Abstract

The properties of morphology-dependent resonances observed in the scattering of electromagnetic waves from dielectric spheres have recently been investigated intensively, and a second-order perturbative expansion for these resonances has also been derived. Nevertheless, it is still desirable to obtain higher-order corrections to their eigenfrequencies, which will become important for strong enough perturbations. Conventional explicit expressions for higher-order corrections inevitably involve multiple sums over intermediate states, which are computationally cumbersome. In this analysis an efficient iterative scheme is developed to evaluate the higher-order perturbation results. This scheme, together with the optimal truncation rule and the Padé resummation, yields accurate numerical results for eigenfrequencies of morphology-dependent resonances even if the dielectric sphere in consideration deviates strongly from a uniform one. It is also interesting to find that a spatial discontinuity in the refractive index, say, at the edge of the dielectric sphere, is crucial to the validity of the perturbative expansion.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (57)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription