]

McFarlane, D. K.

H. R. Wilson, D. K. McFarlane, G. C. Phillips, “Spatial frequency tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983); G. C. Phillips, H. R. Wilson, “Orientation bandwidths of spatial mechanisms measured by masking,” J. Opt. Soc. Am. A 1, 226–232 (1984).
[CrossRef] [PubMed]

Mollon, J. D.

M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994); J. Krauskopf, H. J. Wu, B. Farell, “Coherence, cardinal directions and higher-order mechanisms,” Vision Res. 36, 1235–1245 (1996) and references therein.
[CrossRef] [PubMed]

Morgan, M. J.

J. Ross, H. R. Speed, M. J. Morgan, “The effects of adaptation and masking on incremental threshold for contrast,” Vision Res. 33, 2051–2056 (1993) and references therein.
[CrossRef] [PubMed]

Mullen, K. T.

M. J. Sankeralli, K. T. Mullen, “Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space,” J. Opt. Soc. Am. A 14, 2633–2646 (1997).
[CrossRef]

K. T. Mullen, S. J. Cropper, M. A. Losada, “Absence of linear subthreshold summation between Red–Green and luminance mechanisms over a wide range of spatio-temporal conditions,” Vision Res. 37, 1157–1165 (1997).
[CrossRef] [PubMed]

M. A. Losada, K. T. Mullen, “The spatial tuning of chromatic mechanisms identified by simultaneous masking,” Vision Res. 34, 331–334 (1994).
[CrossRef] [PubMed]

K. T. Mullen, M. A. Losada, “Evidence for separate pathways for color and luminance detection mechanisms,” J. Opt. Soc. Am. A 11, 3136–3151 (1994).
[CrossRef]

K. T. Mullen, “The contrast sensitivity of human colour vision to red/green and blue/yellow chromatic gratings,” J. Physiol. (London) 359, 381–400 (1985).

Nachmias, J.

J. Nachmias, “Masked detection of gratings: the standard model revisited,” Vision Res. 33, 1359–1365 (1993).
[CrossRef] [PubMed]

Pandey, R.

R. L. P. Vimal, R. Pandey, “Interaction between the spatial frequency tuned mechanisms of the Red–Green channel and those of the achromatic channel,” Invest. Ophthalmol. Visual Sci. Suppl. 35, 1370 (1994).

R. Pandey, R. L. P. Vimal, “Threshold elevation curves for the Red–Green channel estimated by oblique masking,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 751 (1993).

Phillips, G. C.

H. R. Wilson, D. K. McFarlane, G. C. Phillips, “Spatial frequency tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983); G. C. Phillips, H. R. Wilson, “Orientation bandwidths of spatial mechanisms measured by masking,” J. Opt. Soc. Am. A 1, 226–232 (1984).
[CrossRef] [PubMed]

Picotte, C. J.

Pokorny, J. M.

For the color vision tests of the observers RV and RP see R. L. P. Vimal, J. M. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989). For the projective transformation to estimate Judd (x, y) from CIE (x, y) see J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978). For the calculation of tristimulus values from (x, y) coordinates see G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982), p. 139; for CIE chromaticity diagram see p. 176. For Smith–Pokorny fundamentals see V. C. Smith, J. M. Pokorny, “Spectral sensitivity of the foveal cones between 400 and 500 nm,” Vision Res. 15, 161–171 (1975); D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979). For contrasts see P. Lennie, M. D’Zmura, “Mechanisms of color vision,” CRC Crit. Rev. Neurobiol. 3, 333–400 (1988).
[CrossRef] [PubMed]

Powell, I.

Ross, J.

J. Ross, H. R. Speed, M. J. Morgan, “The effects of adaptation and masking on incremental threshold for contrast,” Vision Res. 33, 2051–2056 (1993) and references therein.
[CrossRef] [PubMed]

Ryu, A.

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chaparro, R. T. Eskew, “Contribution of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221–243 (1995).

Sankeralli, M. J.

Schiller, P. H.

P. H. Schiller, C. L. Colby, “The responses of single cells in the lateral geniculate nucleus of the rhesus monkey to color and luminance contrast,” Vision Res. 23, 1631–1641 (1983).
[CrossRef] [PubMed]

Sclar, G.

P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990) and references therein; L. G. Thorell, R. L. De Valois, D. G. Albrecht, “Spatial mapping of monkey V1 cells with pure color and luminance stimuli,” Vision Res. 24, 751–769 (1984).
[CrossRef] [PubMed]

Shevell, S. K.

For the color vision tests of the observers RV and RP see R. L. P. Vimal, J. M. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989). For the projective transformation to estimate Judd (x, y) from CIE (x, y) see J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978). For the calculation of tristimulus values from (x, y) coordinates see G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982), p. 139; for CIE chromaticity diagram see p. 176. For Smith–Pokorny fundamentals see V. C. Smith, J. M. Pokorny, “Spectral sensitivity of the foveal cones between 400 and 500 nm,” Vision Res. 15, 161–171 (1975); D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979). For contrasts see P. Lennie, M. D’Zmura, “Mechanisms of color vision,” CRC Crit. Rev. Neurobiol. 3, 333–400 (1988).
[CrossRef] [PubMed]

Smith, V. C.

For the color vision tests of the observers RV and RP see R. L. P. Vimal, J. M. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989). For the projective transformation to estimate Judd (x, y) from CIE (x, y) see J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978). For the calculation of tristimulus values from (x, y) coordinates see G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982), p. 139; for CIE chromaticity diagram see p. 176. For Smith–Pokorny fundamentals see V. C. Smith, J. M. Pokorny, “Spectral sensitivity of the foveal cones between 400 and 500 nm,” Vision Res. 15, 161–171 (1975); D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979). For contrasts see P. Lennie, M. D’Zmura, “Mechanisms of color vision,” CRC Crit. Rev. Neurobiol. 3, 333–400 (1988).
[CrossRef] [PubMed]

Speed, H. R.

J. Ross, H. R. Speed, M. J. Morgan, “The effects of adaptation and masking on incremental threshold for contrast,” Vision Res. 33, 2051–2056 (1993) and references therein.
[CrossRef] [PubMed]

Stromeyer, C. F.

Switkes, E.

E. Switkes, A. Bradley, K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162 (1988).
[CrossRef] [PubMed]

A. Bradley, E. Switkes, K. K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28, 841–856 (1988).
[CrossRef] [PubMed]

Vimal, R. L. P.

R. L. P. Vimal, “Spatial-frequency tuning of sustained nonoriented units of the Red–Green channel,” J. Opt. Soc. Am. A 15, 1–15 (1998).
[CrossRef]

R. L. P. Vimal, “Orientation tuning of the spatial-frequency-tuned mechanisms of the Red–Green channel,” J. Opt. Soc. Am. A 14, 2622–2632 (1997).
[CrossRef]

R. L. P. Vimal, R. Pandey, “Interaction between the spatial frequency tuned mechanisms of the Red–Green channel and those of the achromatic channel,” Invest. Ophthalmol. Visual Sci. Suppl. 35, 1370 (1994).

R. Pandey, R. L. P. Vimal, “Threshold elevation curves for the Red–Green channel estimated by oblique masking,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 751 (1993).

For the color vision tests of the observers RV and RP see R. L. P. Vimal, J. M. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989). For the projective transformation to estimate Judd (x, y) from CIE (x, y) see J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978). For the calculation of tristimulus values from (x, y) coordinates see G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982), p. 139; for CIE chromaticity diagram see p. 176. For Smith–Pokorny fundamentals see V. C. Smith, J. M. Pokorny, “Spectral sensitivity of the foveal cones between 400 and 500 nm,” Vision Res. 15, 161–171 (1975); D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979). For contrasts see P. Lennie, M. D’Zmura, “Mechanisms of color vision,” CRC Crit. Rev. Neurobiol. 3, 333–400 (1988).
[CrossRef] [PubMed]

Webster, M. A.

M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994); J. Krauskopf, H. J. Wu, B. Farell, “Coherence, cardinal directions and higher-order mechanisms,” Vision Res. 36, 1235–1245 (1996) and references therein.
[CrossRef] [PubMed]

Williams, D. R.

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of colour space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef]

Wilson, H. R.

H. R. Wilson, D. K. McFarlane, G. C. Phillips, “Spatial frequency tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983); G. C. Phillips, H. R. Wilson, “Orientation bandwidths of spatial mechanisms measured by masking,” J. Opt. Soc. Am. A 1, 226–232 (1984).
[CrossRef] [PubMed]

Am. J. Psychol. (1)

T. N. Cornsweet, “The staircase method in psychophysics,” Am. J. Psychol. 75, 485–491 (1962).
[CrossRef] [PubMed]

Appl. Opt. (1)

Invest. Ophthalmol. Visual Sci. Suppl. (2)

R. L. P. Vimal, R. Pandey, “Interaction between the spatial frequency tuned mechanisms of the Red–Green channel and those of the achromatic channel,” Invest. Ophthalmol. Visual Sci. Suppl. 35, 1370 (1994).

R. Pandey, R. L. P. Vimal, “Threshold elevation curves for the Red–Green channel estimated by oblique masking,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 751 (1993).

J. Neurosci. (1)

P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990) and references therein; L. G. Thorell, R. L. De Valois, D. G. Albrecht, “Spatial mapping of monkey V1 cells with pure color and luminance stimuli,” Vision Res. 24, 751–769 (1984).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (9)

G. R. Cole, C. F. Stromeyer, R. E. Kronauer, “Visual interactions with luminance and chromatic stimuli,” J. Opt. Soc. Am. A 7, 128–140 (1990); G. R. Cole, T. R. Hine, W. H. McIlhagga, “Estimation of linear detection mechanisms for stimuli of medium spatial frequency,” Vision Res. 34, 1267–1278 (1994).
[CrossRef] [PubMed]

R. L. P. Vimal, “Spatial-frequency tuning of sustained nonoriented units of the Red–Green channel,” J. Opt. Soc. Am. A 15, 1–15 (1998).
[CrossRef]

R. L. P. Vimal, “Orientation tuning of the spatial-frequency-tuned mechanisms of the Red–Green channel,” J. Opt. Soc. Am. A 14, 2622–2632 (1997).
[CrossRef]

E. Switkes, A. Bradley, K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162 (1988).
[CrossRef] [PubMed]

R. T. Eskew, C. F. Stromeyer, C. J. Picotte, R. E. Kronauer, “Detection uncertainty and the facilitation of chro-matic detection by luminance contours,” J. Opt. Soc. Am. A 8, 394–403 (1991).
[CrossRef] [PubMed]

J. M. Foley, “Human luminance pattern-vision mechanisms: masking experiments require a new model,” J. Opt. Soc. Am. A 11, 1710–1719 (1994); D. J. Heeger, “Normalization of cell responses in cat visual cortex,” Visual Neurosci. 9, 181–197 (1992) and references therein.
[CrossRef]

K. R. Gegenfurtner, D. C. Kiper, “Contrast detection in luminance and chromatic noise,” J. Opt. Soc. Am. A 9, 1880–1888 (1992).
[CrossRef] [PubMed]

K. T. Mullen, M. A. Losada, “Evidence for separate pathways for color and luminance detection mechanisms,” J. Opt. Soc. Am. A 11, 3136–3151 (1994).
[CrossRef]

M. J. Sankeralli, K. T. Mullen, “Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space,” J. Opt. Soc. Am. A 14, 2633–2646 (1997).
[CrossRef]

J. Physiol. (London) (2)

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chaparro, R. T. Eskew, “Contribution of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221–243 (1995).

K. T. Mullen, “The contrast sensitivity of human colour vision to red/green and blue/yellow chromatic gratings,” J. Physiol. (London) 359, 381–400 (1985).

Vision Res. (12)

A. Bradley, E. Switkes, K. K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28, 841–856 (1988).
[CrossRef] [PubMed]

H. R. Wilson, D. K. McFarlane, G. C. Phillips, “Spatial frequency tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983); G. C. Phillips, H. R. Wilson, “Orientation bandwidths of spatial mechanisms measured by masking,” J. Opt. Soc. Am. A 1, 226–232 (1984).
[CrossRef] [PubMed]

M. A. Losada, K. T. Mullen, “The spatial tuning of chromatic mechanisms identified by simultaneous masking,” Vision Res. 34, 331–334 (1994).
[CrossRef] [PubMed]

A. Chaparro, C. F. Stromeyer, R. E. Kronauer, R. T. Eskew, “Separable Red–Green and luminance detectors for small flashes,” Vision Res. 34, 751–762 (1994).
[CrossRef] [PubMed]

K. T. Mullen, S. J. Cropper, M. A. Losada, “Absence of linear subthreshold summation between Red–Green and luminance mechanisms over a wide range of spatio-temporal conditions,” Vision Res. 37, 1157–1165 (1997).
[CrossRef] [PubMed]

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of colour space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef]

For the color vision tests of the observers RV and RP see R. L. P. Vimal, J. M. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989). For the projective transformation to estimate Judd (x, y) from CIE (x, y) see J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978). For the calculation of tristimulus values from (x, y) coordinates see G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982), p. 139; for CIE chromaticity diagram see p. 176. For Smith–Pokorny fundamentals see V. C. Smith, J. M. Pokorny, “Spectral sensitivity of the foveal cones between 400 and 500 nm,” Vision Res. 15, 161–171 (1975); D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979). For contrasts see P. Lennie, M. D’Zmura, “Mechanisms of color vision,” CRC Crit. Rev. Neurobiol. 3, 333–400 (1988).
[CrossRef] [PubMed]

M. Gur, V. Akri, “Isoluminant stimuli may not expose the full contribution of color to visual functioning: spatial contrast sensitivity measurements indicate interaction between color and luminance processing,” Vision Res. 32, 1253–1262 (1992).
[CrossRef] [PubMed]

J. Nachmias, “Masked detection of gratings: the standard model revisited,” Vision Res. 33, 1359–1365 (1993).
[CrossRef] [PubMed]

P. H. Schiller, C. L. Colby, “The responses of single cells in the lateral geniculate nucleus of the rhesus monkey to color and luminance contrast,” Vision Res. 23, 1631–1641 (1983).
[CrossRef] [PubMed]

J. Ross, H. R. Speed, M. J. Morgan, “The effects of adaptation and masking on incremental threshold for contrast,” Vision Res. 33, 2051–2056 (1993) and references therein.
[CrossRef] [PubMed]

M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994); J. Krauskopf, H. J. Wu, B. Farell, “Coherence, cardinal directions and higher-order mechanisms,” Vision Res. 36, 1235–1245 (1996) and references therein.
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Upper graph, R–G color contrast sensitivity function (CSF) [stimulus-color contrast sensitivity versus color-test spatial frequency (SF)]; lower graph, luminance CSF (luminance contrast sensitivity versus luminance-test SF). Filled circles joined with solid curves (RP) and open circles joined with dashed curves (DH) represent the data; error bars are 1 standard deviation; 1 standard error of the mean is either smaller than or close to the size of the symbols. The color CSF’s are a low-pass function of SF and the luminance CSF’s are a bandpass function of SF. The dashed curves are drawn at half of the maximum contrast sensitivities. For details see Subsection 3.A.

Fig. 2
Fig. 2

TE- (threshold evaluation) versus mask-SF (TvSF) curves for crossed conditions [color-test-on-luminance-mask (CTLM) in the left panels and luminance-test-on-color-mask (LTCM) in the right panels] for the observers RP (filled circles) and DH (open circles). The average uncrossed TvSF curves [color-test-on-color-mask (CTCM) in the left panels and luminance-test-on-luminance-mask (LTLM) in right panels] are replotted as solid curves from Pandey and Vimal6 and Wilson et al.4 The dashed curves at test SF=0.5 cpd are the TvSF curves at fixed times threshold contrasts (2.7x for CTLM in the left panel and 8.9× for LTCM in the right panel) for observer DH. The dotted lines are drawn at TE=1, indicating the color–luminance separability. Error bars, 1 standard error of the mean. Downward arrows, test SF’s that are also shown on the plots. For details see Subsections 3.B and 3.D.

Fig. 3
Fig. 3

TE-versus-mask-contrast (TvC) curves for the CTLM (open circles joined with dashed curves) and the LTCM (filled circles joined with solid curves) conditions for the observers RP (left panels) and DH (right panels). The SF of the test was kept equal to that of the mask and is shown on the plots. The data above the horizontal dotted line (the line of null effect or separability) show the masking effect and the data below the dotted line show the facilitation. The vertical dotted lines are drawn at threshold contrast. Error bars, 1 standard error of the mean. Mask contrasts, in times threshold metric. For details see Subsections 3.C and 3.D.

Fig. 4
Fig. 4

Crossed (CTLM and LTCM) TvC curves for the observer DH for test SF (T) not equal to mask SF (M). For details see Fig. 3.

Fig. 5
Fig. 5

TvC curves replotted from Fig. 3 for the crossed conditions (CTLM in the left panels and LTCM in the right panels) for the observers RP (filled circles) and DH (open circles). The uncrossed CTCM TvC curves (crosses for RP and pluses for RV) are replotted in the left panels from Pandey and Vimal.6 The uncrossed LTLM TvC curves are plotted in the right panels (crosses for RP and pluses for RV at 0.125 cpd, crosses for DB and pluses for DKM from Wilson et al.4 for SFs0.5 cpd). Crossed TvC curves are mostly shallower than the respective uncrossed TvC curves. For details see Fig. 3 and Subsection 4.B.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α=1-(1-αadj)N
αadj=1-(1-α)1/N,

Metrics