Abstract

We measured the apparent contrast and spatial frequency of a parafoveal Gabor signal located at the center of an array of Gabor signals as a function of both element density and the direction of contrast and spatial frequency of the surrounding elements. The target Gabor appeared lower in contrast and higher in spatial frequency when the elements were in close proximity, regardless of the direction of contrast and spatial frequency of the surrounding elements. Overall, the evidence suggests that the appearance of a parafoveal target is strongly affected by its visual context. These findings provide additional support for the existence of spatial interactions among neurons implicated in textural processing.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Ejima, S. Takahashi, “Apparent contrast of a sinusoidal grating in the simultaneous presence of peripheral gratings,” Vision Res. 25, 1223–1232 (1985).
    [CrossRef] [PubMed]
  2. C. Chubb, G. Sperling, J. A. Solomon, “Texture inter actions determine perceived contrast,” Proc. Natl. Acad. Sci. USA 86, 9631–9635 (1989).
    [CrossRef]
  3. W. M. Cannon, S. C. Fullenkamp, “Spatial interactions in apparent contrast: inhibitory effects among grating patterns of different spatial frequencies, spatial positions and orientations,” Vision Res. 31, 1985–1998 (1991).
    [CrossRef] [PubMed]
  4. D. M. MacKay, “Lateral interaction between neural channels sensitive to texture density?” Nature 245, 159–161 (1973).
    [CrossRef] [PubMed]
  5. S. Klein, C. F. Stromeyer, L. Ganz, “The simultaneous spatial frequency shift: a dissociation between the detection and perception of gratings,” Vision Res. 14, 1421–1432 (1974).
    [CrossRef] [PubMed]
  6. F. Wilkinson, H. R. Wilson, D. Ellemberg, “Lateral interactions in peripherally-viewed texture arrays,” J. Opt. Soc. Am. A 14, 2057–2068 (1996).
    [CrossRef]
  7. T. A. Nazir, “Effects of lateral masking and spatial precueing on gap-resolution in central and peripheral vision,” Vision Res. 32, 771–777 (1992).
    [CrossRef] [PubMed]
  8. R. J. Jacobs, “Visual resolution and contour interaction in the fovea and periphery,” Vision Res. 19, 1187–1195 (1979).
    [CrossRef] [PubMed]
  9. H. Bouma, “Interaction effects in parafoveal letter recognition,” Nature 226, 177–178 (1970).
    [CrossRef] [PubMed]
  10. F. Wilkinson, R. Peterson, “Spatial limits to the perception of textural coherence,” Invest. Ophthalmol. Visual Sci. Supp. 30, 254 (1989).
  11. F. Wilkinson, H. R. Wilson, “Measurement of the texture coherence limit for bandpass arrays,” Perception (to be published).
  12. R. F. Quick, “A vector-magnitude model of contrast detection,” Kybernetik 16, 1299–1302 (1974).
    [CrossRef]
  13. W. A. Weibull, “A statistical distribution function of wide applicability,” J. Appl. Mech. 18, 292–297 (1951).
  14. M. W. Cannon, S. C. Fullenkamp, “A model for inhibitory lateral interaction effects in perceived contrast,” Vision Res. 36, 1115–1125 (1996).
    [CrossRef] [PubMed]
  15. K. Sakai, L. H. Finkel, “Characterization of the spatial-frequency spectrum in the perception of shape from texture,” J. Opt. Soc. Am. A 12, 1208–1224 (1995).
    [CrossRef]
  16. N. Graham, “Complex channels, early local nonlinearities, and normalization in texture segregation,” in Computational Models of Vision Processing, M. Landy, J. A. Movshon, eds. (MIT Press, Cambridge, Mass., 1991).
  17. J. A. Movshon, I. D. Thompson, D. J. Tolhurst, “Receptive field organization of complex cells in the cat’s striate cortex,” J. Physiol. (London) 283, 79–99 (1978).
  18. M. E. Chevreul, De la loi du contraste simulanté des couleurs: et de l’assortiment des objets colorés, consideré d’après cette loi (Pitois-Levrault, et ce., Paris, 1839); M. E. Chevreul, The Principles of Harmony and Contrast of Colors and Their Applications to the Arts, original English translation in 1854, republished in 1967 (Reinhold, New York, 1839).
  19. E. G. Heinemann, “Simultaneous brightness induction as a function of induction- and test-field luminances,” J. Exp. Psychol. 50, 89–96 (1955).
    [CrossRef] [PubMed]
  20. E. G. Heinemann, “Simultaneous brightness induction,” in Handbook of Sensory Physiology, D. Jameson, L. M. Hurvich, eds. (Springer-Verlag, Berlin, 1972), pp. 146–149.
  21. A. Sutter, G. Sperling, C. Chubb, “Measuring the spatial frequency selectivity of second-order texture mechanisms,” Vision Res. 35, 915–924 (1995).
    [CrossRef] [PubMed]

1996 (2)

M. W. Cannon, S. C. Fullenkamp, “A model for inhibitory lateral interaction effects in perceived contrast,” Vision Res. 36, 1115–1125 (1996).
[CrossRef] [PubMed]

F. Wilkinson, H. R. Wilson, D. Ellemberg, “Lateral interactions in peripherally-viewed texture arrays,” J. Opt. Soc. Am. A 14, 2057–2068 (1996).
[CrossRef]

1995 (2)

K. Sakai, L. H. Finkel, “Characterization of the spatial-frequency spectrum in the perception of shape from texture,” J. Opt. Soc. Am. A 12, 1208–1224 (1995).
[CrossRef]

A. Sutter, G. Sperling, C. Chubb, “Measuring the spatial frequency selectivity of second-order texture mechanisms,” Vision Res. 35, 915–924 (1995).
[CrossRef] [PubMed]

1992 (1)

T. A. Nazir, “Effects of lateral masking and spatial precueing on gap-resolution in central and peripheral vision,” Vision Res. 32, 771–777 (1992).
[CrossRef] [PubMed]

1991 (1)

W. M. Cannon, S. C. Fullenkamp, “Spatial interactions in apparent contrast: inhibitory effects among grating patterns of different spatial frequencies, spatial positions and orientations,” Vision Res. 31, 1985–1998 (1991).
[CrossRef] [PubMed]

1989 (2)

F. Wilkinson, R. Peterson, “Spatial limits to the perception of textural coherence,” Invest. Ophthalmol. Visual Sci. Supp. 30, 254 (1989).

C. Chubb, G. Sperling, J. A. Solomon, “Texture inter actions determine perceived contrast,” Proc. Natl. Acad. Sci. USA 86, 9631–9635 (1989).
[CrossRef]

1985 (1)

Y. Ejima, S. Takahashi, “Apparent contrast of a sinusoidal grating in the simultaneous presence of peripheral gratings,” Vision Res. 25, 1223–1232 (1985).
[CrossRef] [PubMed]

1979 (1)

R. J. Jacobs, “Visual resolution and contour interaction in the fovea and periphery,” Vision Res. 19, 1187–1195 (1979).
[CrossRef] [PubMed]

1978 (1)

J. A. Movshon, I. D. Thompson, D. J. Tolhurst, “Receptive field organization of complex cells in the cat’s striate cortex,” J. Physiol. (London) 283, 79–99 (1978).

1974 (2)

S. Klein, C. F. Stromeyer, L. Ganz, “The simultaneous spatial frequency shift: a dissociation between the detection and perception of gratings,” Vision Res. 14, 1421–1432 (1974).
[CrossRef] [PubMed]

R. F. Quick, “A vector-magnitude model of contrast detection,” Kybernetik 16, 1299–1302 (1974).
[CrossRef]

1973 (1)

D. M. MacKay, “Lateral interaction between neural channels sensitive to texture density?” Nature 245, 159–161 (1973).
[CrossRef] [PubMed]

1970 (1)

H. Bouma, “Interaction effects in parafoveal letter recognition,” Nature 226, 177–178 (1970).
[CrossRef] [PubMed]

1955 (1)

E. G. Heinemann, “Simultaneous brightness induction as a function of induction- and test-field luminances,” J. Exp. Psychol. 50, 89–96 (1955).
[CrossRef] [PubMed]

1951 (1)

W. A. Weibull, “A statistical distribution function of wide applicability,” J. Appl. Mech. 18, 292–297 (1951).

Bouma, H.

H. Bouma, “Interaction effects in parafoveal letter recognition,” Nature 226, 177–178 (1970).
[CrossRef] [PubMed]

Cannon, M. W.

M. W. Cannon, S. C. Fullenkamp, “A model for inhibitory lateral interaction effects in perceived contrast,” Vision Res. 36, 1115–1125 (1996).
[CrossRef] [PubMed]

Cannon, W. M.

W. M. Cannon, S. C. Fullenkamp, “Spatial interactions in apparent contrast: inhibitory effects among grating patterns of different spatial frequencies, spatial positions and orientations,” Vision Res. 31, 1985–1998 (1991).
[CrossRef] [PubMed]

Chevreul, M. E.

M. E. Chevreul, De la loi du contraste simulanté des couleurs: et de l’assortiment des objets colorés, consideré d’après cette loi (Pitois-Levrault, et ce., Paris, 1839); M. E. Chevreul, The Principles of Harmony and Contrast of Colors and Their Applications to the Arts, original English translation in 1854, republished in 1967 (Reinhold, New York, 1839).

Chubb, C.

A. Sutter, G. Sperling, C. Chubb, “Measuring the spatial frequency selectivity of second-order texture mechanisms,” Vision Res. 35, 915–924 (1995).
[CrossRef] [PubMed]

C. Chubb, G. Sperling, J. A. Solomon, “Texture inter actions determine perceived contrast,” Proc. Natl. Acad. Sci. USA 86, 9631–9635 (1989).
[CrossRef]

Ejima, Y.

Y. Ejima, S. Takahashi, “Apparent contrast of a sinusoidal grating in the simultaneous presence of peripheral gratings,” Vision Res. 25, 1223–1232 (1985).
[CrossRef] [PubMed]

Ellemberg, D.

Finkel, L. H.

Fullenkamp, S. C.

M. W. Cannon, S. C. Fullenkamp, “A model for inhibitory lateral interaction effects in perceived contrast,” Vision Res. 36, 1115–1125 (1996).
[CrossRef] [PubMed]

W. M. Cannon, S. C. Fullenkamp, “Spatial interactions in apparent contrast: inhibitory effects among grating patterns of different spatial frequencies, spatial positions and orientations,” Vision Res. 31, 1985–1998 (1991).
[CrossRef] [PubMed]

Ganz, L.

S. Klein, C. F. Stromeyer, L. Ganz, “The simultaneous spatial frequency shift: a dissociation between the detection and perception of gratings,” Vision Res. 14, 1421–1432 (1974).
[CrossRef] [PubMed]

Graham, N.

N. Graham, “Complex channels, early local nonlinearities, and normalization in texture segregation,” in Computational Models of Vision Processing, M. Landy, J. A. Movshon, eds. (MIT Press, Cambridge, Mass., 1991).

Heinemann, E. G.

E. G. Heinemann, “Simultaneous brightness induction as a function of induction- and test-field luminances,” J. Exp. Psychol. 50, 89–96 (1955).
[CrossRef] [PubMed]

E. G. Heinemann, “Simultaneous brightness induction,” in Handbook of Sensory Physiology, D. Jameson, L. M. Hurvich, eds. (Springer-Verlag, Berlin, 1972), pp. 146–149.

Jacobs, R. J.

R. J. Jacobs, “Visual resolution and contour interaction in the fovea and periphery,” Vision Res. 19, 1187–1195 (1979).
[CrossRef] [PubMed]

Klein, S.

S. Klein, C. F. Stromeyer, L. Ganz, “The simultaneous spatial frequency shift: a dissociation between the detection and perception of gratings,” Vision Res. 14, 1421–1432 (1974).
[CrossRef] [PubMed]

MacKay, D. M.

D. M. MacKay, “Lateral interaction between neural channels sensitive to texture density?” Nature 245, 159–161 (1973).
[CrossRef] [PubMed]

Movshon, J. A.

J. A. Movshon, I. D. Thompson, D. J. Tolhurst, “Receptive field organization of complex cells in the cat’s striate cortex,” J. Physiol. (London) 283, 79–99 (1978).

Nazir, T. A.

T. A. Nazir, “Effects of lateral masking and spatial precueing on gap-resolution in central and peripheral vision,” Vision Res. 32, 771–777 (1992).
[CrossRef] [PubMed]

Peterson, R.

F. Wilkinson, R. Peterson, “Spatial limits to the perception of textural coherence,” Invest. Ophthalmol. Visual Sci. Supp. 30, 254 (1989).

Quick, R. F.

R. F. Quick, “A vector-magnitude model of contrast detection,” Kybernetik 16, 1299–1302 (1974).
[CrossRef]

Sakai, K.

Solomon, J. A.

C. Chubb, G. Sperling, J. A. Solomon, “Texture inter actions determine perceived contrast,” Proc. Natl. Acad. Sci. USA 86, 9631–9635 (1989).
[CrossRef]

Sperling, G.

A. Sutter, G. Sperling, C. Chubb, “Measuring the spatial frequency selectivity of second-order texture mechanisms,” Vision Res. 35, 915–924 (1995).
[CrossRef] [PubMed]

C. Chubb, G. Sperling, J. A. Solomon, “Texture inter actions determine perceived contrast,” Proc. Natl. Acad. Sci. USA 86, 9631–9635 (1989).
[CrossRef]

Stromeyer, C. F.

S. Klein, C. F. Stromeyer, L. Ganz, “The simultaneous spatial frequency shift: a dissociation between the detection and perception of gratings,” Vision Res. 14, 1421–1432 (1974).
[CrossRef] [PubMed]

Sutter, A.

A. Sutter, G. Sperling, C. Chubb, “Measuring the spatial frequency selectivity of second-order texture mechanisms,” Vision Res. 35, 915–924 (1995).
[CrossRef] [PubMed]

Takahashi, S.

Y. Ejima, S. Takahashi, “Apparent contrast of a sinusoidal grating in the simultaneous presence of peripheral gratings,” Vision Res. 25, 1223–1232 (1985).
[CrossRef] [PubMed]

Thompson, I. D.

J. A. Movshon, I. D. Thompson, D. J. Tolhurst, “Receptive field organization of complex cells in the cat’s striate cortex,” J. Physiol. (London) 283, 79–99 (1978).

Tolhurst, D. J.

J. A. Movshon, I. D. Thompson, D. J. Tolhurst, “Receptive field organization of complex cells in the cat’s striate cortex,” J. Physiol. (London) 283, 79–99 (1978).

Weibull, W. A.

W. A. Weibull, “A statistical distribution function of wide applicability,” J. Appl. Mech. 18, 292–297 (1951).

Wilkinson, F.

F. Wilkinson, H. R. Wilson, D. Ellemberg, “Lateral interactions in peripherally-viewed texture arrays,” J. Opt. Soc. Am. A 14, 2057–2068 (1996).
[CrossRef]

F. Wilkinson, R. Peterson, “Spatial limits to the perception of textural coherence,” Invest. Ophthalmol. Visual Sci. Supp. 30, 254 (1989).

F. Wilkinson, H. R. Wilson, “Measurement of the texture coherence limit for bandpass arrays,” Perception (to be published).

Wilson, H. R.

F. Wilkinson, H. R. Wilson, D. Ellemberg, “Lateral interactions in peripherally-viewed texture arrays,” J. Opt. Soc. Am. A 14, 2057–2068 (1996).
[CrossRef]

F. Wilkinson, H. R. Wilson, “Measurement of the texture coherence limit for bandpass arrays,” Perception (to be published).

Invest. Ophthalmol. Visual Sci. Supp. (1)

F. Wilkinson, R. Peterson, “Spatial limits to the perception of textural coherence,” Invest. Ophthalmol. Visual Sci. Supp. 30, 254 (1989).

J. Appl. Mech. (1)

W. A. Weibull, “A statistical distribution function of wide applicability,” J. Appl. Mech. 18, 292–297 (1951).

J. Exp. Psychol. (1)

E. G. Heinemann, “Simultaneous brightness induction as a function of induction- and test-field luminances,” J. Exp. Psychol. 50, 89–96 (1955).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

J. Physiol. (London) (1)

J. A. Movshon, I. D. Thompson, D. J. Tolhurst, “Receptive field organization of complex cells in the cat’s striate cortex,” J. Physiol. (London) 283, 79–99 (1978).

Kybernetik (1)

R. F. Quick, “A vector-magnitude model of contrast detection,” Kybernetik 16, 1299–1302 (1974).
[CrossRef]

Nature (2)

H. Bouma, “Interaction effects in parafoveal letter recognition,” Nature 226, 177–178 (1970).
[CrossRef] [PubMed]

D. M. MacKay, “Lateral interaction between neural channels sensitive to texture density?” Nature 245, 159–161 (1973).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

C. Chubb, G. Sperling, J. A. Solomon, “Texture inter actions determine perceived contrast,” Proc. Natl. Acad. Sci. USA 86, 9631–9635 (1989).
[CrossRef]

Vision Res. (7)

W. M. Cannon, S. C. Fullenkamp, “Spatial interactions in apparent contrast: inhibitory effects among grating patterns of different spatial frequencies, spatial positions and orientations,” Vision Res. 31, 1985–1998 (1991).
[CrossRef] [PubMed]

S. Klein, C. F. Stromeyer, L. Ganz, “The simultaneous spatial frequency shift: a dissociation between the detection and perception of gratings,” Vision Res. 14, 1421–1432 (1974).
[CrossRef] [PubMed]

M. W. Cannon, S. C. Fullenkamp, “A model for inhibitory lateral interaction effects in perceived contrast,” Vision Res. 36, 1115–1125 (1996).
[CrossRef] [PubMed]

Y. Ejima, S. Takahashi, “Apparent contrast of a sinusoidal grating in the simultaneous presence of peripheral gratings,” Vision Res. 25, 1223–1232 (1985).
[CrossRef] [PubMed]

T. A. Nazir, “Effects of lateral masking and spatial precueing on gap-resolution in central and peripheral vision,” Vision Res. 32, 771–777 (1992).
[CrossRef] [PubMed]

R. J. Jacobs, “Visual resolution and contour interaction in the fovea and periphery,” Vision Res. 19, 1187–1195 (1979).
[CrossRef] [PubMed]

A. Sutter, G. Sperling, C. Chubb, “Measuring the spatial frequency selectivity of second-order texture mechanisms,” Vision Res. 35, 915–924 (1995).
[CrossRef] [PubMed]

Other (4)

F. Wilkinson, H. R. Wilson, “Measurement of the texture coherence limit for bandpass arrays,” Perception (to be published).

N. Graham, “Complex channels, early local nonlinearities, and normalization in texture segregation,” in Computational Models of Vision Processing, M. Landy, J. A. Movshon, eds. (MIT Press, Cambridge, Mass., 1991).

M. E. Chevreul, De la loi du contraste simulanté des couleurs: et de l’assortiment des objets colorés, consideré d’après cette loi (Pitois-Levrault, et ce., Paris, 1839); M. E. Chevreul, The Principles of Harmony and Contrast of Colors and Their Applications to the Arts, original English translation in 1854, republished in 1967 (Reinhold, New York, 1839).

E. G. Heinemann, “Simultaneous brightness induction,” in Handbook of Sensory Physiology, D. Jameson, L. M. Hurvich, eds. (Springer-Verlag, Berlin, 1972), pp. 146–149.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Example of the stimulus configuration. The stimulus consists of an array of equally spaced Gabor signals with a horizontal space constant of 0.19°, spatial frequency of 3.3 cpd, and contrast of 40%. Viewed from a distance of 98 cm, the spacing between the elements is 0.57° and the width of the array is 9.5°. The element string is centered 1.9° above the fixation point. The target Gabor was always the central element. In the schematic its position is delimited by the dashed ellipse; however, its position was not indicated in any way during the experimental procedure.

Fig. 2
Fig. 2

Apparent-contrast data for the three subjects tested on the three directions of contrast. The abscissa is the center-to-center distance between the elements in degrees of visual angle. Subjects SM and MO were tested on four of the five inter-element spacings.

Fig. 3
Fig. 3

Percent reduction in the apparent contrast of central targets surrounded by flankers of identical (vVv) or orthogonal (vHv) orientation.

Fig. 4
Fig. 4

Apparent-spatial-frequency data for three subjects plotted against inter-element spacing. Each subject was tested on the three spatial-frequency surround conditions.

Fig. 5
Fig. 5

Percent change in the apparent contrast and apparent spatial frequency of the target Gabor as a function of inter-element spacing, when the surrounding elements had the same contrast and spatial frequency as the target.

Fig. 6
Fig. 6

Spatial-frequency-tuning functions of the shift in apparent spatial frequency of targets of 3.3 cpd (top panel) and 6.6 cpd (bottom panel). The abscissa is the spatial frequency of the surrounding elements.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

G(x, y)=L[1+C exp(-x2/σx2)×exp(-y2/σy2)sin(2πfx)],

Metrics